
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013 1053

Addressing Transient and Permanent Faults in NoC
With Efficient Fault-Tolerant Deflection Router

Chaochao Feng, Zhonghai Lu, Member, IEEE, Axel Jantsch, Member, IEEE,
Minxuan Zhang, and Zuocheng Xing

Abstract— Continuing decrease in the feature size of integrated
circuits leads to increases in susceptibility to transient and per-
manent faults. This paper proposes a fault-tolerant solution for a
bufferless network-on-chip, including an on-line fault-diagnosis
mechanism to detect both transient and permanent faults, a
hybrid automatic repeat request, and forward error correction
link-level error control scheme to handle transient faults and
a reinforcement-learning-based fault-tolerant deflection routing
(FTDR) algorithm to tolerate permanent faults without dead-
lock and livelock. A hierarchical-routing-table-based algorithm
(FTDR-H) is also presented to reduce the area overhead of the
FTDR router. Synthesized results show that, compared with the
FTDR router, the FTDR-H router can reduce the area by 27%
in an 8 × 8 network. Simulation results demonstrate that under
synthetic workloads, in the presence of permanent link faults, the
throughput of an 8 × 8 network with FTDR and FTDR-H algo-
rithms are 14% and 23% higher on average than that with the
fault-on-neighbor (FoN) aware deflection routing algorithm and
the cost-based deflection routing algorithm, respectively. Under
real application workloads, the FTDR-H algorithm achieves 20%
less hop counts on average than that of the FoN algorithm. For
transient faults, the performance of the FTDR router can achieve
graceful degradation even at a high fault rate. We also implement
the fault-tolerant deflection router which can achieve 400 MHz
in TSMC 65-nm technology.

Index Terms— Deflection routing, fault-tolerance, on-line fault
diagnosis, permanent fault, transient fault.

I. INTRODUCTION

NETWORK-ON-CHIP (NoC) approach has emerged as a
promising solution for on-chip communications to enable

integrating various processors and on-chip memories into a
single chip [1]. However, with the technology scaling down
to the nanometer domain, shrinking transistor sizes, lower
power voltages, and higher operating frequencies seriously
affect the reliability of CMOS VLSI circuits [2]. Two kinds
of faults (permanent and transient) need to be addressed
in NoC architectures. There are two methods to cope with

Manuscript received July 23, 2011; revised March 21, 2012; accepted May
18, 2012. Date of publication July 31, 2012; date of current version May 20,
2013. This work was supported in part by the National Natural Science
Foundation of China under Grant 60970036, Grant 61003301, and Grant
61170083.

C. Feng, M. Zhang, and Z. Xing are with the School of Computer,
National University of Defense Technology, Changsha 410073, China (e-mail:
fengchaochao@nudt.edu.cn; mxzhang@nudt.edu.cn; zcxing@nudt.edu.cn).

Z. Lu and A. Jantsch are with the Department of Electronic Systems, Royal
Institute of Technology, Stockholm 16440, Sweden (e-mail: zhonghai@kth.se;
axel@kth.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2204909

transient and permanent faults in NoC. Flow-control-based
methods (e.g., [3] and [4]), combine the error control code
with the retransmission mechanism to tolerate transient faults
occurring in transmission; the other is fault-tolerant routing
which utilizes the inherent structure redundancy of NoC to
route packets around the permanent faulty routers or links to
achieve fault-tolerance. A good fault-tolerant routing algorithm
should ensure “0 lost packet” in whatever fault patterns as long
as a path exists. However, many of them (e.g., [5] and [6]) can
only improve the successful arrival rate of the packet.

Recently, bufferless router has been studied in NoC to
achieve higher speed and lower cost than a wormhole or virtual
channel router [7]–[9]. Except one input register for each input
port, there are no other buffers in the bufferless router. Due to
the lack of buffers, deflection routing is utilized in the buffer-
less router to route packets to neighboring routers immediately
without buffering in the router. The fully adaptive feature of
deflection routing provides the potential to route packets to
avoid faulty links/routers and achieve fault-tolerance. In our
previous works [10], a reconfigurable fault-tolerant deflection
routing (FTDR) algorithm based on reinforcement learning has
been proposed for 2-D mesh NoC. The advantage of the FTDR
algorithm is the topology-agnostic feature, which is insensitive
to the shape of the faulty region. The routing table can be
reconfigured during packets transmission. In [10], we only
focus on the routing algorithm to handle permanent faults.
In this paper, a fault-tolerant solution, including an on-line
fault diagnosis mechanism, a link-level error control scheme,
and a fault-tolerant routing algorithm, is proposed for the
bufferless NoC to tolerate both transient and permanent faults.
The fault diagnosis mechanism uses the single-error-correcting
and double-error-detecting (SECDED) Hamming code [11]
to detect both transient and permanent link faults. A hybrid
automatic repeat request (ARQ) and forward error correction
(FEC) link-level error control scheme using retransmission
is proposed to handle transient faults. The FTDR algorithm
guarantees “0 lost packet” as long as the fault pattern does
not cut the network into two or more disconnected parts. The
algorithm is also modified to still work when some links are
in the test mode. A hierarchical-routing-table-based algorithm
(FTDR-H) is also presented to reduce the area overhead of
the router. Synthesized results show that, compared with the
FTDR router, the FTDR-H router can reduce the area by
27% in an 8 × 8 network. Simulation results demonstrate that
under synthetic workloads, in the presence of permanent link
faults, the throughput of an 8 × 8 network with FTDR and

1063-8210/$31.00 © 2012 IEEE

1054 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

FTDR-H algorithms are 14% and 23% higher on average than
that with the fault-on-neighbor (FoN) aware deflection routing
algorithm [12] and the cost-based deflection routing algorithm
[13], respectively, and achieve almost 2 × less hop counts on
average than that with the cost-based algorithm. Under real
application workloads, the FTDR-H algorithm achieves 20%
less hop counts on average than that of the FoN algorithm.
For transient faults, the performance of the FTDR router can
achieve graceful degradation even at a high fault rate. We also
implement the FTDR and FTDR-H routers, which can achieve
400 MHz in TSMC 65-nm technology.

Few previous works provide a fault-tolerant solution to
handle both transient and permanent faults for NoC. This paper
proposes a fault-tolerant solution for a bufferless NoC. We
have significantly extended our previous works [10] in the
following aspects.

1) A link-level error control scheme handling transient
faults through a hybrid ARQ/FEC method is introduced
in the fault-tolerant solution. Experiment results show
that this scheme can achieve graceful degradation at
various transient fault rates. The previous works have
only proposed the FTDR algorithm to handle permanent
faults.

2) An on-line fault diagnosis mechanism using blocked
SECDED Hamming code is proposed to distinguish
transient faults from permanent faults, while the previous
works do not refer to this topic. The encoding scheme
with interleaving can also handle burst errors during
packets transmission.

3) A test process is proposed to check if a faulty link
contains a real permanent fault. The test process does not
interfere with regular packets transmission. The FTDR
algorithm is modified to still work well when the link
is in the test mode. In addition, we discuss more details
about the FTDR-H algorithm.

4) For experiments, we add quantitative comparison for the
learning process of the FTDR and FTDR-H algorithms,
and evaluate the effect of faults on the performance of
the real application, and evaluate the performance of the
FTDR router under transient faults.

The rest of this paper is organized as follows. Related works
are reviewed in Section II. Section III describes the NoC
architecture and fault diagnosis mechanism. In Section IV, a
link-level error control scheme is proposed to handle transient
faults. The reinforcement-learning-based FTDR algorithm and
the hardware implementation of the router are proposed in
Section V. In Section VI, simulation experimental results
under both synthetic and real application workloads are dis-
cussed, followed by the conclusion in Section VII.

II. RELATED WORKS

A. Fault Detection Mechanisms for NoC

The precondition for a fault-tolerant system running
smoothly is to detect the location of the faults first. The fault
detection mechanism should also distinguish transient faults
from permanent faults. Transient link errors can be detected
via error coding techniques, such as cyclic redundancy check

and parity codes [14]. A code disjoint fault detection scheme
is used for online NoC fault diagnosis to locate the position of
the faulty link/router precisely [15]. A diagnosis method that
injects test patterns at the boundaries of a 2-D mesh network
has been proposed in [16], to locate faults of routers and links
based on different test patterns.

For detecting permanent errors in NoC, Lehtonen et al.
propose an in-line test method to test each adjacent pair of
wires and a syndrome storing-based error detection method
based on evaluation of consecutive code syndromes at the
receiver [17]. Few works focus on detecting transient faults
and permanent faults at the meantime. A transient and perma-
nent error co-management method for NoC links is described
in [18]. However, the error control coding (ECC) scheme
which is selected based on the noise condition can only detect
transient errors.

B. Techniques to Handle Transient Faults for NoC

Transient faults in NoC can be handled at both link-level
and transport level by three schemes: ARQ, FEC, and hybrid
ARQ/FEC [19].

A simple and cost-effective end-to-end packet-based com-
munication protocol to address transient faults for NoC has
been proposed in [20]. Go-back-n retransmission policy is
used, which means the receiver generates a single acknowl-
edgement for a pre-defined number of packets that it receives.
A link-level ARQ scheme, which is called hop-by-hop [21],
utilizes a three-flit-deep retransmission buffer per virtual chan-
nel to handle transient errors in virtual channel router. In
[4], the authors have compared the end-to-end flow control
with the link-level flow control in terms of latency and power
consumption.

Due to the lack of buffers in the deflection router, imple-
menting link-level error control scheme on it is different from
the wormhole/virtual channel router with more input buffers.
Kohler et al. have proposed a link-level ARQ mechanism
that uses only one additional retransmission register to handle
both router-internal transient faults and transient link faults in
deflection router [13]. However, because of only one retrans-
mission buffer, packets will be lost if the second transient link
fault occurs one cycle after the first one or the transient link
fault lasts for two cycles.

C. Fault-Tolerant Routing Algorithms to Handle Permanent
Faults for NoC

Two kinds of fault-tolerant routing, which are known as
stochastic and deterministic, have been proposed for NoC to
handle permanent faults. Stochastic communication transfers
redundant packets through different paths to avoid faults.
Dumitras et al. have proposed a probabilistic broadcast scheme
that is derived from the randomized gossip protocol [22]. In
order to limit the number of packet copies, redundant random
walk [23] only replicates packets at the source node. Although
the stochastic communication can be highly fault-tolerant, it
wastes much bandwidth to transfer redundant packets, which
reduces the throughput of the network significantly.

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1055

Depending on the shape of the fault region, determinis-
tic fault-tolerant routing algorithms can be categorized into
two classes: one can handle regular fault regions (e.g.,
convex and concave shapes) and the other, which is also
known as topology-agnostic, can handle irregular fault regions.
A reconfigurable routing algorithm is proposed to route pack-
ets surrounding a faulty router in a 2-D mesh NoC [24]. But
it can only be used in one faulty router topology and extended
to one faulty region topology. In [25], a deadlock-free routing
algorithm is presented to handle irregular mesh topology with
rectangular regions. This algorithm uses the concept of faulty-
rings and faulty-chains to isolate the faulty nodes from the rest
of the network. A resilient routing algorithm for fault-tolerant
NoC based on turn model is described in [26]. However,
the routing table of the router is reconfigured to avoid faulty
components in an offline process. Although the regular nature
of a faulty region can facilitate to route packets around it, it
is not practical to assume the shape of the faulty region since
the occurrence of the fault is not predictable.

For deflection routing, a fault adaptive routing algorithm,
based on a cost function to make routing decision, has been
proposed in [13]. The cost function takes the route length
and local fault status into consideration. Because the routing
decision is only based on the fault information of the current
router, the hop count field of the packet can easily overflow
even in some simple fault patterns, which can lead to livelock.
A FoN aware deflection router [12], which can tolerate convex
and concave fault regions without deadlock and livelock,
makes routing decision based on the two-hop fault infor-
mation and the fault region shape without using a routing
table.

The network with irregular fault regions can be viewed as
the network topology changing from regular to irregular topol-
ogy. Some routing algorithms used in irregular interconnection
network are based on finding the spanning tree embedded in
the network, such as up*/ down* [27] and IMMUNET [28].
For NoC, few works focus on handling network with irregular
fault regions. A fully adaptive fault-tolerant routing (called
force-directed wormhole routing) has been proposed to handle
completely broken links and routers [29]. FDWR exchanges
routing information between routers to configure the routing
table. The problem of this approach is that additional flits
rather than data flits are needed to check neighboring router
states for updating routing table. A region-based routing has
been proposed to handle irregular NoC [30]. This algorithm
groups destinations into regions to make routing decision,
however, it needs an additional region computation process.

III. NOC ARCHITECTURE AND FAULT DIAGNOSIS

A. NoC Topology and Packet Format

The NoC architecture is based on a 2-D mesh topology,
Nostrum NoC [31]. Each processing element is attached to a
router (R), as shown in Fig. 1. The difference from the ordinary
2-D mesh is that the boundary output is connected to the
input of the same router. This can be viewed as an additional
packet buffer. All incoming packets are prioritized according to
their hop counts, which record the number of hops the packet

Fig. 1. NoC architecture.

has been routed. The router makes routing decision for each
arriving packet from the highest priority to the lowest. If a
desired output port has already been occupied by a higher
priority packet, a free port with the smallest stress value will
be chosen, which means the packet has to be deflected. The
stress value, which can be used to balance traffic load, is the
number of packets processed by neighboring routers in the last
four cycles.

The basic data transfer unit in this paper is a packet. The
original packet format, which is compatible with a multicore
NoC platform [32], is shown in Fig. 2(a). A packet, which
has 114 bits, contains a 34-bit head and an 80-bit payload.
A valid bit (V) is used to mark a packet valid or not. Relative
addressing is used for the source and destination address fields
(SA and DA) which have 12 bits (six bits for row/column
address), respectively. The hop counter field (HC, nine bits)
records the number of hops the packet has been routed. In
order to detect and correct errors in transmission, SECDED
Hamming codes are used to encode the head and payload,
respectively. The encoded packet format, which has 156 bits,
is shown in Fig. 2(b). The head is divided into two parts
and Hamming (23, 17) code is used to encode each part. The
payload is divided into five parts, each of which is encoded
with Hamming (22, 16) code. The details of the fault diagnosis
mechanism will be discussed in Section III-C.

B. Fault Model

In this paper, faults are considered as faulty links which can
be both transient and permanent faults. For deflection router,
the number of input ports should be equal to the number of
output ports, so permanent link failures are assumed to be
bidirectional. In each router, a four-bit fault vector is used
to represent the fault status of its four links (North, East,
South, and West). A “1” in the fault vector represents the
corresponding bidirectional links are broken. The faulty region
can be any shape as long as it does not disconnect the network.
Transient faults are often caused by single-event upset. It has
been stated that single-event transient pulsewidths vary from
about 900 ps to 3 ns for a 1.5-μm technology and rapidly
scale down with the technology [33]. We implement the fault-

1056 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

Fig. 2. (a) Original packet format. (b) Encoded packet format.

tolerant deflection router with TSMC 65-nm technology, which
can achieve 400 MHz (2.5 ns per cycle). So it is reasonable
to assume that most of transient faults last for one clock cycle
in our works. If a transient fault lasts for two clock cycles,
the router will enter into a test model to test whether the link
contains a real permanent fault. Besides faults on links, partial
transient and permanent faults on input registers of the router
can also be detected after decoding the packet. Faults on the
control circuit and routing table of the router are beyond the
scope of this paper.

C. Link-Level Fault Detection and Protection

SECDED Hamming code, which can correct single error
and detect double errors, is used to encode the packet to
perform fault diagnosis. To make a compromise among per-
formance, area and power consumption, we compare two ECC
strategies: 1) encode the whole packet with Hamming (122,
114) code and 2) encode the head with two Hamming (23, 17)
codes and the payload with five Hamming (22, 16) codes. For
the first encoding strategy, eight parity bits are used to encode
the 114 bits packet into 122 bits. It can only correct one-
bit error and detect two-bit error in the packet. The second
strategy divides the packet into seven parts: two for head
and five for payload, encoded with Hamming (23, 17) and
Hamming (22, 16) codes, respectively. The encoded packet
length has 156 bits with 42 parity bits. It can correct seven
simultaneous single-bit errors in each part and detect at most
14 error bits in the case of a two-bit error in each part. If any
of the seven parts contains a two-bit error for one cycle, it
will lead to a retransmission. If the retransmitted packet has
the same two-bit error in any part, the link will be tested to
check if it is considered as a permanent faulty link. The input
register is followed by the decoder, so the ECC mechanism
can detect and correct both link and input register errors.

Table I shows the latency, area, and power comparison of
encoders and decoders for Hamming (122, 114) and (22, 16)
codes, respectively (developed in VHDL and synthesized with
TSMC 65-nm technology). The results for Hamming (23, 17)
code are similar as Hamming (22, 16) code. As the table
illustrates, the latency, area, and power consumption of the
encoder and decoder for Hamming (122, 114) code are much
larger than those of Hamming (22, 16) code. Partitioning the
packet into smaller blocks and encoding separately is clearly
a better strategy for improving performance and lowering
area and power consumption. From the synthesize results, the
number of logic levels for the encoding and decoding circuits
of H(122, 144) code is 14 and 16, respectively, while the

TABLE I

LATENCY, AREA, AND POWER COMPARISON OF ENCODERS AND

DECODERS FOR DIFFERENT HAMMING CODES

Latency (ns) Area (μm2) Power (mW)
enc dec enc dec enc dec

H(122, 114) 0.28 0.31 3304 5436 2.3 3.8
H(22, 16) 0.13 0.21 437 1086 0.21 0.67

TABLE II

CODE RATE COMPARISON FOR DIFFERENT FEC CODING STRATEGIES

Coding strategy n k Code rate Notes

ECC (1) 122 114 0.93 H(122,114)
ECC (2) 156 114 0.73 2×H(23,17)+5×H(22,16)
BCH 170 114 0.67 B(170,114)

number of logic levels for the encoding and decoding circuits
of H(22, 16) is 7 and 10, respectively. Using smaller blocks can
reduce the number of logic levels for the encoder and decoder.
In addition, different parts of packet in the ECC strategy 2) are
encoded with interleaving, which can also protect against burst
errors. To correct multiple error bits, the Bose, Chaudhuri and
Hocquenghem (BCH) code [34] can be constructed, however,
as the number of bits to be corrected increases, the hardware
complexity and decoding time will increase significantly. As
illustrated in [35], the hardware overhead for BCH code is
much larger than that of the Hamming code with interleaving.
Table II also shows the code rate, which is the width of
codeword (n) divided by the width of dataword (k), for three
different FEC coding strategies. The ECC strategy 1) has the
highest code rate but lowest reliability, while the strategy using
BCH(170, 114) code to correct at most seven error bits has
the lowest code rate. Considering the hardware overhead and
communication performance, the ECC strategy 2) is chosen as
our final coding method.

In order to distinguish transient faults from permanent
faults, the fault diagnosis process is shown in Fig. 3. The
decoder will generate a syndrome, which contains the error
information of the packet. If the decoder detects a single-bit
error in any one part of the encoding packet, it will correct
it no matter which kind of faults it is. If it detects a two-bit
error in any one part of the encoding packet for one cycle,
which is considered as a transient fault, it will require the
upstream router to retransmit the packet. If the syndromes
of two consecutive received packets are the same, which
means the retransmitted packet contains the same two-bit error,
in order to check whether the link contains real permanent
faults, the router enters into a test mode to test this faulty
link by applying four test vectors ({0}n, {1}n, {01}n/2, {10}n/2,
where n is the number of bit width). The test process will be
conducted at most twice. In the test mode, the link being tested
is temporarily disabled. The downstream router requires the
upstream router to send the test vectors by setting a test_initial
signal to “1”. If the downstream router detects any one of
the four test vectors still containing the same error, the test
process will be conducted again. If the second test still fails,
the link is marked as a permanent faulty link. If all tests pass,

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1057

Fig. 3. Fault diagnosis process.

the link will be enabled again. In the test mode, the other
links of the upstream and downstream routers can still transmit
packets as normal. From this test process, transient faults can
be distinguished from permanent faults.

D. Two-Hop Fault Information Transmission

A two-hop fault information transmission mechanism [12]
has been used to reduce the average hop counts. In the two-
hop fault information transmission mechanism, each router is
responsible for not only transmitting its own link state to four
neighbors but also collecting the link states from its three
neighbors and transmitting them to the fourth neighbor with a
three-bit vector FoN_to[d]. For example, router A can get the
states of 16 links within two hops, as shown in Fig. 4.

Four dedicated signals [fault_from[d] (one bit), fault_to[d]
(one bit), FoN_from[d] (three bits), FoN_to[d] (three bits)],
which have eight bits in total for each direction, are used to
transmit the fault information, as shown in Fig. 4. For each
direction d ∈ {North, East, South, West}, the four signals
are defined as follows:

1) fault_from[d] (one bit): the input link state along the
direction d, receiving from the neighbor along d;

2) fault_to[d] (one bit): the output link state along the
direction d, sending to the neighbor along d;

3) FoN_from[d] (three bits): three link states (except d) of
the neighbor along d;

4) FoN_to[d] (three bits): link states along three directions
except d, transmitting to the neighbor along d.

The dedicated fault information signals are critical for
the fault-tolerant deflection router. To protect them against
transient and permanent faults, we use two Hamming (7,4)
codes, which can detect and correct one-bit error, to encode
the eight-bit signal for each direction.

IV. LINK-LEVEL ERROR CONTROL SCHEME

The ARQ scheme using retransmission performs well with-
out incurring much latency for low error rates, however, at
higher error rate the hybrid ARQ/FEC scheme with slight
hardware overhead provides better performance than the pure
ARQ scheme [19]. We propose a hybrid ARQ/FEC scheme

Fig. 4. Fault information transmission mechanism.

to perform error control to tolerate transient faults during
packets transmission. In the case of a single-bit error in any
part of the packet, the error can be corrected after the packet
has been decoded. If any part of the packet contains a two-
bit error for one cycle, the router which receives the packet
will require the router, which sends the packet, to retransmit
the packet. The hardware structure of the ARQ scheme for
one input port i (i ∈ {North,East,South,West,Local}) is shown
in Fig. 5. Each input port of the router has an input buffer
(I Bi) with two entries instead of the original one and the
boundary input port of the boundary router has an input buffer
with three entries. Additionally, a retransmission buffer (RBi)
is used to buffer the packet which may be retransmitted.
After decoding, the packet will be written to RBi . A 2-to-1
multiplexer is used to select to send a new packet or retransmit
the last packet. A request signal arq is introduced between two
neighboring routers to indicate whether the last packet should
be retransmitted or not. The fault information transmission
signal (fault_to[i]) is used to disable the outgoing link i of the
upstream router temporarily.

The signal timing to handle transient link faults is shown
in Fig. 6. In this case, we assume a transient fault is on
the output link j between router n and n+1, affecting the
transmitting packet P1 at Cycle 2 when the router n+1 detects
the error. At Cycle 3, the router n+1 sets the signal arq to
initiate the retransmission. At the same cycle, P1 has already
been written to RBi and retransmitted to OU Tj . At Cycle 2
and 3, P2 and P3 arrive at I Ni and are written to I B2

i and
I B1

i at Cycle 3 and 4, respectively. At Cycle 4, in order to
avoid another packet from I Ni to overwrite P2 in I B2

i , the
router n sets the signal fault_to[i]. After detecting this signal
valid, the router n–1 will disable the output i temporarily
for one cycle to stop sending a packet to router n. If the
router n-1 is fully loaded, which means it has four packets
to handle, it will also set the signal fault_to[i] to disable
the output i of the router n–2 for one cycle. This process
will be repeated along the direction i until finding a router,
which is not fully loaded or reaching the boundary router. If
it reaches the boundary router, because of the boundary input
buffer with three entries, it can buffer an additional packet in
the boundary input port buffer. From the experiment results
under real application workloads, it is reasonable to assume
that the network is never fully loaded to guarantee the process

1058 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

Fig. 5. Hardware structure of link-level error control scheme.

jOUT

iIN

1
iIB

iRB

2
iIB

Fig. 6. Signal timing of ARQ scheme.

to be finished in a nonfully-loaded router. If a fault occurs
in two consecutive cycles (such as Cycle 2 and 3), the router
n will drop this packet and test its output link j through the
method discussed in Section III.B. If all tests have been passed,
the link j will be enabled again, otherwise it will be marked
as a permanent faulty link. Different from the ARQ scheme
described in [13], if P2 at Cycle 4 contains a transient fault,
our scheme can retransmit it at Cycle 5. However, the ARQ
scheme mentioned in [13] cannot handle this situation and the
packet will be lost, because it uses only one input register
and one retransmission register. Actually, our proposed error
control scheme can also be extended to contain more input
buffer entries to handle transient faults lasting for more than
one cycle easily. Without loss of generality, to handle transient
faults lasting for n cycles, the bufferless router needs an input
buffer with at least n + 1 entries.

V. RECONFIGURABLE FTDR

ARQ scheme fails to work in the presence of permanent
faults. FEC scheme in this paper can only handle one-bit
permanent fault for each encoding part of the packet. In this
section, we propose a reconfigurable FTDR algorithm based
on reinforcement learning to route packets avoiding permanent
faulty links.

A. Basic Q-Routing

Q-routing is an adaptive routing algorithm based on a vari-
ant of the reinforcement learning—Q-learning, which makes
routing decision using only local information without having
to know the network topology in advance [36]. Because of its

topology-agnostic characteristic, it can be modified to achieve
fault-tolerance.

Q-routing is a table-based routing algorithm. The 2-D
routing table stores the lowest estimated delivery time to each
router in the network from each output of the current router.
For example, the routing table entry Qx (d, y) denotes the
lowest estimated delivery time from x to d through neighbor y.
If the router x sends a packet to d through y, x receives the min-
imum estimated delivery time from y to d (minz Qy

t−1(d, z))
after the packet is sent to y. Then the estimated delivery time
Qx (d, y) can be updated, as shown in

Qx
t (d, y) = (1−α)Qx

t−1(d, y)+α(bx
t +min

z
Qy

t−1(d, z)) (1)

where bx
t is the time the packet spent in the buffer of router x,

and α is the learning rate, which determines to what extent the
newly acquired information will override the old information.
A factor of 0 means no learning, while a factor of 1 considers
only the most recent information.

B. FTDR Algorithm

For deflection routing, we use the number of hops to
destination as Q-value instead of the estimated delivery time
to build the routing table Q in each router. Qx (d, y) is defined
as the minimum number of hops from x to d through y.
Different from the estimated delivery time Q-value of the
original Q-routing, Qx (d, y) is a deterministic value which is
equal to one hop plus the minimum number of hops from y to d
(defined as minz Qy(d, z)). So (2) is used to update the routing
table. It can be explained as follow: when a router x sends a
packet to d through y, y returns the minimum number of hops
from y to d back to x. Then x updates the corresponding entry
with one hop plus the minimum number of hops from y to d
(minz Qy

t−1(d, z)). Equation (2) can also be derived from (1)
(when bx

t = 1 and α = 1). Our deflection router has only
one input register, which means the packet does not have to
wait in the router, so bx

t is 1. Because the Q-value (Qx (d, y))
is not an estimate value, which is relevant to the previous
Q-value in the original Q-routing, α is equal to 1 instead of a
value between 0 and 1. Different from the FDWR algorithm
[29] using additional packets to update the routing table,
Q-value in the FTDR algorithm is transmitted with hard wires,
which does not interfere with regular packets transmission

Qx
t (d, y) = 1 + min

z
Qy

t−1(d, z). (2)

There are n × m entries in the routing table, where n is
the number of routers in the network and m is the number
of neighboring routers. For 2-D mesh, m is four. For a given
topology, the initial routing table is fixed. For example, Fig. 7
shows a routing table of router 5 in a 3 × 3 2-D mesh. The
router chooses a direction with the minimum number of hops
to destination to send a packet. In the case of several directions
with equal number of hops to destination, the router will
choose one of them with the smallest stress value. For instance,
both North and West directions have the minimum number of
hops from router 5 to router 1, so the router will choose one
of them with the smallest traffic load to route the packet.

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1059

Fig. 7. Routing table of router 5 in a 3 × 3 mesh.

The routing table update function is shown in Algorithm 1.
If there is no fault in the network, the routing table cannot be
updated. If one link of the router is broken or temporarily
disabled during testing, all table entries corresponding to
this direction are set to “∞” (steps 2–4). After a learning
period, the table entries will converge to a fixed value which
denotes the minimum number of hops from each port to each
destination. Additionally, we use the two-hop fault information
to reduce the average hop counts. If a router detects that one
of its neighbors y along direction d has only one link not faulty
based on the two-hop fault information, the table entries from
d to all destinations except y are set to “∞” (steps 5–7). If a
two-hop link is faulty (FoN_from[d][j] = 1, j ∈ {North, East,
South, West}), the table entries from d to all destinations along
j are updated with the previous table entry plus 2 (steps 8–11).
Fig. 8 shows an example of reconfiguring the routing table
of router 4 in a 3 × 3 2-D mesh with two faulty links.
For example, router 4 finds FoN_from[East][North]= 1 and
FoN_from[South][East]= 1, then the routing table entries from
East to router 2 and from South to router 8 and 9 are recon-
figured by the previous table entry plus 2. If the temporarily
disabled link is enabled again, all entries corresponding to
this direction are updated from “∞” to the minimum number
of hops from this direction to the destination (steps 12–14),
which is a new feature different from [10]. If the Q-value is not
zero, the corresponding table entry will be updated with the
Q-value (steps 15 and 16). In addition, the routing table can
tolerate transient faults inherently. If one entry of the routing
table is corrupted by the transient fault temporarily, the router
will make wrong routing decision for a short while according
to the duration of the transient fault. After the transient fault
disappears, the faulty entry can be reconfigured through the
updated Q-value.

The pseudo code of the algorithm is shown in Algorithm 2.
There are at most four packets reaching a router at the same
time. The router makes routing decision from the highest
priority packet to the lowest. The router first calculates the
destination ID of the packet and looks up the routing table to
check if the packet has reached the destination (steps 1–4).
If the packet has not reached the destination, the router looks
up the productive direction(s) with the minimum number of
hops to destination from the routing table and then chooses
a free productive port with the smallest stress value to route
the packet (steps 7–9). If there is no free productive port, the
router chooses a free port with the smallest stress value to
route the packet, which can balance the network traffic loads
(steps 10 and 11). The router also sends the minimum number

Algorithm 1 Routing Table Update Function

(a)

(b)

Fig. 8. Routing table update example. (a) Initial routing table. (b) Recon-
figured routing table.

of hops to destination back to the neighboring router, which
sends the packet, to update its routing table (step 6).

C. Hierarchical FTDR Algorithm

The routing table is the main overheads of the FTDR
algorithm. Each router contains an N ×4 routing table, where
N is the number of routers in the network. Each entry of the
routing table contains m bits, so the size of the whole table
is N × m × 4 bits. As the size of the network increases,
the routing table size will increase significantly. In order to
reduce the table size, we also propose a hierarchical-routing-
table-based deflection routing algorithm (called FTDR-H). The
n × n mesh can be divided into several sub-regions with
equal size. Each router contains a local and a region routing
table. The local routing table stores the minimum number of
hops from all ports of the current router to other routers in
the same region, while the region routing table stores the

1060 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

Algorithm 2 FTDR Algorithm
For each input packet (from the highest priority to the lowest priority)
1: dest_ID get_dest_ID(dx, dy)
2: Hops_to_Dest table_lookup(dest_ID)
3: if Hops_to_Dest = (0,0,0,0) then
4: Route packet to local port
5: else
6: Q_value_to(input_Dir, dest_ID) 1 + min(Hops_to_Dest) //send Q-value
7: {dproductive} get_prefer_Dir(Hops_to_Dest)
8: if there are free ports in {dproductive} then
9: Choose a free productive port with the smallest stress value to route the packet
10: else //all productive ports are not free
11: Choose a free port with the smallest stress value to route the packet

minimum number of hops from all ports of the current router
to the nearest boundary routers in other regions. When a packet
reaches a router, the router first checks whether the destination
is in the same region as the current router or not. If it is, the
router makes routing decision according to the local routing
table. If the destination is not in the same region, the router
makes routing decision according to the region routing table.
The local and region routing tables are also updated by (2).
Here, an 8 × 8 2-D mesh, which is divided into four 4 × 4
regions, is used as an example, shown in Fig. 9. Each router
contains a local routing table of 16 × 4 entries and a region
routing table of 4 × 4 entries. So the total size of the routing
table is reduced from 64 × 4 to 20 × 4 entries.

D. Deadlock and Livelock Avoidance

FTDR (FTDR-H) algorithm is based on deflection routing,
which is inherently deadlock-free since packets never have
to wait in a router. Unlike store-and-forward and virtual cut-
through switching techniques which provide buffer queue(s) to
store blocked packets, packets are never blocked in deflection
routing due to the fact that there is no buffer queue to
store the packet. In deflection router, the number of input
ports is equal to the number of output ports. Thus, an
incoming packet will always find a free output port to go.
It may be deflected to a nonpreferred path but will never
be blocked. Packets are always on the run cycle by cycle
until arriving at their destinations and being ejected from
the network.

However, livelock has to be avoided by limiting the number
of misroutings. The FTDR algorithm makes routing decision
according to the packet priority and routing table. First, the
algorithm always gives the highest priority to the oldest packet.
If the packet wins the link arbitration, it will always be routed
through the productive direction to the destination. Since a
higher priority packet wins link arbitration, the packet can
eventually advance toward its destination deterministically.
Given a network size and different fault patterns, the length
of the hop count field must be long enough guaranteeing the
priority cannot saturate.

Second, it can be proved that the routing table entry will
converge to the minimum hops to each destination from the
following proof. Packet priority and converged routing table,
which limit the number of misroutings, guarantee that a packet
can eventually advance toward its destination thus livelock is
avoided.

Fig. 9. Region partition example.

Theorem 1: With the FTDR algorithm, the routing table
entry will converge to the minimum number of hops to
destination within a limited time in the presence of fault
regions, which do not disconnect the network.

Proof: Without loss of generality, assume router x sends
packets to router d through neighboring router y. The initial
Q-value Qx

0(d, y) is the minimum number of hops from x to
d through y. The proof is divided into two parts based on the
fault status of the network.

1) No faults: In the case of no faults, according to the (2),
the term minz Qy

t−1(d, z) equals to the minimum number
of hops from y to d, so 1 + minz Qy

t−1(d, z) means the
minimum number of hops from y to d plus 1 hop (from
x to y). It still equals to the minimum number of hops
from x to d through y (Qx

0(d, y)). So the routing table
entry will not be updated in the case of no faults.

2) In the presence of faulty links: If there are faulty links on
the shortest path from y to d, the routing table entry of
the routers with faulty links will be updated immediately.
It will take a limited time to propagate the updated
routing table entry to reconfigure the routing table entry
Qy(d, z) of y.

If the faulty link lies in the same row/column as the router
y with the manhattan distance of 1 hop, the corresponding
routing table entry of y will be updated immediately without
packet transmission under the two-hop fault information trans-
mission mechanism. If the router only knows the one-hop fault
information, after sending one packet to the corresponding
node, the routing table entry of y will be updated two cycles
later. In general, if the faulty link lies in the same row/column
as the router y with the manhattan distance m hops (m ∈
[0, M−2], where M is the number of routers in a row/column),
at least m and m–1 packets should be sent to the corresponding

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1061

node and it will take at least 2m and 2m–2 cycles to transmit
the fault state to router y, and update the routing table under
one-hop and two-hop fault information, respectively.

After transmitting the fault state and updating the routing
table entry Qy(d, z) of y in a limited time, minz Qy(d, z)
is still the minimum number of hops from y to d. The
corresponding table entry Qx (d, y) of x will be reconfigured
to minimum number of hops to d one cycle after Qy(d, z)
converges.

Similarly to the proof above, it can be proved that the
local and region routing table of the FTDR-H algorithm will
converge within a limited learning period.

E. Hardware Implementation

The FTDR and FTDR-H routers are developed in VHDL.
For FTDR router, each router contains an N × 4 routing table
(N is the number of nodes in the network). Each entry of the
routing table contains six bits, so the size of the whole table
is N × 24 bits. An entry of all “1” denotes “∞”. The stress
value, fault information, and Q-value are transmitted between
two routers with dedicated signals. In addition to the encoded
fault information, the six-bit Q-value for each direction is also
encoded with Hamming (10, 6) code to enhance the reliability
for Q-value transmission. The routing controller makes routing
decision according to the above three kinds of information.
For the FTDR-H router, the routing table includes local and
region routing tables. In order to make a comparison, we
also implement the other two fault-tolerant deflection routers
(the FoN router [12] and the cost-based router [13]). We
synthesize all routers in an 8 × 8 network with TSMC 65-
nm technology. The results of the performance, area, and
power consumption for the four routers are shown in Table III.
The operating frequency shown in Table III is the maximum
achievable frequency of the four routers. All routers are single-
cycle ones, meaning that all processes are done in one-cycle
without using pipeline. Each of the routers can send/receive
four packets in one cycle. The routing process consists of the
following steps: packet decoding, routing computation, switch
allocation, header updating, and packet encoding. The routing
computation together with the input and output priority sorting
are performed in parallel, and then the output port allocator
makes output allocation for each packet from the highest
priority to the lowest priority. Because the FoN and the cost-
based routers do not include the fault diagnosis mechanism and
link-level error control scheme, to make a fair comparison,
the results in Table III for the FTDR and FTDR-H routers
also do not include the fault diagnosis mechanism and link-
level error control scheme. The FoN router can achieve the
highest maximum frequency and the smallest area and power
consumption because it is not table-based. But it can only
handle regular faulty regions. Although the cost-based router
does not use a routing table, it has high hardware overhead
because it has to find the best permutation among all permu-
tations of input and output ports based on a cost function.
Compared with the original FTDR router, the FTDR-H router
can reduce the area by 27% in an 8×8 network. To evaluate the
hardware cost of the fault diagnosis mechanism and link-level

TABLE III

IMPLEMENTATION COMPARISON OF FOUR DEFLECTION ROUTERS

Frequency Area Power
(MHz) (μm2) (mW/MHz)

FoN 500 39076 0.01
Cost-based 166 82277 0.042
FTDR 400 101754 0.028
FTDR-H 400 74323 0.022

TABLE IV

AREA, POWER, AND RELIABILITY COMPARISON OF A FTDR ROUTER

WITH TWO ECC STRATEGIES

Area (μm2) Power (mW) Detect bits Correct bits

ECC (1) 163712 15.7 2 1
ECC (2) 158950 16.2 14 7

error control scheme, we also synthesize the FTDR router with
two ECC strategies described in Section III-C. Table IV
shows the area, power, and reliability comparison of a FTDR
router with two ECC strategies. As discussed in Section III-C,
although the ECC strategy 1) has a little bit smaller power
consumption, the ECC strategy 2) has the smaller area and
the higher reliability than the ECC strategy 1). Compared with
the original FTDR router, the fault diagnosis mechanism and
link-level error control scheme increase area overhead by 56%.

VI. EXPERIMENTAL STUDIES

In order to evaluate the four fault-tolerant deflection routers,
we construct an 8 × 8 2-D mesh NoC simulator in VHDL.
The routers are compared in terms of throughput and average
hop count in the presence of both permanent and transient
link faults, under synthetic and real application workloads.
The learning process and area cost of the FTDR and FTDR-H
routers are also studied.

A. Experimental Setup

For synthetic workloads, a packet generator is attached to
each router and uses a FIFO to buffer the packets, which
cannot be injected into the network immediately due to the
fact that there is no free output port to route the packet.
Six synthetic traffic patterns (uniform random, transpose, bit
complement, bit reverse, shuffle, and tornado) [37] are used.

For real application workloads, we utilize a distributed-
shared-memory-based multicore NoC architecture integrated
with the FoN, FTDR, and FTDR-H routers, in which a LEON3
processor and a local memory are attached to each router
through a dual microcoded controller [32]. Three applications,
as shown in Table V, are mapped manually on LEON3 proces-
sors. For matrix multiplication, three matrices are distributedly
stored in the shared memory (that is two elements of A and
B, and two rows of C are stored in the local shared memory
of each node). The data of 1D radix-2 parallel fast Fourier
transform (FFT) [38] are equally partitioned into 128 groups
of eight complex numbers each and stored in the local shared
memory of 64 nodes, respectively. In wavefront computations,
given a 64×64 matrix (elements on the left and top edges are

1062 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

TABLE V

APPLICATION WORKLOADS

Application Data set

Matrix multiplication C128×128 = A128×1 × B1×128
1D radix-2 parallel FFT 1024 complex numbers
Wavefront a 64 × 64 matrix

already known), the computation of each remaining element
depends on its left, above and above-left neighboring elements.
This parallel computation at any instant forms a propagating
wavefront.

For permanent faults, the link failure rates vary from 10%
to 30%. The link failure rate is defined as the ratio of the
number of faulty links to the number of total links in the
network. Ten fault patterns are chosen for each failure rate
in the simulations. The throughput and hop count results are
the average results of the ten simulation results. Each selected
fault pattern does not cut the network into disconnected sub-
networks.

B. Learning Process With Permanent Faults

In this section, we will explore the learning process of
the FTDR algorithm using both one-hop and two-hop fault
information, and also compare the learning process of the
FTDR-H algorithm with the FTDR algorithm. Fig. 10(a) and
(b) plots the average hop count versus simulation time under
uniform random traffic with a fault pattern of 10% link faults
and the packet injection rate of 0.1 and 0.2 packets/cycle/node,
respectively, at which the network does not reach the saturation
point. At the beginning of the simulation, the average hop
count increases quickly and after reaching a peak value, the
average hop count will slightly decrease and remain stable.
Here, the learning period is defined as the time at which
the average hot count reaches the peak value. It can be seen
that the FTDR algorithm with two-hop fault information has
less average hop count than with one-hop fault information
especially at the high packet injection rate. The length of
the learning period depends on the fault pattern. The more
complex the fault pattern is, the longer the learning period
is. For this fault pattern, the learning periods with one-hop
and two-hop information are approximate 160 and 120 cycles,
respectively, at the packet injection rate of 0.1 and 340 and 300
cycles at the packet injection rate of 0.2. With two-hop fault
information, some unnecessary misroutings can be avoided, so
the average hop count can be less than that with only one-hop
fault information. Fig. 11 compares the learning process of the
FTDR-H algorithm with the FTDR algorithm under uniform
random traffic with a fault pattern of 10% link faults and the
packet injection rate of 0.1 packets/cycle/node. The learning
periods of the FTDR and FTDR-H algorithms are approximate
140 and 100 cycles in this fault pattern, respectively. The peak
average hop count of the FTDR-H algorithm is 30% less than
that of the FTDR algorithm. The reason lies in that the FTDR-
H algorithm uses the local routing table for each region, which
can converge more quickly than the global routing table of the
FTDR algorithm.

(a)

(b)

Fig. 10. Learning process of FTDR with one-hop and two-hop fault infor-
mation. (a) Injection rate = 0.1 packets/cycle/node. (b) Injection rate = 0.2
packets/cycle/node.

Fig. 11. Learning process comparison of FTDR and FTDR-H algorithms.

C. Performance With Permanent Faults

In this section, we evaluate the performance of the four
fault-tolerant deflection routers in the presence of permanent
link faults. Fig. 12(a)–(f) shows the throughput of the network
achieved by the four algorithms in six synthetic traffic patterns,
respectively, with link fault rates varying from 0 to 30%.
Throughput, measured in packets/cycle/node, is defined as the
saturation point of the network, which means the maximum
accepted traffic. In the case of no faults, the throughput of the
network with the cost-based router is slightly higher than that
with the other three routers, because it can always find the
best permutation for each packet even in a congested network

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1063

(a) (b) (c)

(d) (e) (f)

Fig. 12. Throughput at various link fault rates under synthetic workloads. (a) Uniform random. (b) Transpose. (c) Bit complement. (d) Bit reverse.
(e) Shuffle. (f) Tornado.

(a) (b) (c)

(d) (e) (f)

Fig. 13. Average hop count at various link fault rates under synthetic workloads. (a) Uniform random. (b) Transpose. (c) Bit complement. (d) Bit reverse.
(e) Shuffle. (f) Tornado.

instead of unnecessary deflections. In the presence of link
faults, the network with the cost-based router achieves the
lowest throughput among the four routers, while the network
with the FTDR and FTDR-H routers achieves almost the same
throughput. The throughput of the network with the FTDR
router is 14% and 23% higher on average than that with the
FoN and cost-based routers, respectively.

Fig. 13(a)–(f) presents the average hop count of the four
routing algorithms with various link fault rates in six synthetic
traffic patterns, respectively. The packet injection rate is 0.1
packets/cycle/node, at which the network does not reach the
saturation point. The hop count is defined as the number of

hops that a packet travels from the source to the destination
node. The FTDR-H algorithm can achieve 2.5×, 1.7×, 1.2×,
2×, 2.8×, and 1.3× less hop counts on average than the cost-
based algorithm for each traffic pattern, respectively. The cost-
based algorithm makes routing decision only according to the
local fault status, so the hop count field of the packet can
easily overflow even in some simple fault patterns, which may
lead to livelock. The FTDR and FTDR-H algorithms perform
better than the FoN algorithm because the routing table will
converge after a limited learning period. For uniform random,
bit reverse and shuffle traffic patterns, the average hop count of
the FTDR-H algorithm is 18%, 10%, and 15% less than that of

1064 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

(a) (b) (c)

Fig. 14. Average hop count at various link fault rates under application workloads. (a) Matrix multiplication. (b) FFT. (c) Wavefront.

(a) (b) (c)

Fig. 15. Application run time at various link fault rates under application workloads. (a) Matrix multiplication. (b) FFT. (c) Wavefront.

the FTDR algorithm, respectively. For the rest of patterns, the
FTDR-H algorithm performs similarly as the FTDR algorithm
does.

Due to the fact that the cost-based deflection routing
cannot guarantee being livelock-free in some fault patterns,
we compare the FoN, FTDR, and FTDR-H algorithms on
the application platform. Fig. 14(a)–(c) reveals the average
hop count of the three algorithms with an increasing link
fault rate varying from 0% to 30% for the three application
workloads. As it can be observed, the FTDR and FTDR-H
algorithms perform better than the FoN algorithm especially
at the high fault rate. The average hop count of the FTDR-H
algorithm is 25%, 18%, and 18% less than that of the FoN
algorithm for the three application workloads, respectively. For
matrix multiplication and wavefront computation, the FTDR-H
algorithm performs slightly better than the FTDR algorithm.
For FFT, the average hop count of the FTDR-H algorithm is
10% less than that of the FTDR algorithm in the presence
of link faults. This is because the local routing table of the
FTDR-H router will converge more quickly than the FTDR
router as shown in the previous section. In order to evaluate the
effect of faults on the performance of the real application, we
also compare the average run time of the three real applications
at different link fault rates. As shown in Fig. 15(a)–(c), for
matrix multiplication, in the case of no faults, the shortest run
time is achieved with the FTDR-H algorithm, while for FFT
and wavefront the shortest run time is achieved with the FTDR
algorithm. In the presence of link faults, the performance
degradations with the FTDR and FTDR-H algorithms are
much smaller than that with the FoN algorithm. Even at a

high fault rate (30% link faults), the performance degradations
with the FTDR and FTDR-H algorithms are equal or less than
4% for matrix multiplication and FFT and 8% for wavefront,
while the performance degradation with the FoN algorithm is
8%, 5%, and 18% for the three applications, respectively.

D. Performance With Transient Faults

In order to evaluate the performance of the FTDR router
with transient faults, we develop a transient fault injector
with Verilog, which can generate a one-cycle two-bit transient
error in each output link of the router randomly. Only one
outgoing link of the router suffers the transient error at each
time. The transient error rate is defined as the probability of
a link suffering a transient fault per cycle. A transient error
rate e = 1 means that each router suffers a transient fault on
one of its output links in every cycle. In the experiment, the
transient error rate varies from 0.01% to 0.2%. We measure
the average hop count on different traffic loads (0.1 and 0.2
packets/cycle/node). As shown in Fig. 16, the performance of
the router degrades gracefully with the increasing transient
error rate. Even at a high transient error rate (e.g., 0.2%), the
performance only degrades 2.4% and 3.8% at the two injection
rates, respectively.

E. Area Cost Evaluation

Fig. 17 compares the area cost in different network sizes
for different deflection routers (FoN, cost-based, FTDR, and
FTDR-H). All synthesized results are optimized for area. For
the FTDR-H router, the 8×8, 12×12 and 16×16 meshes are

FENG et al.: ADDRESSING TRANSIENT AND PERMANENT FAULTS IN NoC 1065

Fig. 16. Average hop count at various transient error rates with different
packet injection rates.

Fig. 17. Router area without ECC encoder/decoder in different network sizes.

divided into 4, 9, and 16 4 × 4 sub-meshes, respectively. The
areas of the FoN and the cost-based routers do not increase
with the network size. As the network size increases, the area
of the FTDR router increases significantly. The area of the
routing table is the main overhead of the FTDR router. For an
n × n mesh, assuming each routing table entry has d bits, the
routing table has a cost of n2 × 4 × d bits. In the FTDR-H
router, an n×n mesh is divided into n2/m2 m×m sub-meshes,
so the routing table cost can be reduced to (m2+n2/m2)×4×d
bits. (m2 +n2/m2) has a minimum value 2n (when m = √

n).
The routing table cost of the FTDR-H router can be reduced
up to n/2 times less than the FTDR router in theory.

VII. CONCLUSION

In this paper, we provided a fault-tolerant solution for a
bufferless NoC to protect it from both transient and permanent
faults on the links. Specific contributions of this paper can be
described as follows.

1) An on-line fault diagnosis mechanism utilizes SECDED
Hamming code to detect both transient and permanent
faults, and the encoding scheme can silently correct
between 1–7 faulty bits and detect between 2–14 faulty
bits, depending on the distribution of the faults over the
link.

2) A hybrid ARQ/FEC scheme, which can achieve graceful
degradation even at a high fault rate, is proposed to
tolerate transient errors during transmission.

3) The FTDR algorithm, which guarantee “0 lost packet”
reconfigures the routing table through a reinforce-
ment learning method to route packets avoiding perma-
nent faults. A hierarchical-routing-table-based algorithm

(FTDR-H) is also presented to reduce the area overhead
of the router. The FTDR and FTDR-H routers outper-
form the other two fault-tolerant deflection routers.

The experimental results showed that FTDR and FTDR-H
routers are high-reliability bufferless routers, which can protect
against any fault distribution pattern, as long as the network
is not cut into two or more disconnected sub-networks. The
FTDR router is cost-efficient for small networks (e.g., less than
64 nodes), while the FTDR-H router has good scalability and
is a feasible solution for at least several hundreds of nodes.

The main limitations of this paper lie on the following
aspects: 1) a faulty link has to be shut down bidirectional
and 2) transient faults last for only one cycle. In future work,
we will address these limitations and explore more complex
fault models, which will reflect real fault conditions in CMOS
technologies of 20 nm and below.

REFERENCES

[1] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. 38th Annu. Design Autom. Conf., 2001,
pp. 684–689.

[2] C. Constantinescu, “Trends and challenges in VLSI circuit reliability,”
IEEE Micro, vol. 23, no. 4, pp. 14–19, Jul.–Aug. 2003.

[3] Y. H. Kang, T.-J. Kwon, and J. Draper, “Fault-tolerant flow control in
on-chip networks,” in Proc. 4th ACM/IEEE Int. Netw.-Chip Symp., May
2010, pp. 79–86.

[4] S. Murali, T. Theocharides, N. Vijaykrishnan, M. J. Irwin, L. Benini,
and G. De Micheli, “Analysis of error recovery schemes for networks on
chips,” IEEE Design Test Comput., vol. 22, no. 5, pp. 434–442, Sep.–
Oct. 2005.

[5] S. Pasricha, Y. Zou, D. Connors, and H. J. Siegel, “OE+IOE: A novel
turn model based fault tolerant routing scheme for networks-on-chip,”
in Proc. 8th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth., Oct. 2010, pp. 85–94.

[6] A. Patooghy and S. G. Miremadi, “XYX: A power & performance
efficient fault-tolerant routing algorithm for network on chip,” in Proc.
17th Euromicro Int. Parallel, Distrib. Netw.-Based Process. Conf., 2009,
pp. 245–251.

[7] Z. Lu, M. Zhong, and A. Jantsch, “Evaluation of on-chip networks using
deflection routing,” in Proc. 16th ACM Great Lakes Symp. VLSI, 2006,
pp. 363–368.

[8] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip
networks,” in Proc. 36th Annu. Int. Symp. Comput. Arch., 2009, pp.
196–207.

[9] M. Hayenga, N. E. Jerger, and M. Lipasti, “SCARAB: A single
cycle adaptive routing and bufferless network,” in Proc. 42nd Annu.
IEEE/ACM Int. Symp. Microarch., Dec. 2009, pp. 244–254.

[10] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “A reconfigurable fault-
tolerant deflection routing algorithm based on reinforcement learning for
network-on-chip,” in Proc. 3rd Int. Workshop Netw. Chip Arch., 2010,
pp. 11–16.

[11] H. Zimmer and A. Jantsch, “A fault model notation and error-control
scheme for switch-to-switch buses in a network-on-chip,” in Proc. 1st
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth., Oct.
2003, pp. 188–193.

[12] C. Feng, Z. Lu, A. Jantsch, J. Li, and M. Zhang, “FoN: Fault-on-
neighbor aware routing algorithm for networks-on-chip,” in Proc. 23rd
IEEE Int. SoC Conf., Sep. 2010, pp. 441–446.

[13] A. Kohler, G. Schley, and M. Radetzki, “Fault tolerant network on
chip switching with graceful performance degradation,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 6, pp. 883–
896, Jun. 2010.

[14] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes
for on-chip communication links: The energy-reliability tradeoff,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 6, pp.
818–831, Jun. 2005.

[15] C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, and P. P. Pande, “On-
line fault detection and location for NoC interconnects,” in Proc. 12th
IEEE Int. On-Line Test. Symp., Jul. 2006, pp. 145–150.

1066 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 6, JUNE 2013

[16] J. Raik, R. Ubar, and V. Govind, “Test configurations for diagnosing
faulty links in NoC switches,” in Proc. IEEE Eur. Test Symp., May
2007, pp. 29–34.

[17] T. Lehtonen, D. Wolpert, P. Liljeberg, J. Plosila, and P. Ampadu, “Self-
adaptive system for addressing permanent errors in on-chip intercon-
nects,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 4,
pp. 527–540, Apr. 2010.

[18] Q. Yu and P. Ampadu, “Transient and permanent error co-management
method for reliable networks-on-chip,” in Proc. 4th ACM/IEEE Int.
Netw.-Chip Symp., May 2010, pp. 145–154.

[19] A. Ejlali, B. M. Al-Hashimi, P. Rosinger, and S. G. Miremadi, “Joint
consideration of fault-tolerance, energy-efficiency and performance in
on-chip networks,” in Proc. Design, Autom. Test Eur. Conf. Exhibit.,
2007, pp. 1–6.

[20] M. Ali, M. Welzl, and S. Hessler, “An end-to-end reliability protocol to
address transient faults in network on chips,” in Proc. Workshop Diag.
Serv. Netw.-Chips, 2007, pp. 376–380.

[21] D. Park, C. Nicopoulos, J. Kim, N. Vijaykrishnan, and C. R. Das,
“Exploring fault-tolerant network-on-chip architectures,” in Proc. Int.
Conf. Dependable Syst. Netw., 2006, pp. 93–104.

[22] T. Dumitras, S. Kerner, and R. Marculescu, “Toward on-chip fault-
tolerant communication,” in Proc. Asia South Pacific Design Autom.
Conf., 2003, pp. 225–232.

[23] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan, M. Kandemir,
and M. J. Irwin, “Fault tolerant algorithms for network-on-chip inter-
connect,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI, Feb. 2004,
pp. 46–51.

[24] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm
for a fault-tolerant 2D-mesh network-on-chip,” in Proc. 45th ACM/IEEE
Design Autom. Conf., Jun. 2008, pp. 441–446.

[25] R. Holsmark, M. Palesi, and S. Kumar, “Deadlock free routing algo-
rithms for irregular mesh topology NoC systems with rectangular
regions,” J. Syst. Arch., vol. 54, nos. 3–4, pp. 427–440, 2008.

[26] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant NoCs,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit., 2009, pp. 21–26.

[27] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham,
T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker, “Autonet:
A high-speed, self-configuring local area network using point-to-point
links,” IEEE J. Sel. Areas Commun., vol. 9, no. 8, pp. 1318–1335, Oct.
1991.

[28] V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Immunet: Depend-
able routing for interconnection networks with arbitrary topology,” IEEE
Trans. Comput., vol. 57, no. 12, pp. 1676–1689, Dec. 2008.

[29] T. Schonwald, J. Zimmermann, O. Bringmann, and W. Rosenstiel,
“Fully adaptive fault-tolerant routing algorithm for network-on-chip
architectures,” in Proc. 10th Euromicro Conf. Digital Syst. Design Arch.,
Methods Tools, 2007, pp. 527–534.

[30] A. Mejia, M. Palesi, J. Flich, S. Kumar, P. Lopez, R. Holsmark, and
J. Duato, “Region-based routing: A mechanism to support efficient
routing algorithms in NoCs,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 17, no. 3, pp. 356–369, Mar. 2009.

[31] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, “Load distribution
with the proximity congestion awareness in a network on chip,” in Proc.
Design, Autom. Test Eur. Conf. Exhibit., 2003, pp. 1126–1127.

[32] X. Chen, Z. Lu, A. Jantsch, and S. Chen, “Supporting distributed
shared memory on multi-core network-on-chips using a dual microcoded
controller,” in Proc. Design, Autom. Test Eur. Conf. Exhibit., 2010, pp.
39–44.

[33] B. Narasimham, V. Ramachandran, B. L. Bhuva, R. D. Schrimpf, A. F.
Witulski, W. T. Holman, L. W. Massengill, J. D. Black, W. H. Robinson,
and D. McMorrow, “On-chip characterization of single-event transient
pulsewidths,” IEEE Trans. Device Mater. Rel., vol. 6, no. 4, pp. 542–549,
Dec. 2006.

[34] T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. New York: Wiley, 2005, pp. 235–237.

[35] T. Lehtonen, P. Liljeberg, and J. Plosila, “Analysis of forward error
correction methods for nanoscale networks-on-chip,” in Proc. 2nd Int.
Conf. Nano-Netw., 2007, pp. 1–5.

[36] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” in Advances in Neural
Information Processing Systems 6, vol. 6. San Mateo, CA: Morgan
Kaufmann, 1994, pp. 671–678.

[37] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA: Morgan Kaufmann, 2004, pp. 50–51.

[38] R. M. Piedra, “Parallel 1-D FFT implementation with TMS320C4×
DSPs,” Texas Instruments, Dallas, TX, Tech. Rep. SRPA 108, Feb. 1994.

Chaochao Feng received the B.Sc. and M.Sc.
degrees in computer science and electronic sci-
ence from the National University of Defense
Technology, Changsha, China, in 2005 and 2007,
respectively, where he is currently pursuing the
Ph.D. degree in electronics science and technol-
ogy.

He was invited as a Joint Ph.D. Student with
the Department of Electronic Systems, Royal Insti-
tute of Technology, Stockholm, Sweden, from 2009
to 2010. His current research interests include

networks-on-chip and high-performance microprocessor design.

Zhonghai Lu (M’05) received the B.Sc. degree from
Beijing Normal University, Beijing, China, in 1989,
and the M.Sc. and Ph.D. degrees from the Royal
Institute of Technology (KTH), Stockholm, Sweden,
in 2002 and 2007, respectively.

He is currently an Associate Professor with KTH.
His current research interests include computer
systems and VLSI architectures, interconnection
networks, system-level design, HW/SW co-design,
reconfigurable and parallel computing, system
modeling, refinements and syntheses, and design

automation.

Axel Jantsch (M’97) received the Dipl.Ing. and
Dr.Tech. degrees from the Technical University of
Vienna, Vienna, Austria, in 1988 and 1992, respec-
tively.

He has been a Full Professor of electronic sys-
tem design with the Royal Institute of Technol-
ogy, Stockholm, Sweden, since December 2002.
His current research interests include VLSI design
and synthesis, system-level specification, modeling
and validation, HW/SW co-design and co-syntheses,
reconfigurable computing, and networks-on-chip.

Minxuan Zhang received the M.Sc. degree in
computer science and technology from the National
University of Defense Technology, Changsha, China,
in 1987.

He is currently a Professor of computer science
and technology and microelectronics with the School
of Computer, National University of Defense Tech-
nology. His current research interests include high-
performance computer architecture, microprocessor
design, and VLSI design.

Zuocheng Xing is a Professor with the School
of Computer, National University of Defense Tech-
nology, Changsha, China. His current research
interests include power-efficient processor architec-
ture design, low-power architecture, general-purpose
computing on graphics processing units, and relia-
bility.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

