
Trends in On-Chip Dynamic Resource Management

Kasra Moazzemi∗, Anil Kanduri†, Dávid Juhász‡¶, Antonio Miele§,
Amir M. Rahmani∗‡, Pasi Liljeberg†, Axel Jantsch‡ and Nikil Dutt∗

∗University of California, Irvine, United States
†University of Turku, Turku, Finland

‡TU Wien, Vienna, Austria
§Politecnico di Milano, Milan, Italy
¶Imsys AB, Stockholm, Sweden

Email: moazzemi@uci.edu, spakan@utu.fi, david.juhasz@tuwien.ac.at, antonio.miele@polimi.it,

amirr1@uci.edu, pasi.liljeberg@utu.fi, axel.jantsch@tuwien.ac.at, dutt@ics.uci.edu

Abstract—The Complexity of emerging multi/many-core archi-
tectures and diversity of modern workloads demands coordinated
dynamic resource management methods. We introduce a classi-
fication for these methods capturing the utilized resources and
metrics. In this work, we use this classification to survey the key
efforts in dynamic resource management.

We first cover heuristic and optimization methods used to
manage resources such as power, energy, temperature, Quality-
of-Service (QoS) and reliability of the system. We then identify
some of the machine learning based methods used in tuning archi-
tectural parameters in computer systems. In many cases, resource
managers need to enforce design constraints during runtime with
a certain level of guarantee. Hence, we also study the trend in
deploying formal control theoretic approaches in order to achieve
efficient and robust dynamic resource management.

I. INTRODUCTION

Dynamic resource management has been established as

an effective technique to improve reliability, efficiency, and

performance of computer systems [1]. Managing shared re-

sources during runtime becomes more complex with modern

multicores which support diverse workloads that exhibit varying

resource demands, sometimes with conflicting limitations. This

dynamic behavior of workloads which vary across concurrent

applications, creates significant challenges for homogeneous

architectures. The need for a holistic dynamic resource manage-

ment technique becomes more vital in emerging heterogeneous

multicore processors (HMPs) where heterogeneous compute

units are deployed on a single chip, allowing trade-offs between

objectives such as maximizing performance and minimizing

power consumption [2].

In this context, computer architects use several approaches

to perform dynamic resource management. Model-based and

Rule-based heuristic methods use a model or an encoded

algorithm to make decisions during runtime. Optimization

methods minimize/maximize an objective while considering

certain constraints. Machine learning methods learn the best

input values for different observed conditions. Finally, control

theoretic techniques, use their intrinsic feedback loop to adapt

to conditions.

We present a categorization of resources used in dynamic

resource management that can capture the efforts done in this

area. The categories reflect the nature of resources such as

Metrics

Resources
Computing

Storage

Communication

QoS
Lifetime

Bandwidth

Power, Energy
Temperature

Fig. 1: Capturing the relationship between resources and

metrics. The upper plane represents resources while the lower

shows metrics. The allocation and usage of each resource

throws shadows into the metrics plane representing how it

contributes to the operation with respect to different metrics.

tangible resources (actual hardware blocks), resource metrics

(characteristics of the services realized by tangible resources)

and liquid resources (characteristics of the physical state of the

system). Based on this categorization, we survey selected key

efforts regarding run-time management of each resource type.

In addition, one promising solution for robust dynamic resource

management is the use of control theoretic approaches that

provide formal guarantees in response to dynamic workloads.

We highlight the trend in usage of control theoretic methods for

dynamic resource management and identify some of the future

steps that can be done in this direction to better guarantee the

control of shared resources in manycore systems.

II. CATEGORIZATION AND TAXONOMY

We start with an inventory of resources that are subject to

resource management. Three sub-categories of resources can

be identified according to the functionality they provide:

• Computation resources are processing elements which

perform tasks.

• Communication resources are utilized by tasks to ex-

change information with other tasks or the environment.

• Memory resources are used by tasks to store and retrieve

data.

Resources are physical hardware blocks that can be allocated

to tasks by resource management. Allocation choices of

62

2018 21st Euromicro Conference on Digital System Design

978-1-5386-7377-5/18/$31.00 ©2018 IEEE
DOI 10.1109/DSD.2018.00025

resource management are binary: a resource is either allocated

to a task at a time or not. However, a resource may have

the capacity to serve more than one task if the hardware is

provided. Each resource has a maximum capacity of tasks that

it can serve at a given time, which depends on its hardware

structure. For instance, a CPU with two ALUs could process

two instructions at the same time.

Control decisions of resource management also tune the

operation of resources. The operation of the system can be

characterized by various metrics, see Fig. 1. Note that metrics

characterizing one resource are typically interdependent. For

example, scaling up frequency of a computation resource results

in higher power dissipation and temperate but also increases

execution speed.

Resource management controls resources by allocating tasks

and tuning operation parameters. All actions of resource

management are based on the observed operation of the system,

that is metrics. By allocating and controlling resources properly,

resource management steers the system to meet objectives

for optimizing some metrics. Negative consequences of over-

utilizing the system needs to be avoided, too. While aiming

at meeting requirements with respects to objective metrics,

resource management takes constraints on other metrics into

account. Heuristics that aim at containing constraint metrics
below or above given limits are needed for realizing proper

resource management. Note that metrics cannot be generally

sorted into groups of objectives and constraints as their role is

dependent on the considered resource management technique.

In this paper, we study some of the key efforts toward

dynamic resource management in computer systems. First,

model/rule-based heuristics and optimization methods are

surveyed. Next, we take a look at machine learning methods
focused on tuning architectural parameters in computer systems.

Finally, we describe the trend where architects use control
theoretic methods in dynamic resource management. In this

context, the important properties for us are robustness, for-
malism, efficiency, coordination, scalability and autonomy.

Robustness is defined as the ability to provide guarantees and

perform robust analysis. Formalism facilitates reasoning about

and synthesis of resource management strategies. Efficiency

is in regard to lightweight design, yet responsiveness of

controllers. Coordination is the ability to control actuations

while tracking multiple objectives simultaneously. Scalability

defines the proper design of control hierarchies to manage large

and complex systems. Autonomy of a controller corresponds

to automatic response to abrupt runtime changes in objectives.

III. HEURISTICS AND OPTIMIZATION METHODS

A. Power and Energy

Nowadays, computer systems design is confronted with

delivering high performance while limited with their power

consumption. The diversity in the type and increasing com-

plexity of applications demands higher computation power.

To deliver this performance, designers have to consider the

reasonable autonomy in battery-powered systems, operational

cost of cloud servers as well as reduction in the environmental

impacts of power consumption.

Dynamic Power Management (DPM) and system design

with the goal of energy efficiency has been studied in details

in the past decades [3]. Designers used DPM in the 90s [4]

with the available run-time configurations such as scaling the

supply voltage to lower the power consumption [5]. Run-

time monitoring of application behavior lead to improved

optimization in power consumption [6]. The trend towards

multi/many core platforms required techniques that can formally

guarantee power management of the system given a power

budget which is addressed in [7], [8]. On the other hand, in

cases where power consumption is not predictable at design

time adaptive approaches such as [9] can be used. For instance

[10] uses an adaptive power management technique for hard

real-time systems and [11] proposes a runtime mapping for

many-core systems.

B. Temperature

Delivering high performance does not only come with the

cost of power consumption. Often circuits that perform in

their highest computation power suffer from thermal issues

such as overheating or faults due to thermal emergencies.

Many dynamic management methods have this in mind during

runtime and try to avoid such conditions. Thermal induced

problems can appear in various forms such as hot spots [12],

spatial variations [13] and temporal variations [14]. The

goal of dynamic thermal management (DTM) is to address

thermal hotspots or reduce spatial and temporal temperature

variations. Clock frequency scaling, DVFS, Decode Throttling,

Speculation control and cache toggling are some of the DTM

techniques described in [15]. Temperature aware scheduling

for multi-threaded processors can reduce hot spots [16]. Smart

performance and power modeling can reduce the power leakage

and limit temperature increase which can improve performance

and power consumption [17]. Thermal management became a

prominent challenge in dark silicon era [18]. Furthermore,

[19] proposes a thermal-aware computation in nano scale

technologies. Mechanisms in [20], [21] consider 3-D stacking

architectures and the thermal limitations for such chips. Ther-

mal aware communication systems can reduce the possibility of

thermal emergencies in the system [22]. [23] proposes a thermal

aware method for dynamic buffer allocation for network-on-

chip based systems. In the same domain, [24] proposes a

runtime workload mapping on network-on-chip based systems

considering ripple effect of applications.

C. QoS

Quality-of-service (QoS) is a primary metric to qualitatively

evaluate the system’s efficiency in satisfying applications’ re-

quirements. Applications from different domains have different

QoS metrics such as frame rate (multi-media) [25], latency-

per-query (web search and financial) [26], throughput (data

analytics and streaming) [27], responsiveness (user centric) [28],

end-to-end latency and privacy (social media) [29], etc. Run-

time QoS management becomes necessary and challenging

63

Quality-of-Service
Performance Bound

Compute, Memory, Network
Dynamic provisioning and
scheduling
Priority, utility and fair
allocation

Accuracy Bound
Static - testing and profiling
Dynamic - monitoring and
calibration
Robust - prediction and roll back

Fig. 2: Abstract classification of QoS management.

with i) variable workload characteristics ii) variable QoS

requirements of applications, iii) identification and translation

of QoS metrics into system level parameters for provisioning

and iv) resource contention and arbitration among concurrent

applications. Meeting QoS requirements of applications are

largely based on:

• the nature of computation - compute, memory and I/O

intensity, streaming inputs and batch processing

• the nature of end result - numerical, perceptive, soft and

hard real-time, and user-interaction

We abstractly classify QoS management techniques as

performance-bound and/or accuracy-bound, as shown in Figure

2. We present major underlying approaches and strategies

for performance bound QoS guarantees through provisioning

compute, memory and network bandwidth resources and

accuracy-bound QoS through quality monitoring and control.
1) Performance Bound QoS: Performance bound QoS can be

guaranteed with compute, memory, network and I/O bandwidth

provisioning with dynamic priority identification.

Compute: Allocating more and/or suitable cores, CPU time

slices, exploiting core-level asymmetry to fit application’s QoS

requirements are common approaches for QoS guarantees

[30] [26] [27]. Under workload diversity, smart co-location -

scheduling an optimized combination of latency and throughput

sensitive applications together, exploits under-utilized resources

to satisfy QoS of both types of appplications [31] [32] [30]

[27] . All these techniques feature user/application defined QoS

metrics such as latency and throughput bounds or dynamic

identification of critical resource contending regions of code

[33] and measure QoS in terms of IPC and harmonic speed

up for scheduling decisions. Monitoring QoS based on IPC

and satifying applications requirements through optimized time

slice sharing among concurrent applications is proposed in [34].

Combining a set of cores, memory and network bandwidth

into a package to provision isolated resources for applications

as per their QoS requirement is proposed in [35], to provide

infrastructure as a service. All the provisioning techniques

prioritize applications based on QoS requirements and dynam-

ically adapt further by monitoring resource utilization upon

provisioning.

Memory and Storage: With the widening compute-memory

performance gap, allocating larger cache slices and higher

memory bandwidth significantly enhances performance bound

QoS metrics [36] [37] [38]. Using cache partitioning to provide

either larger/sufficient cache slices is a common approach to

meet QoS requirements of latency critical applications [39]

[40]. Identifying application/thread priority and scaling cache

allocation accordingly, following utilitarian principles is another

strategy to improve overall throughput metrics [41] [42] [36].

Optimizing for memory controller proximity [43] [38] and

allocating higher bandwidth can enhance QoS of memory

intensive applications [44] [45]. All the dynamic memory

provisioning techniques however require micro-architectural/OS

level extensions to identify and translate between user/appli-

cation defined QoS performance metrics to system level QoS

utilization metrics [46] [47] [41].

Network and I/O: Allocating higher network and I/O band-

width to prioritized applications can guarantee latency and

throughput QoS requirements. Existing techniques have used

customized router architecture, virtual channels, flow control

and frame scheduling to provide higher network bandwidth

for dynamically identified priority applications. Classification

of network into shared resource and non-shared resource

clusters to allocate non-QoS and QoS tasks respectively through

novel router architecture was proposed in [48]. Assigning

each flow into frames and intelligent scheduling globally

synchronized frames to optimize for latency is proposed in

[49]. The same idea is extended by [50] with a flexible

local frame scheduling and pre-emptive flit reservation for

more bandwidth for high priority applications. Distinguishing

between latency and throughput sensitivity of best effort (BE)

and guaranteed throughput (GT) to optimize their respective

flow control is proposed by [51] [52]. While BE applications

are prioritized by default, priority is inverted to GT when BE

applications have used enough buffer space reflecting in a

certain throughput guarantee. Assigning a fixed bandwidth to

each flow and monitoring its bandwidth utilization to prioritize

and allocate network resources to utility frames is proposed in

[53]. A similar approach with hybrid fair and elite round robin

bandwidth allocation using weighed priorities is proposed in

[54]. Each of these techniques dynamically determine priority

of packets (originating from priority applications) and route

them first, while other low priority packets wait in the queue.

2) Accuracy Bound QoS: Approximate computing leverages

inherent error resilience of applications from domains such

as machine learning, multi-media processing, streaming, data

mining and analytics due to algorithmic nature, redundant input

data, and perceptive end results for performance and energy

gains [55]. However, reasoning for accuracy loss, guaranteed

error bound and control on quality of result (QoR) is crucial for

viability of approximation techniques. Existing approximation

techniques use profiling, calibration and light-weight checks

for nominal quality control [56]. We divide quality assurance

techniques into three categories: viz., static - profiling, dynamic
- calibration and robust - control and roll back.

Static Techniques: Profiling techniques validate results of an

approximated code block over an exhaustive set of inputs

against the accurate result to derive empirical guarantees on

64

error [57] [58] [59]. Static techniques are as effective as the

input data coverage i.e., error bounds can be guaranteed for

input sets that are pre-evaluated at profiling phase, which can

in turn be used at run-time for quality control.

Dynamic Techniques: Dynamic quality control techniques use

calibration - executing each candidate block of code over both

accurate and approximate methods to determine nature and

extent of error induced at run-time [60] [58]. These approaches

then either rely on user-defined or application level accuracy

requirement targets to determine whether approximate execu-

tion is within an acceptable quality range. Some techniques

use the target accuracy requirement as a feedback to explore

accuracy-performance Pareto space to configure the extent of

approximation [58] [59]. Dynamic techniques are efficient in

providing empirical and/or statistical guarantees on quality,

however they require additional hardware/software overhead

for continuous monitoring and execution of both accurate and

approximate versions. Reducing sampling rate of monitoring

might ignore errors induced during the un-sampled interval.

Robust Techniques: Robust quality control techniques monitor

accuracy loss at run-time and can roll back for more accurate ex-

ecution in case of errors induced beyond acceptable thresholds.

Robust techniques address the limitations of static techniques

which can provide guarantees only over tested inputs, and

dynamic techniques which have overheads and lesser coverage

within sampled invocation. Robust techniques use predictive,

online learning, light-weight checks and monitoring strategies

to compute quality loss and predict the extent of quality loss

for subsequent inputs [56] [61]. The quality loss is compared

against user defined accuracy requirements to either tone

down aggressive approximation or choose a different type

of approximation technique [62] [63]. In case of unacceptable

results, these approaches roll back i.e., re-execute the candidate

code blocks in accurate mode to cover for the accuracy

loss. Robust techniques include re-configuring the extent of

approximation [61] [63], re-generation of type of approximation

used iteratively [64] [65] and pro-actively [66] [56] and roll

back by re-executing the code block accurately [67] [68].

D. Reliability

In the last decade, reliability has become a major issue in

digital circuits [69]. The aggressive scaling to nanoscale CMOS

structures has caused a variety of reliability threats such as

aging and wear-out acceleration due to the increased power

densities and consequent thermal stress, higher susceptibility

to soft errors not only in harsh environments but also at ground

level, device variability leading to timing errors and other

effects, etc. This issue has been even more exacerbated by the

pervasiveness of computing systems in nowadays life spanning

from smart environments to datafarms devoted to control and

support of decision processes.

Device aging and wear-out are some of the predominant

reliability issues since they cause a sensible shortening of

the lifetime [70] (lifetime variation may be also quantified in

2x [71]). Unfortunately, DTM does not suffice since aging

control cannot be performed only by limiting hotspots and

temperature variations. Instead, as discussed in the litera-

ture [72], [73], it can only be fully achieved by monitoring

the “cumulative” degradation behavior of the aging phenomena

and accordingly managing resources in an aging-aware way

for executing the workload. Nevertheless, this strategy is

particularly effective for multi-core or many-core platforms

(both homogeneous and heterogeneous ones) thanks to the

availability of a large set of “programmable” processing

resources, representing a sort of redundancy, that can be

dynamically tuned and selected for the execution of the various

applications composing the workload, that is dynamically

changing as well.

The first Dynamic Reliability Management (DRM) ap-

proach [72] focusing on a single general purpose processor was

proposed in 2004. After that, following also the architectural

progresses in the subsequent years, different types of platforms

have been considered spanning from the classical homogeneous

multi-core architecture [74] [75] [76], where processing units

are connected on a single bus and with a shared memory,

to the NoC-based many-core architecture [77] [78] [79].

Recently, heterogeneous architectures [80] [81] [82], integrating

asymmetric processors, GPUs or custom accelerators, have

been also addressed in lifetime management. Depending on

the specific architecture, the resource management approaches

act on application mapping (as in the case of many-cores

architectures [78] [83]), scheduling (as in the case of shared-

memory systems [74]), and/or on power-related knobs (DVFS

and per-core power gating [72] [74] [75]). Another relevant

aspect is that lifetime is only one of considered parameters,

thus leading in most of the approaches to a co-optimization

with performance or power/energy-consumption.

Another relevant reliability issue in modern technologies

is the high susceptibility to soft errors of the devices. Such

transient faults use to occur with a given Soft Error Rate

(SER) that is dependent also on the operating voltage/frequency

levels and may be subject to variability among the various

cores of the same device [84]. Therefore, runtime resource

management policies [84] [85] [86] have been proposed to

optimally distribute the workload and tuning architectural knobs

to maximize the system reliability, measured as the probability

to complete successfully current computations, together with

other metrics (performance, power consumption and lifetime).

Finally, it worth mentioning a last class of runtime resource

management approaches that prefer to integrate also fault

handling in the controller at software level rather than using

classical architectural mechanisms. To give few examples,

some approaches (e.g. [87]) dynamically replicate application

execution to perform fault detection or mitigation w.r.t. both

transient and permanent faults, while other strategies (e.g. [88],

[89]) schedule at runtime software-based self testing routines

to identify permanent damages.

IV. MACHINE LEARNING APPROACHES

The popularity of machine learning methods has grown in the

past decade. The learning nature of these methods make them a

good candidate for model prediction and resource allocation in

65

App 0
Resource

Metric

App 1
Resource

Metric

App 2
Resource

Metric

App 3
Resource

Metric

Dynamic
Resource
Manager

Fig. 3: High-level view of resource management technique

using machine learning similar to method presented in [90].

computer system. It should be noted that these methods mostly

require a learning phase with a large amount of measurement

data to prepare the predicting algorithm for a specific platform.

Using the advance machine learning, reinforcement learning

and deep neural network methods can bring high accuracy in

prediction and tuning of the architectural parameters in case that

the system conditions stay the same to the conditions captured

in training phase. The advantage of using these methods lie in

the data driven identification of relationships that can be used

for tuning system configurations at runtime.

We can categorize the machine learning methods used in

resource management of computer systems based on their

ability to adapt to changes over time. Data intensive and time

consuming training phase of these methods often requires a

detailed analysis and tuning at design time. In many cases the

platform and the workloads are predetermined which gives the

designers the opportunity to train the model once at design time

and during execution use the offline model for prediction and

tuning. On the other hand, online methods are needed to learn

new changes in workload behavior or environment changes

and incorporate that in the machine learning methods. These

methods mostly start with a default model trained at design

time and improve them at runtime to increase the prediction

accuracy and management efficiency.

Figure 3 depicts a general resource management mechanism

similar to the method proposed by [90]. This method leverages

Artificial Neural Networks (ANN) to manage multiple shared

CMP resources in a coordinated fashion to achieve a high-level

objective. It’s important to note that although the major part of

the training phase for machine learning approaches is done at

design time, the decision making and often backward learning

for adaptation can be done at runtime. Authors in [91] propose

using machine learning for microarchitectural adaptivity control.

Approaches such as reinforcement learning have been used

to design self-optimizing memory controllers [92]. Similarly,

[93] proposes a dynamic resource management using deep

reinforcement learning. A hybrid method is proposed in [94]

to benefit from both high accuracy in modeling of machine

learning methods and adaptivity of control theoretic approaches.

In future, on-chip dynamic resource management can benefit

from data driven identification and high accuracy of prediction

PLANT+
-

(u)(r) (y)
SISO Controller

(r) (e)
Disturbance

Porportional

Integral

Derivative

++ +

PID Controller

Porportional

Integral

+
+

PI Controller

Or

Fig. 4: Single Input Single Output (SISO) feedback loop.

in machine learning methods used along side lightweight

heuristics or robust control theoretic methods [94].

V. CONTROL THEORY TECHNIQUES

Dynamic resource management for many-core systems is

increasingly challenging due to the complex interactions in

these systems. Integration of hundreds of cores and uncore com-

ponents running various workloads with conflicting constrains

increase the pressure on limited shared system resources. A

promising and well-established approach is the use of control-

theoretic solutions based on rigorous mathematical formalisms

that can provide bounds and guarantees for system resource

management [95]–[101]. In this context, we discuss some

of the efforts that deploy control-theoretic centric run-time

management. Starting from simple Single Input Single Output

(SISO) controllers used in power management to more complex

Supervisory Control Theory (SCT) methods used in dynamic

resource management of complex computer systems.

A. Single Input Single Output Controllers

In the past, control theoretic methods have been proposed

for resource management in the presence of a specific type of

workload running on the system. A majority of these methods

use Single-Input Single-Output (SISO) controllers for the ease

in deployment and the guarantees they provide in tracking the

target output. These SISO controllers often deploy Proportional

Integral (PI), Proportional Integral Derivative (PID), or lead-

lag methods. While designing SISO controllers for computer

systems, often PI controllers are deployed for resource manage-

ment. It is important to note that although derivative control law

can be benefited in order to add predictability to the controller,

stochastic variations on the system output caused by dynamic

behaviour of executing applications may cause inaccuracy in

the controller. Therefore, in many cases for computer systems

PI controllers are preferred over PID controller [102]. PI control

benefits from both integral control (zero steady-state error) and

proportional control (fast transient response) [103]. Figure 4

depicts a first-order feedback SISO controller which can be

deployed either as a PI or a PID controller. The error e is the

input to the controller.

Note that to compute the current control input u, the

controller needs to have the current value of the error e along

with the past value of the error and the past value of the control

66

PLANT
+

-

(u) (y)MIMO Controller(r)
+

-

Disturbance

(e)

Fig. 5: Basic 2× 2 Multiple-Input-Multiple-Output (MIMO).

input. It is this memory inherent in the controller that makes

it dynamic.

B. Multiple Input Multiple Output Controllers for Coordination

Modern multicores support execution of diverse set of

workloads with varying resource demands, which sometimes

exhibit conflicting constraints. This issue exacerbates in hetero-

geneous multicore processors (HMPs) deploying heterogeneous

compute elements on a single chip. In this context, the use

of SISO controllers might not be effective as multiple system

goals varying over time need to be adaptively managed and

objectives holistically coordinated. Multiple-Input-Multiple-

Output (MIMO) control theory is able to not only manage but

also prioritize between multiple design goals. These controllers

have proven to be effective for coordinating management of

multiple goals in unicore processors [104] and HMPs [105].

Consider the MIMO controller in Figure 5 that controls

a system with two control inputs and two interdependent

measured outputs. Picking actuators and measurement metrics

that result in behavior that can be estimated linearly is an

important aspect of designing a stable controller [106].

C. Supervisory Control Theory

Supervisory Control Theory (SCT) [107] [108] provides

formal and systematic supervision of classical MIMO/SISO

controllers [109]. SCT uses modular decomposition of control

problems to manage their complexity. Specifically, supervi-

sory control has two key properties: i) rapid adaptation in

response to abrupt changes in management policy and ii) low

computational complexity by computing control parameters for

different policies offline. New policies and their corresponding

parameters can be added to the supervisor on demand (e.g.,

by upgrading the firmware or OS). Therefore, SCT is suitable

for resource management problems (such as managing power,

thermal, QoS, and interconnects) that can be modeled using

logic and discrete system dynamics.

Figure 6 depicts a high-level view of supervisory control for

many-core system resource management. Either the user or the

Sub-plant 1 Sub-plant 2 Sub-plant N

Supervisory
Controller

Variable Goals and Policies

High-level
Plant Model

Classic
Controller 1

Classic
Controller 2

Classic
Controller N

User inputs

Con_lo1
Inf_lo1

Con_lo2
Inf_lo2

Con_loN
Inf_loN

Gains1 Refs1
Gains2 Refs2

GainsN RefsN…
…

…
…

Con_hi
Inf_hi

Inf_lo_hiL
ea

f
C

on
tr

ol
le

rs
Ph

ys
ic

al

Pl
an

t

System
 events

Fig. 6: High-level view of Supervisory Control Theory.

system software may specify Variable Goals and Policies. The

Supervisory Controller aims to meet system goals by managing

the low-level controllers. High-level decisions are made based

on the feedback given by the High-level Plant Model, which

provides an abstraction of the entire system. Various types

of Classic Controllers, such as PID or state-space controllers,

can be used to implement each low-level controller based on

the target of each subsystem. The flexibility to incorporate

any pre-verified off-the-shelf controllers without the need for

system-wide verification is essential for the modularity of this

approach. The supervisor provides parameters such as output

references or gain values to each low-level controller during

runtime according to the system policy. Low-level controller

subsystems update the high-level model to maintain global

system state, and potentially trigger the supervisory controller

to take action. The high-level model can be designed in various

fashions (e.g., rule-based or estimator-based) to track the system

state and provide the supervisor with guidelines. Supervisory

control provides the opportunity to benefit from both classical

control theoretic methods and heuristics in a robust fashion.

VI. DISCUSSION

To summarize the coverage of existing on-chip resource

management methods studied in this work we use Table I.

Some heuristic approaches (Row A) focus on efficiency (3)
and coordination (4), but fail to provide formal guarantees

and autonomy to the system. On the other hand, machine

learning methods (Row B) lack robustness against corner

cases. Online machine learning methods that can learn during

runtime can provide better autonomy to response to abrupt

runtime changes in objectives. As we have seen in Sec-

tion V-A, Single-Input-Single-Output (SISO) control theoretic

approaches (Row C.1) provide means to address robustness (1),
formalism (2) and efficiency (3), while lacking the ability

to concurrently coordinate and control multiple objectives

in a non-conflicting manner. Recently-proposed Multiple-

Input-Multiple-Output (MIMO) control (Row C.2) enables

coordination (4), addressing attributes (1) to (4). However,

MIMO control lacks autonomy (5) and scalability (6) for

complex systems. In order to address all six key challenges in

dynamic resource management of complex many-core system,

Supervisory Control Theory (Row C.2) has been proposed as

a scalable (5) and autonomous (6).

Methods 1
.

R
o

b
u

st
n

es
s

2
.

F
o

rm
al

is
m

3
.

E
ffi

ci
en

cy

4
.

C
o

o
rd

in
at

io
n

5
.

A
u

to
n

o
m

y

6
.

S
ca

la
b

il
it

y

A Heuristic methods � �
B.1 Offline Machine Learning methods � � � �
B.2 Online Machine Learning methods � � � � �
C.1 SISO Control Theory � � �
C.2 MIMO Control Theory � � � �
C.3 Supervisory Control Theory � � � � � �

TABLE I: Major on-chip resource management approaches and

the key questions they address (� represnets partial coverage)

67

VII. CONCLUSION

We proposed a classification for dynamic resource manage-

ment based on allocation choices and control decisions. We

surveyed heuristics, machine learning and control theoretic

methods used in tuning architectural parameters in computer

systems. Our target resource metrics while studying these

methods are power, energy, temperature, Quality-of-Service and

reliability. We surveyed some of the recent efforts to increase

prediction accuracy for allocation and resource management

by leveraging machine learning methods. In order to provide

robustness in resource management of multi/many-core systems

we studied the evolution of control theoretic methods in dy-

namic resource management. Finally, we discussed a summary

of the coverage of existing on-chip resource management

methods studied in this work.

ACKNOWLEDGMENT

This research was partially funded by the European Unions

Horizon 2020 Framework Programme for Research and Inno-

vation under grant agreement no 674875 (oCPS Marie Curie

Network).

REFERENCES

[1] A. Rahmani et al., The Dark Side of Silicon, 1st ed. Springer,
Switzerland, 2016.

[2] A. M. Rahmani et al., “HDGM: Hierarchical Dynamic Goal Manage-
ment for Many-Core Resource Allocation,” IEEE ESL, 2017.

[3] L. Benini et al., “Policy optimization for dynamic power management,”
IEEE TCAD, 1999.

[4] E.-Y. Chung et al., “Dynamic power management for nonstationary
service requests,” in DATE, 1999.

[5] L. S. Nielsen et al., “Low-power operation using self-timed circuits
and adaptive scaling of the supply voltage,” TVLSI, 1994.

[6] C. Isci et al., “Live, runtime phase monitoring and prediction on real
systems with application to dynamic power management,” in MICRO,
2006.

[7] P. Bogdan et al., “Dynamic power management for multidomain system-
on-chip platforms: An optimal control approach,” ACM TODAES, 2013.

[8] A. M. Rahmani et al., “Dynamic power management for many-core
platforms in the dark silicon era: A multi-objective control approach,”
in ISLPED, 2015.

[9] M. Shafique et al., “Self-adaptive hybrid dynamic power management
for many-core systems,” in DATE, 2013.

[10] K. Huang et al., “Adaptive dynamic power management for hard real-
time systems,” in RTSS, 2009.

[11] A. Kanduri et al., “Dark silicon aware runtime mapping for many-core
systems: A patterning approach,” in ICCD, 2015.

[12] M. Meterelliyoz et al., “A leakage control system for thermal stability
during burn-in test,” in ITC, 2005.

[13] A. H. Ajami et al., “Analysis of substrate thermal gradient effects on
optimal buffer insertion,” in ICCAD, 2001.

[14] A. K. Coskun et al., “Temperature aware task scheduling in mpsocs,”
in DATE, 2007.

[15] D. Brooks et al., “Dynamic thermal management for high-performance
microprocessors,” in HPCA, 2001.

[16] J. Donald et al., “Leveraging simultaneous multithreading for adaptive
thermal control,” 2005.

[17] W. Liao et al., “Temperature and supply voltage aware performance
and power modeling at microarchitecture level,” TCAD, 2005.

[18] R. Ayoub et al., “Energy efficient proactive thermal management in
memory subsystem,” in ISLPED, 2010.

[19] H. Hajimiri et al., “Proactive thermal management using memory based
computing,” in NANOARCH, 2013.

[20] S. Lee et al., “Runtime thermal management for 3-d chip-
multiprocessors with hybrid sram/mram l2 cache,” TVLSI, 2015.

[21] W. H. Lo et al., “Thermal-aware dynamic page allocation policy by
future access patterns for hybrid memory cube (hmc),” in DATE, 2016.

[22] M. Wolf et al., “Power and thermal modeling for communication
systems,” in SiPS, 2016.

[23] C. T. Chou et al., “Dynamic buffer allocation for thermal-aware 3d
network-on-chip systems,” in ICCE-TW, 2017.

[24] M.-H. Haghbayan et al., “MapPro: Proactive Runtime Mapping for
Dynamic Workloads by Quantifying Ripple Effect of Applications on
Networks-on-Chip,” in NOCS, 2015.

[25] J. Hamers et al., “Scenario-based resource prediction for qos-aware
media processing,” Computer, 2010.

[26] D. Lo et al., “Towards energy proportionality for large-scale latency-
critical workloads,” in ISCA, 2014.

[27] C. Delimitrou et al., “Paragon: Qos-aware scheduling for heterogeneous
datacenters,” in ASPLOS, 2013.

[28] M. P. Papazoglou et al., “Introduction: Service-oriented computing,”
Commun. ACM, 2003.

[29] P. Ranganathan et al., “Enterprise it trends and implications for
architecture research,” in HPCA, 2005.

[30] V. Petrucci et al., “Octopus-man: Qos-driven task management for
heterogeneous multicores in warehouse-scale computers,” in HPCA,
2015.

[31] J. Mars et al., “Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations,” in MICRO, 2011.

[32] H. Yang et al., “Bubble-flux: Precise online qos management for
increased utilization in warehouse scale computers,” in ISCA, 2013.

[33] L. Tang et al., “Compiling for niceness: Mitigating contention for qos
in warehouse scale computers,” in CGO, 2012.

[34] Y. Ding et al., “Qos aware dynamic time-slice tuning,” in IISWC, 2014.

[35] Y. Zhou et al., “Cash: Supporting iaas customers with a sub-core
configurable architecture,” in ISCA, 2016.

[36] H. Sung et al., “Ombm: Optimized memory bandwidth management
for ensuring qos and high server utilization,” in FAS* W, 2017.

[37] L. Tang et al., “The impact of memory subsystem resource sharing
on datacenter applications,” in ACM SIGARCH Computer Architecture
News. ACM, 2011.

[38] L. Subramanian et al., “The application slowdown model: Quantifying
and controlling the impact of inter-application interference at shared
caches and main memory,” in MICRO, 2015.

[39] H. Kasture et al., “Ubik: Efficient cache sharing with strict qos for
latency-critical workloads,” in ASPLOS, 2014.

[40] R. Iyer et al., “Qos policies and architecture for cache/memory in cmp
platforms,” in Proceedings of the 2007 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, 2007.

[41] A. Herdrich et al., “Cache qos: From concept to reality in the intel®
xeon® processor e5-2600 v3 product family,” in HPCA, 2016.

[42] A. Sharifi et al., “Mete: Meeting end-to-end qos in multicores through
system-wide resource management,” SIGMETRICS, 2011.

[43] N. Beckmann et al., “Scaling distributed cache hierarchies through
computation and data co-scheduling,” in HPCA, 2015.

[44] Y. Ye et al., “Coloris: A dynamic cache partitioning system using page
coloring,” in PACT, 2014.

[45] X. Zhang et al., “Towards practical page coloring-based multicore cache
management,” in EuroSys, 2009.

[46] B. Li et al., “Dynamic qos management for chip multiprocessors,” ACM
Trans. Archit. Code Optim., 2012.

[47] B. Li et al., “Coqos: Coordinating qos-aware shared resources in noc-
based socs,” Journal of Parallel and Distributed Computing, 2011.

[48] B. Grot et al., “Kilo-noc: A heterogeneous network-on-chip architecture
for scalability and service guarantees,” in ISCA, 2011.

[49] J. W. Lee et al., “Globally-synchronized frames for guaranteed quality-
of-service in on-chip networks,” in ISCA, 2008.

68

[50] J. Ouyang et al., “Loft: A high performance network-on-chip providing
quality-of-service support,” in MICRO, 2010.

[51] J. Diemer et al., “Back suction: Service guarantees for latency-sensitive
on-chip networks,” in NOCS, 2010.

[52] J. Diemer et al., “Efficient throughput-guarantees for latency-sensitive
networks-on-chip,” in ASP-DAC, 2010.

[53] B. Grot et al., “Preemptive venergy efficient proactive thermal mirtual
clock: A flexible, efficient, and cost-effective qos scheme for networks-
on-chip,” in MICRO, 2009.

[54] J. Heißwolf et al., “A scalable noc router design providing qos support
using weighted round robin scheduling,” in ISPA, 2012.

[55] S. Misailovic et al., “Quality of service profiling,” in ICSE, 2010.

[56] M. A. Laurenzano et al., “Input resonsiveness: Using canary inputs to
dynamically steer approximation,” in PLDI, 2016.

[57] M. Samadi et al., “Sage: Self-tuning approximation for graphics engines,”
in MICRO, 2013.

[58] S. Sidiroglou et al., “Managing performance vs. accuracy trade-offs
with loop perforation,” in SIGSOFT/FSE, 2011.

[59] W. Baek et al., “Green : A Framework for Supporting Energy-Conscious
Programming using Controlled Approximation,” in PLDI, 2010.

[60] H. Esmaeilzadeh et al., “Neural Acceleration for General-Purpose
Approximate Programs,” in MICRO, 2012.

[61] T. Wang et al., “Approxqa: a unified quality assurance framework for
approximate computing,” in DATE, 2017.

[62] C. Xu et al., “On quality trade-off control for approximate computing
using iterative training,” in DAC, 2017.

[63] B. Grigorian et al., “Brainiac: Bringing reliable accuracy into neurally-
implemented approximate computing,” in HPCA, 2015.

[64] C. Xu et al., “On quality trade-off control for approximate computing
using iterative training,” in DAC, 2017.

[65] T. Moreau et al., “Exploiting quality-energy tradeoffs with arbitrary
quantization: special session paper,” in CODES+ISSS, 2017.

[66] X. Sui et al., “Proactive control of approximate programs,” in ASPLOS,
2016.

[67] D. S. Khudia et al., “Rumba: An online quality management system
for approximate computing,” in ISCA, 2015.

[68] D. Mahajan et al., “Towards statistical guarantees in controlling quality
tradeoffs for approximate acceleration,” in ISCA, 2016.

[69] Semiconductor Industry Association et al., “International Technology
Roadmap for Semiconductors,” http://www.itrs2.net/, 2011.

[70] JEDEC Solid State Tech. Ass., “Failure mechanisms and models for
semiconductor devices,” JEDEC Publication JEP122G, 2010.

[71] E. Karl et al., “Multi-Mechanism Reliability Modeling and Management
in Dynamic Systems,” TVLSI, 2008.

[72] J. Srinivasan et al., “The Case for Lifetime Reliability-Aware Micro-
processors,” in ISCA, 2004.

[73] W. J. Song et al., “Managing performance-reliability tradeoffs in
multicore processors,” in IRPS, 2015.

[74] A. Coskun et al., “Evaluating the impact of job scheduling and power
management on processor lifetime for chip multiprocessors,” in Proc.
Int. Conf. Measurement and Modeling of Computer Systems, 2009.

[75] K. Ma et al., “PGCapping: Exploiting Power Gating for Power Capping
and Core Lifetime Balancing in CMPs,” in PACT, 2012.

[76] M. H. Haghbayan et al., “A lifetime-aware runtime mapping approach
for many-core systems in the dark silicon era,” in DATE, 2016.

[77] Y. Ma et al., “Improving System-Level Lifetime Reliability of Multicore
Soft Real-Time Systems,” IEEE TVLSI, 2017.

[78] J. Sun et al., “Workload Assignment Considering NBTI Degradation in
Multicore Systems,” Journal Emerg. Technol. Comput. Syst., 2014.

[79] T. Kim et al., “Learning-based dynamic reliability management for dark
silicon processor considering EM effects,” in DATE, 2016.

[80] A. Baldassari et al., “A dynamic reliability management framework for
heterogeneous multicore systems,” in DFT, 2017.

[81] X. Chen et al., “Run-time technique for simultaneous aging and power
optimization in GPGPUs,” in DAC, 2014.

[82] H. Lee et al., “Aging-aware Workload Management on Embedded GPU
Under Process Variation,” IEEE Trans. on Computers, 2018.

[83] M. H. Haghbayan et al., “Performance/Reliability-Aware Resource
Management for Many-Cores in Dark Silicon Era,” IEEE Trans. on
Computers, 2017.

[84] N. Kapadia et al., “Varsha: Variation and reliability-aware application
scheduling with adaptive parallelism in the dark-silicon era,” in DATE,
2015.

[85] Y. Xiang et al., “Soft and hard reliability-aware scheduling for multicore
embedded systems with energy harvesting,” IEEE TMSCS, 2015.

[86] Y. Ma et al., “An on-line framework for improving reliability of real-time
systems on x201c;big-little x201d; type mpsocs,” in DATE, 2017.

[87] C. Bolchini et al., “Self-adaptive fault tolerance in multi-/many-core
systems,” Journal of Electronic Testing, 2013.

[88] M. H. Haghbayan et al., “A power-aware approach for online test
scheduling in many-core architectures,” IEEE Transactions on Comput-
ers, 2016.

[89] M. A. Skitsas et al., “Exploring system availability during software-
based self-testing of multi-core cpus,” Journal of Electronic Testing,
2018.

[90] R. Bitirgen et al., “Coordinated management of multiple interacting
resources in chip multiprocessors: A machine learning approach,” in
MICRO, 2008.

[91] C. Dubach et al., “Dynamic Microarchitectural Adaptation Using
Machine Learning,” ACM TACO, 2013.

[92] E. Ipek et al., “Self-optimizing memory controllers: A reinforcement
learning approach,” in ISCA, 2008.

[93] Y. Zhang et al., “Intelligent cloud resource management with deep
reinforcement learning,” IEEE Cloud Computing, 2017.

[94] N. Mishra et al., “Caloree: Learning control for predictable latency and
low energy,” in ASPLOS, 2018.

[95] H. Hoffmann et al., “Dynamic Knobs for Responsive Power-aware
Computing,” in ASPLOS, 2011.

[96] A. M. Rahmani et al., “Dynamic power management for many-core
platforms in the dark silicon era: A multi-objective control approach,”
in ISLPED, 2015.

[97] A. M. Rahmani et al., “Reliability-Aware Runtime Power Management
for Many-Core Systems in the Dark Silicon Era,” IEEE TVLSI, 2017.

[98] A. Kanduri et al., “Approximation knob: Power Capping meets energy
efficiency,” in ICCAD, 2016.

[99] M. H. Haghbayan et al., “Performance/Reliability-Aware Resource
Management for Many-Cores in Dark Silicon Era,” IEEE Tran. on
Computers, 2017.

[100] A. Kanduri et al., “adBoost: Thermal Aware Performance Boosting
through Dark Silicon Patterning,” IEEE Tran. on Computers, 2018.

[101] A. M. Rahmani et al., “Reliability-aware runtime power management
for many-core systems in the dark silicon era,” IEEE TVLSI, 2017.

[102] J. L. Hellerstein et al., Feedback Control of Computing Systems. John
Wiley & Sons, 2004.

[103] S. Shahosseini et al., “Dependability evaluation of siso control-theoretic
power managers for processor architectures,” in NORCAS, 2017.

[104] R. P. Pothukuchi et al., “Using Multiple Input, Multiple Output Formal
Control to Maximize Resource Efficiency in Architectures,” in ISCA,
2016.

[105] T. R. Muck et al., “Design methodology for responsive and robust
mimo control of heterogeneous multicores,” IEEE TMSCS, 2018.

[106] C. Karamanolis et al., “Designing Controllable Computer Systems,” in
HOTOS, 2005.

[107] P. Ramadge et al., “The control of discrete event systems,” Proceedings
of the IEEE, 1989.

[108] “Supervisory control of discrete event systems,” Mathematical and
Computer Modelling, 1996.

[109] A. M. Rahmani et al., “Spectr: Formal supervisory control and
coordination for many-core systems resource management,” in ASPLOS,
2018.

69

