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Abstract

The choice of algorithms has a large impact on the
performance of embedded real-time systems. Therefore,
performance estimation of embedded software is vital in
an early design phase. Consequently, high-level estima-
tion techniques have been devised, but the accuracy of the
estimations vary a lot depending on the algorithm and its
context. We address this problem by proposing an esti-
mation technique that both estimates the performance and
computes the expected accuracy. The accuracy is used to
provide a confidence interval to the estimated perform-
ance. The estimation framework presented in this paper
has been crafted to fit with the MASCOT environment, but
the underlying techniques can also be applied to other
high-level design exploration frameworks.

1. Introduction

Performance estimation of high-level specifications is
mostly performed in a back-of-the-envelope fashion based
on using experience. This procedure either leads to unpre-
dictable and poor accuracy or involves many experienced
engineers and time consuming discussions and studies.
Hence, estimation tools have been developed, e.g. Ca-
dence VCC [6], the SPI workbench [1], and the Polis
codesign tool from UC Berkeley [2]. Using tools is much
faster and a large number of different solutions can be
explored in short time. Unfortunately, the accuracy of the
estimations vary widely and, even more important, it is
largely unknown. This is the problem that we address.

Under the assumption that the system is specified as a
collection of concurrent processes that are invoked spo-
radically, the estimator computes the execution time of
invocations and provides a confidence interval. The tech-
nique uses an execution trace, generated by simulation,

which is hierarchically decomposed. The decomposition
exposes the source of uncertainty, and enables the user to
focus on profiling and characterization of components and
operations that contribute most to the inaccuracy. Hence,
the estimation can be gradually improved until a satisfac-
tory level of accuracy has been reached.

Performance analysis and estimation can be divided
into static and dynamic techniques. Static techniques
[1][4][8] are concerned with the analysis of a specification
without simulating or executing the specification. It is
often employed for worst-case analysis and is suitable for
finding corner cases that are hard to cover with simulation
or execution. Dynamic techniques [2][6][7] on the other
hand, are concerned with the analysis of run-time behav-
ior, and relies on test vectors and input scenarios. Dy-
namic techniques are preferred when the system perform-
ance is heavily dependent on the input data, and in cases
where the average performance is more relevant than
worst-case behavior.

Besides classification into static and dynamic ap-
proaches, the level of abstraction also characterizes differ-
ent performance estimation techniques. Low-level estima-
tion [5] considers compiled and optimized machine code
and employs detailed models of the processor architecture
and memory hierarchy. Low-level estimation can thus
accurately account for operating system, pipelining and
cache effects. High-level estimation [9][10] on the other
hand deals with high-level specifications and employs a
very abstract model of the architecture. Both low-level
and high-level estimation fulfills important needs in sys-
tem design; high-level techniques are excellent for early
feasibility studies, and low-level techniques yield un-
precedented accuracy in a late design phase.

Our method is a high-level, dynamic estimation tech-
nique. However, it not only estimates the performance but
also the accuracy of the result. In this respect it is com-
plementary to most other high-level estimation techniques.
The main features are the following.:
• Performance estimation is performed on an arbitrary
high-level specification, where the actual code or RTL
description is largely unknown. This means that we have
little hope of getting high accuracy, instead, we try to
compute the accuracy, and provide information about the
origin of potential inaccuracy.
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• Our approach is trace-based, which means that the
simulation needs only be run once in “trace-mode”, where
all operations are recorded. This decouples the behavioral
specification from the estimation and speeds up the esti-
mation significantly when compared to annotated per-
formance simulation.
• We employ a hierarchical decomposition of func-
tions, which gives the developer a quick and dirty first
approximation but allows detailed profiling and charac-
terization of complex algorithms. This also enables de-
signers to collect and post knowledge and experience into
the framework for future use and reuse.
• The estimation is based on statistical models, which
is the key to accuracy analysis.

2. Framework and Workflow

The estimation framework and workflow complements
the MASCOT [12] modeling environment. The workflow
is based on a separation of the behavioral specification
from the architectural model (Figure 1).
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Figure 1. Estim ation workflow

The behavioral specification, simulation, and execution
trace is discussed below. The architectural model and the
mapping is described in section 3.

Although important, we do not address communication
in this paper. However, we include communication primi-
tives (e.g. signals, channels, transactions, etc.) in the defi-
nitions that follow for completeness.

2.1. Behavioral Specification and Simulation

The behavioral model consists of a set of concurrent
communicating processes. A process consumes input sig-
nals, performs necessary computations and potentially
produces output signals. Communication is carried out
asynchronously with unbounded FIFO buffers.

Definition 1.  A behavioral specification is a net-
work of processes represented as a tuple B=(P, C, S,
a), where P is a set of processes, C∈P×P is a set of
channels, S is a set of signals, and a:S→C is a func-
tion mapping signals to channels.

Execution and communication is supposed to be ideal
in the sense that it takes zero time. As a consequence, time
is only advanced by the simulation stimuli or internal tim-
ers. This implies that the external stimuli or an internal
timer may trigger an arbitrarily long sequence of internal
events, which must be completely resolved before the next
external event or timer can be processed. During simula-
tion all process execution and signal communication is
recorded in an execution trace. It is left to the designer’s
discretion to ensure that the simulation is realistic.

2.2. Execution Trace

Using an execution trace decouples the behavioral
specification from the estimation environment. There are
two reasons to do this. First, the specification that we pri-
marily target is heterogeneous, e.g. a mixed Matlab-SDL
model, but a homogeneous input to  the estimator is pre-
ferred since it is easier to process. Second, we envision an
estimation framework that can be used with other system
specifications, which requires a well defined intermediate
format  that links the specification and the estimator. Note
that this cannot be achieved easily with annotated per-
formance simulation.

There are two atomic elements of the execution trace,
the operation and  the  transaction, as defined below.

Definition 2.  An operation is a five-tuple: op=(i,
id, pl, ol, r), where i∈N is the instance count, id∈ID
is a unique name, pl={p1,p2,…,pn}, n∈N is a pa-
rameter list, ol ={op1,op2,…,opn}, n∈N is an opera-
tion list, and r∈N is the repeat count.

The operation list component ol allows us to build hi-
erarchical operations of arbitrary depth. The instance
count i determines the number of instances of the opera-
tion that can be performed in parallel, and the repeat count
r establishes the number of times the operation must be
performed in sequence. This allows a crude estimation of
parallelism for devices where operations may be per-
formed concurrently, e.g. in SIMD architectures. For se-
quential processing, such as software executed on an in-
struction set processor (ISP), the two numbers i and r, are
simply multiplied to give the total count of the operation.

Definition 3.  A transaction is a pair: tr=(n, w),
where n∈N is the number of data tokens transmit-
ted, and w∈N is the bit width of each token.

Definition 4. An execution trace is a list of invoca-
tions: et={I 1, I2, … ,In}, n∈N. An invocation is a tu-
ple Ik=(tk, id, sl, el), where tk∈R is a time-stamp,
id∈P∪S uniquely identifies a process or signal,
sl={s1, s2, … , sn}, n∈N, sk∈S is a list of triggering
signals, and
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is either a list of operations or a list of transactions.

The time stamps of the invocations are non-decreasing,
i.e. tk ≤ tk+1. Since an external event or internal timer can
trigger a sequence of invocations with the same time
stamp, the list of triggering signals is used to resolve data
dependencies.

In MASCOT we generate execution traces both from
SDL and Matlab. The SDL simulator allows us to gener-
ate an execution trace simply by switching on the logging
function. In Matlab, we have devised a technique to gen-
erate an execution trace that relies on object-orientation
and overloading of operations, which then write the trace
information to a file. After simulation the generated files
are merged and filtered to create the execution trace.

3. Architectural Model

The architectural model consists of a set of connected
processing and communication units.

Definition 5.  An architectural model is a triple
am=(X, T, E), where X is a set of processing (exe-
cution) units, T is a set of communication (transmis-
sion) units, and E ⊆ X×X ∪ T×T ∪ X×T ∪ T×X is a
set of directed edges connecting the nodes.

A processing unit is modeled as an abstract machine
characterized by a virtual instruction (VI) set. The ab-
stract machine can not perform any computation, but only
models the performance of the unit.

Definition 6. A processing unit is a triple x=(V, M,
∆), where V is a virtual instruction set, M is a macro
instruction set, and ∆ is a set of instruction profiles.
An instruction profile δ∈∆ is a function δ:V∪M →
R×R such that δ(op)=(µ, σ2), where op∈V∪M, and
µ∈R and σ2∈R associates virtual instructions with
an expected execution time and variance.

Selection of a VI set is a delicate task, where the goal
is to select instructions that are abstract enough to support
a large variety of processing units, but specific enough to
differentiate between distinct types of instructions. A
complete treatment of the selection of a VI set is not
within the scope of this paper. The set of execution time
distributions is called a VI profile. The selection of a
proper VI profile can be done manually or automatically
e.g. with signatures and discriminating functions [3].

3.1. Processor Characterization

Processor characterization can be performed analyti-
cally or empirically. The analytical approach is based on

datasheet analysis [3] and requires no compilation or exe-
cution. Although a range of execution times can be de-
rived with datasheet analysis, it is hard to capture the sta-
tistical distribution of VI execution time that reflects com-
piler optimizations and application domain. The empirical
approach on the other hand is based on benchmarks [11]
that are compiled and analyzed. This approach readily
captures the statistical distribution but requires represen-
tative benchmark suites and quite a bit of manual interac-
tion.

The VI set models the operations of generic processors,
but we also must be able to capture processor specific
features. A typical example is the MAC operation of a
DSP processor which comprises a MUL and an ADD in-
struction. A similar situation may arise when the user has
access to the  execution time of a specific function, e.g. as
provided by the processor manufacturer. In both cases, the
user wants to add instructions to the processor model
without ruining previous modeling efforts and without
modifications that prevents future design exploration. This
is supported by the extended instruction (EI) set. To use
extended instructions, the behavioral specification is an-
notated with trace calls. Note that adding an extended
instruction to one processor model does not require
changes in other processor models. Note also that intro-
ducing trace calls in the behavioral model does not change
the behavior.

3.2. Mapping

The behavioral model is mapped to the architectural
model through a pair of mapping functions:

Definition 7.  A model map is a pair mm = (pm,
sm), where pm:P→X maps processes to process
units, and sm:S→T maps signals to communication
units.

4. Performance Estimation

The estimation workflow in Figure 1 shows that the
performance estimator in the dashed box has been divided
into three parts: The estimation engine, the analysis en-
gine, and the estimation library. The division between
estimation engine and analysis engine allows us to choose
different estimation engines for different purposes while
maintaining the analysis engine intact. The estimation
engine is closely coupled with the architectural model and
dictates what we estimate. The estimation library is used
to collect static operations, which unburdens the execution
trace and simplifies macro instruction identification. The
framework and performance estimator has been imple-
mented as a tool called EstiMate.



4.1. Estimation Procedure

The software performance estimator consists of the
analysis engine and the estimation engine. It uses the exe-
cution trace and a model map to compute the estimated
performance. The estimator behaves as follows:
1. The analysis engine reads the execution trace,

and for each invocation in the trace performs
steps 2 through 9 below.

2. The analysis engine uses the model map to figure
out which processor the invoked process runs on,
and the proper estimation engine is called.

3. The estimation engine traverses the invocation
operation list, and for each operation performs
steps 4 through 8 below.

4. If the operation encountered is found in the VI
set or EI set of the processor model, the mean
and variance for the operation is recorded.

5. If the operation is not found, but contains an op-
eration list, the operation list is expanded and
step 4 is repeated for each operation in the list.

6. If the operation is not found, and cannot be ex-
panded, the estimation engine queries the analy-
sis engine for an estimation library equivalent.

7. If the analysis engine receives a library query, it
performs a lookup, and expands the operation
with the equivalent operation list. Back to 4.

8. When the entire invocation has been traversed,
the invocation, annotated with execution time
mean and variance, is returned.

9. The analysis engine computes the overall execu-
tion time for the invocation, and continues from
step 1 until all invocations have been read.

4.2. Probabilistic Analysis

The probabilistic analysis takes place when the analysis
engine has traversed the execution trace according to the
algorithm in section 4.1.

To estimate the execution time of an invocation, we
may treat each operation in the execution trace as a sto-
chastic variable, denoted ξk

op, where op ∈VI ∪ EI identi-
fies the instruction, and 1 ≤ k ≤ nop, where nop∈N is the
total number of times that the operation op is executed in
the invocation. The total execution time of the invocation
will thus be a stochastic variable t:
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Theorem 1. Central limit theorem (variant). Let
E[ξk

op] = µop and Var[ξk
op] = σop

2. If nop is large and
the stochastic variables ξ1

op, ξ2
op, ... are sufficiently

independent, the sum of the stochastic variables,  top

is approximately normal distributed:

),(  is  opopopopop nnNt σµ (3)

Now, consider the outer summation of (1) where the sums
of execution times for different operations are added:
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Remembering that each top is normal distributed, and
assuming that the stochastic variables top are independent,
we apply the addition theorem for normal distribution:

Theorem 2. Normal distribution addition theorem.
If ξ1 is N (µ1, σ1) and ξ2 is N (µ2, σ2), then:
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This yields the distribution for the total execution time:
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Note that we have made two rather strong assumptions,
first we have assumed that nop is large, and second that
operation execution times are independent. We address
these issues in the following paragraphs.

When nop is not large, the stochastic variable top will
not be normal distributed. However, as long as the execu-
tion times of different operations are independent (which
is a reasonable assumption), we can use the addition theo-
rem for stochastic variables:

Theorem 3. Addition Theorem. Let ξ and η be two
independent stochastic variables, then E[ξ+η] =
E[ξ]+E[η], and Var[ξ+η] = Var[ξ]+Var[η].

Since the stochastic variables ξ and η are not normal
distributed, the sum will not be normal distributed either.
When determining a confidence interval for the sum, we
have to resort to a more conservative method known as
Chebyshev’s inequality.

Theorem 4. Chebyshev’s inequality. If ξ is a sto-
chastic variable with µ = E[ξ] and σ2 = Var[ξ], then

( ) 0,
1

2
>≤≥− k

k
kP σµξ (7)

If the execution times of different operations in the
execution trace are not independent, we are not allowed to



add the variance according to the addition theorem. Con-
sider an execution trace where the same operation is exe-
cuted several times, either due to the instance and repeat
counts, or as a result of being located inside a loop. That
operation will not likely change its execution time be-
tween different executions. The variance must be com-
puted according to the following theorem:

Theorem 5. Constant factor. If ξ is a stochastic
variable, then Var[aξ] = a2Var[ξ].

5. Experiments

We have carried out two experiments to investigate
weather the proposed method has any relevance in reality.

The experimental setup is shown in Figure 2. The be-
havioral specification that we used is the test1 program
from [10], and an image rotation program imrotate, both
of which were translated both to Matlab and C code.
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Figure 2. SW  Estim ation experim ental setup

The Matlab code was simulated, generating an execu-
tion trace, which was fed to EstiMate. The C code was
compiled for an ARM7TDMI processor, and executed
with an instruction set simulator (ISS). The estimation
engine returned an execution time interval with a confi-
dence degree, which was compared with the measured
performance from the ISS.

The ARM7TDMI processor was modeled with a vir-
tual instruction set shown in Table 1.

Table 1. ARM 7TDM I Virtual Instruction Set

Instruction µ σ2

ADD 1.500000 0.500000

LOOP 5.000000 0.500000

LE 5.500000 0.500000

FLOOR 1.000000 0.100000

MUL 1.500000 1.000000

SUB 1.500000 0.500000

GT 5.500000 1.000000

DIV 1.500000 1.000000

subsref 2.000000 0.200000

The model was derived from a small part of the same
code that was used to estimate the execution time, which
explains the extremely small variance.

We ran the experiment 16 times, varying the number of
loop iterations of the four loops of the program (L1-L4).
The confidence degree was set to 95%, and the result us-
ing a two-sided confidence interval based on a normal
distribution is shown in Figure 3. The vertical bars repre-
sent the estimated interval, and the diamond shows the
measured execution time.
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Figure 3. Outcom e of test1 experim ent

For the second example (image rotation) we had to de-
rive a different processor model taking floating point
emulation into account. The Virtual Instruction set was
enlarged to contain 16 different virtual instructions. An
additional 3 instructions were modeled using the Extended
Instruction set and 11 instruction were added to the esti-
mation library to model special Matlab functions. In the
image rotation program, the number of independently
executing operations was relatively small, and therefore a
confidence interval based on Chebyshev’s inequality was
selected. The measured execution time was well within the
estimated interval. Figure 4 shows a screenshot from the
execution time analysis.

Figure 4. Execution tim e analysis of im rotate



Note that the relative accuracy of the estimation in-
creases when the number of independent variables de-
creases, see Table 2. At the same time, we observe a
larger relative error in the estimated execution time.

Table 2. Relative error and estim ated accuracy

Segm ent M easure Esti-
m ate

Error Accuracy

imrotate 3220928 3379861 4,9% ±8,4%

  blocksize 20552 14066 -31,6% ±83,6%

    initbounds 1295 1215 -6,1% ±29,6%

    init_rows 152 133 -12,3% ±69,2%

    init_image 17402 7882 -54,7% ±149,1%

The accuracy in the table above is the estimated inter-
val relative to the estimated execution time.

6. Conclusion

We have presented a novel technique for dealing with
accuracy in high-level performance estimation. The tech-
nique resides in a design exploration framework, which
provides a stable environment for tools and methods. Pre-
liminary results have been reported, demonstrating the
workflow, and showing that the technique has good po-
tentials, encouraging further development.

It is important to remember what one is actually esti-
mating, especially when dealing with a high level specifi-
cation like we do. There are innumerous possible imple-
mentations of the algorithms we estimate, some clever and
some not. The estimated execution time that our estimator
delivers corresponds to one possible implementation of
the specification. Therefore, the trace macro library plays
an important role giving the designer an opportunity to
model an algorithm in an abstract way. Even though the
accuracy may seem to be of limited usefulness, the esti-
mator clearly shows where the bottlenecks may show up,
and gives a good idea about what constraints are reason-
able for further development.

We are continuously working larger example applica-
tions, and we expect to apply the estimation technique on
the full-blown Digital Receiver [13] in near future.
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