Publications by Axel Jantsch

Sorted by year

Sorted by topic

2024

[1] Dewant Katare, Salar Shakibhamedan, Nima Amirafshar, Nima Taherinejad, Axel Jantsch, Marijn Janssen, and Aaron Yi Ding. Approximation Strategies for Vision Models on Edge Devices: An Accuracy-Efficiency Trade-off. In TechRxiv. December 2024. [ bib | DOI | .pdf ]
[2] Axel Jantsch, Song Han, Lin Meng, Oliver Bringmann, Haotian Tang, Shang Yang, Hengyi Li, Matthias Wess, and Martin Lechner. Special Session: Estimation and Optimization of DNNs for Embedded Platforms. In Proceedings of the International Symposium on Hardware Software Codesign, pages 21--30, Raleigh, NC, October 2024. [ bib | DOI ]
[3] Florian Egert, Sofia Maragkou, Markus Kobelrausch, Bernhard Fischer, and Axel Jantsch. A Methodology for Automating the Integration of User-Defined Instructions into RISC-V Systems based on the CV-X-IF Interface. In RISC-V Summit Europe, Munich, Germany, June 2024. [ bib | .pdf ]
[4] Salar Shakibhamedan, Amin Aminifar, Nima Taherinejad, and Axel Jantsch. EASE: Energy Optimization through Adaptation - A Review of Runtime Energy-Aware Approximate Deep Learning Algorithms. In TechRxiv. February 2024. [ bib | DOI | .pdf ]
[5] Saeed Seyedfaraji, Salar Shakibhamedan, Amire Seyedfaraji, Baset Mesgari, Nima TaheriNejad, Axel Jantsch, and Semeen Rehman. E-MAC: Enhanced In-SRAM MAC Accuracy via Digital-to-Time Modulation. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, pages 1--1, 2024. [ bib | DOI | .pdf ]
[6] Maryna Kolisnyk and Axel Jantsch. ML-based Fault Tree Analysis of Industrial Router Reliability in the System IIoT. In 2024 International Conference on Applied Mathematics & Computer Science (ICAMCS), pages 173--178, 2024. [ bib | DOI ]
[7] Istvan Andras Gergely, Sebastian Rausch, Nahla Elaraby, and Axel Jantsch. Resource Management of Automotive Engine Control Units. In 2024 IFIP/IEEE 32nd International Conference on Very Large Scale Integration (VLSI-SoC), pages 1--4, 2024. [ bib | DOI ]
[8] Matthias Bittner, Daniel Hauer, Matthias Wess, Daniel Schnöll, Konrad Diwold, and Axel Jantsch. Forecasting Load Profiles and Critical Overloads with Uncertainty Quantification for Low Voltage Smart Grids. In Proceedings of the The 8th International Conference on System Reliability and Safety, Novemebr 2024. [ bib ]
[9] Matthias Bittner1, Daniel Hauer, Matthias Wess, Dominik Dallinger, Daniel Schnöll1, Konrad Diwold, and Axel Jantsch. Interpretable Load Forecasting with Structured State Space Neural Networks. In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2024. [ bib ]
[10] Alireza Estaji, Maximilian Götzinger, Benedikt Tutzer, Stefan Kollmann, Thilo Sauter, and Axel Jantsch. Evaluation of Drift Detection Algorithms in the Condition Monitoring Domain. IEEE Transactions on Industrial Informatics, pages 1--10, 2024. [ bib | DOI | .pdf ]
[11] Thomas Leopold and Axel Jantsch. Colorado Potato Beetle Dataset and Detection for Monitoring and Management in Potato Fields. In Proceedings of the Austrian Symposion on AI, Robotics and Vision, Austria, 2024. [ bib | .pdf ]
[12] Muhammad Noman Sohail, Adeel Anjum, Iftikhar Ahmed Saeed, Madiha Haider Syed, Axel Jantsch, and Semeen Rehman. Optimizing Industrial IoT Data Security through Blockchain-Enabled Incentive-Driven Game Theoretic Approach for Data Sharing. IEEE Access, pages 1--1, 2024. [ bib | DOI | .pdf ]
[13] Matthias Bittner, Dominik Dallinger, Matthias Wess Daniel Schnöll, Maximilian Götzinger, and Axel Jantsch. Once-For-All Neural Architecture for Time Series Classification on Microcontroller Platforms. In Under submission, 2024. [ bib ]
[14] David Breuss, Karel Rusý, Maximilian Götzinger, and Axel Jantsch. Generation of Synthetic Image Anomalies for Analysis and Evaluation. In Proceedings of the International Conference on Intelligent Systems and Pattern Recognition, 2024. [ bib | .pdf ]
[15] Axel Jantsch, Swaroop Ghosh, Umit Ogras, and Pascal Meinerzhagen. ISLPED 2023: International Symposium on Low-Power Electronics and Design. IEEE Design & Test, 41(1):93--94, 2024. [ bib | DOI ]
[16] Martin Lechner and Axel Jantsch. Hardware-Aware Latency Pruning for Efficient Inference on Embedded GPUs. Under submission, 2024. [ bib ]
[17] Matthias Wess, Daniel Schnöll, Dominik Dallinger, Matthias Bittner, and Axel Jantsch. Conformal Prediction based Confidence for Latency Estimation of DNN Accelerators: A Black-box Approach. IEEE Access, 2024. [ bib | DOI | .pdf ]

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992


This file was generated by bibtex2html 1.98.

Wednesday, 1 January 2025, 12:11:25