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Abstract—Autonomous applications having AI models and
algorithms as backbone require high-performance computational
and memory resources for efficient deployment and data process-
ing. This complexity further increases while dealing with larger
data sizes and computationally complex algorithms. Stochastic
computing, precision-scaling, and model compression techniques
such as quantization and pruning have addressed these issues.
Although these approaches benefit model training and inference,
performance and efficiency tradeoffs remain challenging. Our
proposed approach includes three approximation schemes to
address model performance and efficiency tradeoffs. The first
scheme uses the concept of approximate multipliers. The sec-
ond scheme approximates convolution operations using minimal
multiplicative operations, and the third scheme uses variational
inference using quantization-aware training and post-training
quantization mechanisms. We evaluate the proposed schemes
using performance metrics such as multiply-accumulate opera-
tions, floating-point operations, accuracy, latency, and on-device
power consumption from CNNs, DNNs, and vision transform-
ers. Tests show that our methods achieve up to 43% model
compression while maintaining the accuracy within 3 to 4%
of the baseline, with approximately 38% reduction in energy
consumption compared to the baseline model. The proposed
strategies provide mechanisms for optimized edge computing
deployments by achieving a balanced tradeoff between model
performance and energy efficiency. Code can be accessed at
Approximate-Models.

Index Terms—Approximation, Energy Efficiency, Edge AI,
Machine Intelligence, Multipliers, Variational Inference

I. INTRODUCTION

AI model development has advanced from traditional re-
gression techniques to more complex statistical models and
frameworks, such as graph neural networks, autoencoders,
and generative adversarial networks (GANs) [1], [33]. This
development trend also extends to computing practices such
as the shift toward processing data locally on edge devices,
complementing the existing high-performance servers and
cloud-based deployments [4], [7], [15], [26]. Advancements in
vision processing units (VPU), tensor processing units (TPU),
and graphics processing units (GPUs) have enabled real-time
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applications and collaborative inference [42]. These develop-
ments provide methods for on-device learning, inference, and
tiny machine learning within cyber-physical systems, such as
autonomous vehicles, allowing them to perform complex tasks
like image segmentation, object detection, precise localization,
and high-definition mapping [19], [25], [48], [18], [53].

Fig. 1: Vision Transformer (ViT) block representation

The availability of automotive and vision datasets such as
ImageNet, CIFAR-100, KITTI, Argo, nuScenes, and Waymo
has complemented these advancements [19]. State-of-the-art
neural network models such as ResNet [13], SSD [27],
SqueezeNet [14], CenterNet [9], CenterPoint [55], and Yolo
[36] have shown high accuracy [19], [58]. Recent research
trends are shifting towards using vision transformers (ViT)
such as EfficientVit [2], DeVit [52], TinyViT [49], and EdgeVit
[3] to improve model performance by replacing traditional
neural network operations with self-attention or multi-headed
attention mechanisms, allowing for more precise image and
object classification or detection (an overview of the ViT
model is given in Figure 1) [8], [12], [56]. However, the
high computational complexity, memory and energy demands
of ViTs during training and inference present deployment
challenges for compute-constrained edge devices [5], [44],
[11], [37], [34]. Processing an n x n (size) image on classic
models like ResNet-50 and Vgg-16 requires around 5.4 and
15.5 billion FLOPs, with a O(n2) complexity. With more
complex modules, the ViTs have a computational complexity
of O(dn2), where ‘n’ is the input sequence length or the
number of patches. An overview of the modules and layers
in these transformers are shown in Figure 1.

Similarly, the memory footprint varies for these models,
ResNet-50 have approximately 25 million parameters, whereas
larger ViT models have 100 million, requiring gigabytes of
memory for processing (A trend of memory requirements for
popular ViTs models against floating point operations per sec-
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ond (FLOPs) and parameters (millions) can be seen in Figure
2). The operations, including multiply-accumulate (MACs),
range from 4-5 GMACs in efficient CNNs to over 15 GMACs
in more complex ViTs [2], [12], [56], [49], [52]. These metrics
show the challenges of deploying such models using Edge
AI, which is often considered a sustainable alternative to
centralized computing in the cloud or data centres which has
additional power and energy demands [15], [42], [22], [17].
Also, recent analysis shows that vehicle automation’s impact
using AI and respective data processing emissions, including
data transmission and wireless network energy use, are much
higher than vehicle emissions [46], thus demanding energy-
efficient computing [29]. For the mentioned challenges, this
paper explores model approximation techniques for deploying
models efficiently on embedded or Edge devices, focusing
on the trade-offs between energy consumption and model
performance metrics. The contributions are as follows:

1) We propose a multi-bit approximate multiplier mech-
anism for dynamic precision scaling and quantization-
aware training of ViTs and neural network models.

2) A probabilistic approximation of convolution operation
with reduced multiplicative complexity using signum
function and bit-shifting, with a balanced trade-off be-
tween computational efficiency and model accuracy.

3) A variational inference (VI) mechanism for ViTs com-
bined with post-training quantization and an energy-
efficient training algorithm, including adaptive hyperpa-
rameter adjustment and joint-loss optimization.

The remaining paper is structured as follows: Section II
covers the background and related work, focusing on model
compression and acceleration. Section III covers the method-
ology, which includes the proposed approximation techniques.
Section IV covers training processes and experimental results
while evaluating the methods’ accuracy and energy efficiency
for training and inference. Sections V and VI discuss the
results, summary, and future research directions for energy-
efficient Edge AI.

II. MODEL COMPRESSION AND ACCELERATION

Model optimization and acceleration techniques include
pruning, normalization, distillation, quantization, and approxi-
mate computing [57], [23], [44], [50]. These methods offer
model compression and reduction strategies for resource-
constrained devices, but a knowledge gap exists in multi-
parametric optimization of accuracy, energy efficiency, and
computational complexity (memory and processing power).
This gap is critical for applications which depend on either
onboard heavy volume data processing or offloading data and
computation to the high-performance computing units [19],
[22], [42], [24]. This section covers optimization techniques
for model deployment on edge devices, focusing on reducing
memory and computational demands.

A. Multipliers

Approximate multipliers have been applied in various IoT
and AI applications, such as object detection, speech recogni-
tion, and image classification, utilizing precision levels from

Fig. 2: Transformer models and related metrics on ImageNet

4-bit to 32-bit [35], [4], [39]. While 8-bit multipliers pro-
vide efficiency in low-power devices, they reduce accuracy
impacting complex DNN models. However, 16-bit multipliers
can balance models’ accuracy and latency, making them ideal
for computer vision tasks [44]. 32-bit multipliers provide the
highest accuracy and precision but also increase latency and
power consumption [16], [44]. Most of the benchmark models
have 32-bit and 16-bit multiplier operations. Advances in
multi-precision operations have also resulted in DNN models
with mixed-precision arithmetic, improving overall efficiency
[45], [53]. Techniques such as SmoothQuant implement post-
training quantization by shifting quantization complexity from
activations to weights, maintaining accuracy while reducing
computational load and memory use during inference [50].
Additionally, approximate multipliers have shown potential
in enhancing robustness against adversarial attacks, providing
added reliability for security-sensitive applications [1], [38].

B. Probabilistic Approximation

Probabilistic approximation methods are efficiently used in
hardware and software implementations, reducing the hard-
ware form factor and enhancing energy savings [54], [23].
For software applications such as ML model deployment,
these methods enable model compression, parameter reduc-
tion and energy savings during the training and inference
phases using controlled approximations for computations (e.g.,
probability density function, convolution operation, multi-layer
perceptron, feed-forward network). Stochastic rounding [54],
[51] and probabilistic pruning [21] have been applied to
ViTs and DNNs, resulting in more compact models with
reduced memory footprints and computational requirements.
[6]. Bayesian compression[57] and variational dropout [30]
further contribute to creating efficient, low-power models
suitable for edge devices and mobile applications.

C. Bit Reductions and Quantized Models

The rising computational demands of CNNs and Vision
Transformers have also been addressed using Bit-by-bit reduc-
tion methods, explored for both hardware and software opti-
mization [50], [38], [1], [54], [45]. Moons et al. [31] covered
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Fig. 3: Proposed Methodology for Optimized ViT Training

precision reduction methods focusing on energy saving while
maintaining acceptable performance in CNNs. Kumar et al.
[20] and Nguyen et al. [32] discuss bit-level optimizations that
improve energy and latency metrics while preserving model
accuracy. Louati et al. [28] proposed incremental quantization
that dynamically adjusts weight bit-width in CNNs, showing
energy savings with minimal impact on classification accuracy.

For Vision Transformers, Kuznedelev et al. [21] propose
progressive quantization, which incrementally reduces preci-
sion in model parameters and activations and shows that ViTs
are resilient to bit reduction and can achieve computational
savings with minimal performance impact. This resilience
enables ViTs to be deployed in resource-constrained environ-
ments. Additional approaches, such as training DNNs using
8-bit floating-point values, tackle the challenge of retaining
gradient computation during back-propagation, contributing
to efficient hardware training platforms [47]. Techniques like
chunk-based accumulation and stochastic rounding further
assist in reducing data and arithmetic precision. Addressing the
deployment of Transformer models on edge TPU accelerators,
Reidy et al. [37] provides a method for optimizing unsupported
layers and computational graphs, enabling real-time inference
on devices like Coral USB accelerator.

III. PROPOSED APPROXIMATION SCHEMES FOR MODELS

Deploying computationally complex vision models like
CNNs, DNNs, and ViTs on edge devices requires a tradeoff
that can balance performance and efficiency. Limited comput-
ing, memory resources, and battery capability can characterize
these edge devices or environments. This section explores how
adaptive approximation techniques can enhance and optimize
these models for computing within a resource-constrained
environment. We can reduce computational complexity and en-
ergy consumption by strategically applying approximate mul-
tipliers, variational inference (VI), training-aware quantization
and post-training quantization while maintaining acceptable
performance (an overview of the proposed methodology is
shown in Figure 3). As CNNs, DNNs and ViTs architectures
are supported by common and unique modules and operations
such as convolution, fire modules, fully connected, and at-
tention mechanisms, we first discuss approximation schemes
suited for these modules and models by providing a high-level
operational overview of proposed methods. Section IV then
covers empirical tests and analyses of these mechanisms.

A. Approximate Multipliers

The Approximate operations are the fundamental com-
ponent of this strategy, designed to facilitate multiplication

with reductions in precision. We initialize lookup tables for
4-bit, 8-bit and 16-bit approximate multiplication to enhance
the computation process. These tables, precomputed with the
multiplication results for all possible pairs of 4-bit, 8-bit and
16-bit values, reduce computation time by eliminating the
requirement for exact or precise multiplication calculations.
To further optimize our approximation technique, we integrate
the Signed Carry Disregard Multiplier (SCDM8) [41], [40],
which uses 8-bit multiplication and strategically omits carry
operations during various stages of computation. This oper-
ation reduces power consumption, aligning with our goal of
achieving energy efficiency by trading computational accuracy.
The lookup table is populated through nested loops: all possi-
ble combinations of two 4-bit numbers, ranging from 0 to 15,
all 8-bit values (0 to 255), and the 16-bit values (0 to 65535).
Each loop calculates and stores the approximate multiplication
results in the corresponding lookup table. These tables provide
resources for the computation steps, enhancing efficiency and
speed. To efficiently compute approximate multiplications, we
initialize an output matrix S, and apply precision-specific
operations. For e.g., when eitherA and B is 0, S is set to
0 to avoid extra computation. If A equals 1, S is assigned the
value of B, utilizing the identity property of multiplication.
For other values, the algorithm uses the lookup tables to use
precomputed results, speeding up the computing operation.

Fig. 4: Bit-wise comparison of training loss over epoch

The efficiency of the approximate strategy can be seen in
Figure 4, using the model loss metric over epochs during
training. The figure shows the training loss of the ResNet18
model for the first few epochs. We compare the baseline
floating point precision of 32 bits with our proposed 16-bit,
8-bit, 4-bit and mixed precision. As shown in the figure, the
model with baseline architecture and precision of floating point
32 starts with the highest loss values and shows a conver-
gence between 40 and 50 epochs. Our proposed 8 and 16-
bit precision shows similar convergence for the training loss.
However, the optimal convergence can be seen in the mixed
precision implementation. The overview presented in the plot
for the model and the dataset can reflect alternate behaviour or
characteristics, which can be optimized by performing reduced
precision on sparse and non-contributing layers of model.
Mixed precision quantization optimizes deep neural network
models for deployment across diverse computational plat-
forms, particularly devices with limited computational re-
sources like edge devices. As discussed above in the method
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Algorithm 1 Multiplication for Different Precision Levels

0: procedure APPROXIMATE MULTIPLICATION(A, B, pre-
cision)

0: if precision = 16-bit then
1: a0 ← A[8 : 15], a1 ← A[0 : 7]
2: b0 ← B[8 : 15], b1 ← B[0 : 7]
3: a0b0 ← appx mul8x8(a0, b0)
4: a1b0 ← appx mul8x8(a1, b0)≪ 8
5: a0b1 ← appx mul8x8(a0, b1)≪ 8
6: a1b1 ← appx mul8x8(a1, b1)≪ 16
7: S ← a0b0 + a1b0 + a0b1 + a1b1
8: return S
8: else if precision = 8-bit then
9: a0 ← A[4 : 7], a1 ← A[0 : 3]

10: b0 ← B[4 : 7], b1 ← B[0 : 3]
11: a0b0 ← appx mul4x4(a0, b0)
12: a1b0 ← appx mul4x4(a1, b0)
13: a0b1 ← appx mul4x4(a0, b1)
14: a1b1 ← appx mul4x4(a1, b1)
15: S ← a0b0 + (a1b0 + a0b1)≪ 4 + a1b1 ≪ 8
16: return S
16: else
17: return appx mul4x4(A, B)
17: end if
17: end procedure
17: procedure APPX MUL4X4(A, B)
17: if A = 0 or B = 0 then
18: return 0
18: else if A = 1 then
19: return B
19: else if A > 1 and A is even then
19: if B < 8 then
20: return 0
20: else
21: return 32× (A/2)
21: end if
21: else
21: if B < 8 then
22: return B
22: else
23: return B + 32× (A− 1)/2
23: end if
23: end if
23: end procedure=0

and Algorithm 1 and 2, the concept is to use varying levels of
precision across different neural network layers, adjusting the
computational accuracy needed without causing a significant
decline in overall model performance. This selective applica-
tion of precision, utilizing lower precision arithmetic (such as
16-bit and 4-bit) for certain operations or layers while retaining
higher precision (like 32-bit) for critical tasks, facilitates sub-
stantial reductions in memory usage, power consumption, and
enhances computation speed due to fewer bits being processed.
Algorithm 1 provides a detailed procedure for implementing
approximate multiplications at various precision levels, en-

suring each operation is executed with the optimal balance
between speed and accuracy, which is crucial for maintaining
performance in resource-constrained environments. These al-
gorithms ensure the model remains within operational energy
limits while achieving desired computational outcomes. De-
veloping specialized hardware engineered to accelerate mixed
precision matrix operations further supports the practical ap-
plication of these algorithms, making them highly effective
for deep-learning tasks. Algorithm 2 shows systematic process
of multiplication with reduced energy consumption across
different network layers by dynamically adjusting the precision
level of multiplications as per predefined energy usage.

Algorithm 2 Energy-Efficient Multiplication for NN

Require: NN Model, Initial weights, Energy budget E
Ensure: Optimized NN with approximate multiplications

1: Initialize global energy usage to zero
2: Define energy costs for different precision levels (4-bit,

8-bit, 16-bit, 32-bit)
3: for each layer in the Neural Network do
4: for each multiplication operation involving weights A

and B do
5: if operation requires 32-bit precision then
6: Perform FP appx mul(A, B)
7: Convert A and B to binary floating-point values
8: Compute sign, exponent, and mantissa
9: Use appx mul16x16 for mantissa multiplication

10: Adjust exponent and construct final result
11: else if operation can use 16-bit precision then
12: Perform appx mul16x16(A, B)
13: else if operation can use 8-bit precision then
14: Perform appx mul8x8(A, B)
15: else
16: Perform appx mul4x4(A, B)
17: end if
18: Calculate energy usage for the operation
19: if cumulative energy usage ≤ E then
20: Update matrix product in layer
21: Update global energy usage
22: else
23: Revert to higher precision operation
24: end if
25: end for
26: Assess layer performance impact
27: end for
28: OptimizedNN ← NN with approximate multiplications
29: return OptimizedNN =0

Algorithm 3 shows an approach for optimizing Vision
Transformer (ViT) models by strategically reducing the preci-
sion of weights and operations to enhance energy efficiency
while maintaining performance. The algorithm initializes the
global energy usage and defining multiple precision levels
along with their associated energy costs. For each transformer
block in the model, it determines the block’s position whether
it is near the input, middle, or output layers and sets a base
precision level accordingly. Within each block, the algorithm
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adjusts the precision of components based on their function.
For the attention components, it assigns 8-bit precision to
the Query (Q) and Key (K) matrices, 16-bit precision to
the Value (V) matrices, and 4-bit precision to intermediate
attention score computations, applying block-wise quantiza-
tion for consistency. For the Multi-Layer Perceptron (MLP)
components, it uses 16-bit precision for the first feed-forward
network (FFN) layer to preserve essential features, and 8-bit
precision with stochastic rounding for subsequent layers to
reduce computational load.

During matrix operations involving weights A and B, the
algorithm applies predefined precision rules when either A
or B is zero, or when the layer is involved in patch embed-
ding or positional encoding. Otherwise, it employs optimized
multiplication based on the designated precision, updating the
cumulative energy usage after each operation. If the energy
usage exceeds the predefined budget E, it reverts the last
operation to a higher precision to stay within limits. The
algorithm further refines the model by applying structured
sparsity to attention matrices and pruning redundant heads
based on attention entropy measurements. LayerScale calibra-
tion is used to adjust layer scaling parameters for stability
during training with reduced precision. Finally, the optimized
model is validated using vision-specific performance metrics
to ensure that accuracy remains acceptable, and the optimized
ViT model with mixed-precision weights is returned.

B. Approximate multiplication for convolutions

One of the most common and computationally intensive
components in neural network are convolutional layers [10],
[17]. A convolution operation within CNN can be described
as Z = X ⊛ W . where X is the input image, and W is the
kernel. The equation can be described as:

zm,n =

kh∑
i=1

kw∑
j=1

xm+i,n+j .wi,j (1)

Here (m,n) are pixel coordinates of an image, and kh, kw
is the respective height and width of the kernel or filter.
As the operation involves multiplication and summation, an
approximate operation of convolutional layers during training
and inference can reduce computing and memory load from
input and output feature maps. A form of approximation for
convolution [17] with less multiplication can be described as:

zm,n ≈
kh∑
i=1

kw∑
j=1

µ|ŵ| ·min(xm+i,n+j , ŵi,j) (2)

As an approximation strategy, we propose to approximate
the convolution operation (described in equation 2) using
signum functions combined with bit-shifting techniques to
reduce computational complexity, especially the multiplica-
tive complexity. The revised approximate operation can be
described as follows:

zm,n ≈
kh∑
i=1

kw∑
j=1

sgn(xm+i,n+j)× sgn(ŵi,j)× 2shift (3)

Algorithm 3 Energy-Efficient Precision Reduction for ViTs

Require: ViT Model, 32-bit weights, Energy budget E
Ensure: Optimized ViT with mixed precision weights

1: Initialize global energy usage to zero
2: Define precision levels and energy costs
2: for each transformer block do
3: Determine block position (near input, middle, or output)
4: Set base precision based on block position
4: for each component in [attention, MLP] do
4: if component is attention then
5: Use 8-bit for Q, K; 16-bit for V
6: Use 4-bit for attention score intermediates
7: Apply block-wise quantization
7: else if component is MLP then
7: if first FFN layer then
8: Use 16-bit precision
8: else
9: Use 8-bit with stochastic rounding
9: end if
9: end if
9: for each matrix operation with weights A, B do
9: if A = 0 or B = 0 or ISPATCHEMBED(layer) or

ISPOSENCODE(layer) then
10: Apply predefined precision rule
10: else
11: Apply optimized multiplication based on precision
11: end if
12: Update energy usage
12: if energy usage > E then
13: Revert to higher precision for this operation
13: end if
13: end for
13: end for
13: end for
13: Apply structured sparsity to attention matrices
13: Prune redundant heads based on attention entropy
13: Apply LayerScale calibration for stability
13: Validate on vision-specific metrics
13: return Optimized Vision Transformer =0

• Signum Multiplication: The signum function, described
as sgn(x), returns +1 for positive values, -1 for negative
values. It is applied to both the image pixel xm+i,n+j and
the kernel weight ŵi,j . The multiplication of two signum
values simplifies to a sign check: if the signs are the same,
the result is +1; if different then it is -1. This approach
reduces complex floating-point multiplication to a integer
operation, thus decreasing computational overhead.

• Bit-Shifting: The term 2shift describes a left bit-shift op-
eration, equivalent to multiplication by a power of 2. The
’shift’ parameter is optimized during model training. This
operation scales the output using only integer arithmetic,
which is computationally less complex than floating-point
multiplication. It allows for efficient adjustment of the
magnitude of the convolution output without the exact
multiplication operations.
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This approach reduces the convolution operation to basic
sign comparisons and bit shifting, thus lowering the over-
all computational demand. To implement this operation, the
training process requires adaptations such as gradient clipping
to accommodate the coarse approximation. The complexity
analysis of the standard and approximate convolution methods
shows interesting trade-offs between computational efficiency
and potential accuracy. While all three approaches has a
theoretical time complexity of O(kh ∗ kw ∗ H ∗ W ), their
practical performance on GPUs varies. The standard convo-
lution utilizing full-precision floating-point operations serves
as baseline. The min-based approximation method offers a
moderate improvement in computational efficiency, from 1.2 to
1.5 times faster than the standard approach, by replacing mul-
tiplications with simpler operations. However, the signum and
bit-shift based approximation shows 2.5 to 3.0 times speedup
compared to baseline. This performance gain is also a result of
using integer operations compared to complex floating-point
operations, which are well supported in GPU architectures.
Memory requirements is similar across all methods, with the
signum-based approach potentially gaining from lower preci-
sion storage. It’s important to note that while the approximate
methods, especially the signum-based one, provide improve
speedup, they may introduce accuracy trade-offs. The method
is suitable for prioritizing efficiency and speed over precision
in hardware-constrained environments like embedded systems
or mobile devices, where computational resources are limited.

C. Variational Inference

In this strategy, we apply probabilistic approximation based
on Occam’s Razor to Vision Transformers with the goal of re-
ducing computational complexity and improving speedup. The
general goal of variational inference is to approximate the true
posterior distribution of weights by optimizing an approximate
distribution and focusing on estimating uncertainty linked to
model predictions. We reformulate this objective to prioritize
computational efficiency using Occam’s Razor-inspired loss
[43]. This approach balances model fit and complexity, directly
addressing the trade-off between performance and efficiency
in Vision Transformers. The weights in Vision Transformers
are treated as random variables rather than fixed values. The
objective is to closely approximate the posterior distribution
of these weights based on observed data while penalizing
excessive model capacity. Instead of traditional variational
inference approach which is based on the Kullback-Leibler
(KL) divergence and maximizing the Evidence Lower Bound
(ELBO), in our proposed strategy, we optimize the objective
as follows:

O = − log p(X|θ̂)+log

∫
M

κ(θ) exp

(
−N

2
(θ − θ̂)⊤J(θ̂)(θ − θ̂)

)
dθ

(4)
Here X is the input data, θ̂ is the maximum likelihood

estimate of the weights, and J(θ̂) is the Fisher Informa-
tion Matrix, which approximates the curvature of the log-
likelihood around θ̂. The κ(θ) is the capacity of the model,
penalizing over-parameterization and ensuring efficient model

representation. This objective ensures that the model achieves
a balance between fitting the data and maintaining a compact
representation. By optimizing O the model reduces com-
putational complexity and improves robust performance in
tasks such as object detection, segmentation, or classification.
Using the strategy, we propose model training process for
object detection enhanced with post-training bit quantization
for improved computational efficiency:

Algorithm 4 Variational Inference with Post-Training Bit
Quantization (VIPT: Occam’s Razor-based)

Require: Training dataset D, learning rate α, number of
epochs T

Ensure: Trained object detection model M
1: Initialize variational distribution q(w)
2: Define optimizer with adjustable learning rate α
3: Use loss function LOccam as described in Eq. (4)
4: for t = 1 TO T do
5: Shuffle D
6: Initialize total loss Ltotal = 0.0
7: for start = 0 TO len(D) STEP batch size do
8: Compute loss L(M,D[start : start + batch size])

using weight sampling
9: Backpropagate

10: Update parameters → optimizer
11: Add L to Ltotal

12: end for
13: Lavg = Ltotal/(len(D)/batch size)
14: Display Lavg

15: end for
16: Quantize M to 8 bits using an 8-bit quantizer
17: Replace F.P. multipliers in M with 8-bit a.x. multipliers
18: Save trained model M =0

Based on the algorithm 4, we propose training process
that integrates the Occam’s Razor-inspired loss combined with
post-training bit quantization, with the goal of improving
computational efficiency. During training, weights are opti-
mized using the Occam’s Razor-inspired loss LOccam, which
balances model fit and complexity. This approach ensures
efficient model convergence while maintaining the capacity
to generalize from training data to unseen data. By penalizing
excessive model complexity through the Fisher Information
Matrix J(θ̂), the model achieves a compact representation,
enhancing computational efficiency without significant loss of
performance. The integration of 8-bit post-training quantiza-
tion further reduces memory usage and computational pro-
cessing requirements, providing a balance between efficiency
and precision for accurate object detection. The impact of
reduced precision on detection performance is systematically
evaluated to ensure that any degradation in accuracy stays
within acceptable limits.

The custom loss function (equation 4) includes both lo-
calization and classification components, ensuring the model
learns to detect and classify objects effectively within an
image. Fine-tuning the loss parameters allows the model to
adapt to variations in object scale and shape, making it suitable
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for real-world scenarios where performance, robustness and
efficiency are essential.

As an alternative approach and to have a detailed com-
parison with energy-aware training methods, we propose a
strategy to optimize energy usage during the training of
object detection models. This approach integrates probabilis-
tic energy-efficient training with an Occam’s Razor-inspired
objective to reduce energy consumption while maintaining
model accuracy. The method incorporates a customized loss
function that balances model fit and complexity, penalizing
excess capacity using the Fisher Information Matrix J(θ). The
training process uses a variational distribution q(w), repre-
senting the probabilistic distribution of model weights. Unlike
traditional energy-aware methods, this approach dynamically
adjusts model parameters and energy consumption metrics to
balance performance and computational cost. The proposed
loss function for energy-aware training is:

LOccam−Energy = − log p(X|w)+
λ

2
w⊤J(w)w+γEEstats, (5)

Here log p(X|w) represents the data likelihood, J(w) is the
Fisher Information Matrix approximating the curvature of the
log-likelihood, λ controls the regularization strength on the
model weights, and γ scales the energy consumption penalty
EEstats. Algorithm 5 covers the model training process, inte-
grating real-time energy monitoring and loss-based parameter
updates. The algorithm manages energy consumption through
an energy statistics variable, EEstats, which allows for dy-
namic adjustments to training parameters. This ensures that
the model operates within predefined energy budgets. If energy
usage exceeds the threshold Emax, the learning rate is reduced
to minimize computational overhead while sustaining effective
training progress. By incorporating the Fisher Information
Matrix into the loss function, the model discourages over-
complexity, promoting efficient resource utilization without
compromising generalization. The energy statistics variable,
EEstats, is computed using real-time energy profiling, ensur-
ing dynamic adjustments during training. Both regularization
strength λ and energy penalty coefficient γ were optimized
through a grid search over a validation set. Regularization
Strength (λ): Controls the impact of the regularization term.
Smaller λ values allowed higher model capacity but increased
the risk of overfitting, whereas larger values constrained the
model, improving generalization at the cost of training accu-
racy. Energy Penalty Coefficient (γ): determines the weight
of the energy penalty. Higher γ values effectively reduced en-
ergy consumption but introduced minor accuracy degradation
(typically within 1-2% mAP). Lower values balanced accuracy
and energy use, but energy consumption was higher.

By fine-tuning λ and γ, the model achieves a balance
between energy efficiency and performance. For example,
models trained with higher γ shows significant energy savings
but reduction in accuracy. Regularization through λ improved
generalization while maintaining convergence stability. These
trade-offs shows the flexibility of the proposed framework in
adapting to different performance and resource constraints,
making it suitable for real-world edge applications. These
statistics are measured using a energy monitoring tool such

as nvml or tegrastats, providing accurate feedback on power
consumption for each training batch. The custom loss func-
tion, LOccam−Energy, integrates this information to penalize
excessive energy usage while maintaining a balance between
model complexity and fit. After training, the model can be
further optimized through quantization, as discussed in the
algorithm 4, ensuring that both training and inference are
computationally efficient on edge devices.

Algorithm 5 Variational Inference-Based Energy-Efficient
Training (VIET: Occam’s Razor-Inspired)

Require: Training dataset D, learning rate α, epochs T , batch
size b, energy budget Emax

Ensure: Trained model M , Energy Stats EE
1: Initialize variational distribution q(w)
2: Set optimizer with learning rate α
3: Define custom loss function LOccam−Energy

4: for t = 1 to T do
5: Shuffle D
6: Ltotal ← 0, EEtotal ← 0
7: for start = 0 to len(D) step b do
8: Sample weights w from q(w)
9: Compute loss LOccam−Energy(w) on batch

D[start : start+ b]
10: Backpropagate and update weights using

∇LOccam−Energy(w)
11: EEbatch ← Compute energy usage for current batch

12: Update energy statistics: EEtotal ← EEtotal +
EEbatch

13: Ltotal ← Ltotal + LOccam−Energy(w)
14: end for
15: Compute average loss Lavg = Ltotal/(len(D)/b)
16: Compute average energy consumption EEavg =

EEtotal/(len(D)/b)
17: if EEavg > Emax then
18: Update learning rate α← 0.9× α
19: end if
20: Print Lavg , EEavg

21: end for
22: return M , EE =0

IV. IMPLEMENTATION AND EVALUATION

We perform training and inference for object detection tasks
to evaluate the proposed approximation strategies using the
nuScenes and Waymo datasets. The evaluation focuses on
balancing model performance and energy efficiency through
the three strategies (approximate multipliers, approximate
convolution operations, and variational inference (using both
VIET and VIPT)) discussed in Section 3, including the Oc-
cam’s Razor-inspired loss (Eq. 7). This section covers the
test and experimental setup, including dataset preparation,
hyperparameter tuning, and validation methodology.

A. Training Method
The nuScenes and Waymo datasets include diverse class and

environmental conditions, making them suitable for assessing
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model performance and energy efficiency. For a fair compar-
ison across all models, we initialized the hyperparameters as:
learning rate of 0.001, batch size of 32, and weight decay of
0.0001 for CNN models. For ViT we configured the training
with a batch size of 32 and an initial learning rate of 1e-3,
following a linear decay to 1e-5. The model was trained for
100 epochs using the Adam optimizer. A dropout rate of 0.1
and a weight decay of 0.03 is applied to avoid overfitting.
During training, key hyperparameters such as learning rate,
batch size, and epochs are systematically tuned to ensure
model stability and convergence. The iterative training pro-
cess allows the model to progressively adapt to the dataset’s
complexity while maintaining an energy-efficient profile. Each
of the three proposed methods was implemented with specific
configurations to optimize performance and energy efficiency:

Method 1) Approximate Multipliers: In our evaluations
using the nuScenes and Waymo datasets, we integrated Ap-
proximate Multipliers into the training and inference stages
of both Convolutional Neural Networks (CNNs) and Vision
Transformers (ViTs). This method utilizes precomputed mul-
tiplication outcomes from lookup tables for 4-bit, 8-bit, and
16-bit values, which speed up computations while minimizing
energy usage. Lookup tables for 4-bit and 8-bit contain 256
and 65,536 approximately. For example, multiplying two 4-
bit numbers, such as 3 (0011) and 5 (0101), obtains the
result directly from the table, overlooking the need for real-
time computation. Similarly, 8-bit and 16-bit tables offer rapid
results for more complex multiplications, essential for faster
computation times, especially in the deeper network layers.

We adapted mixed precision in CNNs and ViTs to optimize
computational efficiency and accuracy. In CNNs, initial layers
that process basic features such as edges and textures use
lower precision (4-bit and 8-bit), while deeper layers that
integrate complex features employ 16-bit precision to preserve
detail and accuracy. For ViTs, which generally depend on self-
attention mechanisms, the Query (Q) and Key (K) matrices
use 8-bit computations to accelerate attention calculations,
whereas the Value (V) matrix uses 16-bit precision to ensure
the integrity of information processing. Intermediate calcu-
lations, such as attention scores, are performed with 4-bit
precision to maximize efficiency. Our experimental results
show that approximate multipliers can reduce computational
time by up to 38% compared to traditional methods, with
a minor reduction in accuracy, typically less than 4%. This
approach lowered energy consumption and improved speed up
in training, particularly for energy-intensive operations within
deeper network layers. Table IIIa and Table IIIb and Figure 9,
shows the balance between performance and power efficiency
using precision reduction and energy saving.

Method 2) Approx multiplication for Convolution: As
an approximation strategy, we previously proposed to ap-
proximate the convolution operation using signum functions
combined with bit-shifting techniques. This approach can be
efficiently implemented using a simple lookup table, as shown
in Table I. Based on the look-up-table approach, the revised
approximate operation can be described as follows:

zm,n ≈
kh∑
i=1

kw∑
j=1

LUT (xm+i,n+j · ŵi,j) (6)

Here LUT (x) refers to the lookup operation based on Table
I. This approach effectively combines the signum function and
bit-shifting into a single, efficient operation. Signum Lookup:
The table simplifies the signum function to a binary decision
based on the sign of the input, eliminating the need for
explicit sign checks. Integrated Bit-Shifting: The ’bits’ shift
in the table output includes the 2shift factor directly into
the lookup result. This shift value is determined during the
training process to optimize the approximation. This LUT-
based implementation reduces the computational complexity
of the convolution operation. It replaces the signum calculation
and the bit-shifting with a single table lookup, which can be
extremely efficient on most hardware architectures.

TABLE I: Look-up-table for simplified conv multiplication

Input Range Output (Signum Output Shifted)
−∞ < x < 0 −1 shifted by appropriate bits
0 ≤ x < ∞ +1 shifted by appropriate bits

Method 3) Variational Inference: As mentioned in section
3 includes two mechanisms: VIET (Variational Inference-
Based Energy-Efficient Training) and VIPT (Variational Infer-
ence with Post-Training Bit Quantization). VIET implemented
the customized loss function LOccam (Equation 7) to balance
classification and regression losses with a capacity penalty,
thereby preventing over-parameterization. This approach uti-
lized variational inference to model weight distributions and
integrated energy-aware training to optimize resource uti-
lization. Subsequently, VIPT applied 8-bit quantization post-
training, as outlined in Algorithm 4, to further reduce memory
usage and computational demands. This dual mechanism en-
sured the model achieved compression and energy efficiency
without compromising detection performance.

TABLE II: Lookup Table for Activation Outputs in VI Strategy

Normalized Input Range Probabilistic Output Distribution
−1.0 ≤ x < −0.8 N (−0.9, 0.05)
−0.8 ≤ x < −0.6 N (−0.7, 0.05)
−0.6 ≤ x < −0.4 N (−0.5, 0.05)
−0.4 ≤ x < −0.2 N (−0.3, 0.05)
−0.2 ≤ x < 0 N (−0.1, 0.05)
0 ≤ x < 0.2 N (0.1, 0.05)
0.2 ≤ x < 0.4 N (0.3, 0.05)
0.4 ≤ x < 0.6 N (0.5, 0.05)
0.6 ≤ x < 0.8 N (0.7, 0.05)
0.8 ≤ x ≤ 1.0 N (0.9, 0.05)

Table II describes the probabilistic distributions with pre-
defined ranges of normalized input values. Each range maps
to a normal distribution defined by a mean (µ) and variance
(σ2), where the mean aligns with the midpoint of the input
range. This mapping is particularly useful for models where
activations are expected to vary within known limits based on
the input they process. Using this table in the VIET and VIPT
strategy, the models can utilize these predefined distributions
to approximate neuron activations without recalculating the
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Fig. 5: ViTs model training accuracy using proposed approach

distributions for each input during runtime. This improves
processing speed and optimizes energy usage, making the
system ideal for deployment in environments with limited
power and computational resources. For the VIPT strategy,
this table guides the quantization process by suggesting which
activations need higher precision based on their variance,
thus preserving model accuracy. Utilizing this lookup table
provides an efficient approach to balancing computational
demands with the accuracy requirements of advanced neural
network architectures. During model training, the overall train-
ing loss function used for the variational inference strategies,
VIET (Variational Inference-Based Energy-Efficient Training)
and VIPT (Variational Inference with Post-Training Bit Quan-
tization) addresses classification accuracy, regression precision
and model complexity while optimizing for energy efficiency,
which complements the loss functions discussed in subsection
(variational inference). The function is described as:

LOccam(y, t, µ, log(σ2)) = α · CL(ycls, tcls) + β · RL(yreg, treg)

+λ · CapacityPenalty(µ, J(µ))
(7)

Here CL(ycls, tcls) is the classification loss (cross-entropy).
RL(yreg, treg) is the regression loss (smooth L1 loss). As
mentioned earlier, CapacityPenalty(µ, J(µ)) penalizes over-
parameterization using the Fisher Information Matrix J(µ).
The hyperparameters α, β, and λ are fine-tuned to balance
these components, ensuring that the model achieves high
accuracy while conserving energy. The following subsections
discuss quantitative results through proposed methods.

B. Training and Inference Results
We trained the DNN models and vision transformers for

a detailed analysis using methods discussed in the previous

subsection. We have trained the TinyViT and EfficientViT
models using the methods discussed in the previous subsec-
tion. Since the second strategy (approximate multiplication for
convolutions) can generally be used with the DNNs or vision
transformers majorly consisting of convolutional layers, we
interchangeably used the discussed approximation strategies
during training and inference for evaluation and analysis.
Figure 5 shows the training accuracy of two models, TinyViT
and EfficientViT, for 100 epochs under different precision
settings: Baseline (FP32), 16-bit, 8-bit, VIPT, and VIET. For
both models, the Baseline configuration consistently shows the
highest accuracy throughout the training; the 16-bit and 8-bit
precision reduction maintain or are within the baseline range,
with the 16-bit maintaining higher accuracy than the 8-bit
multiplier, showing the expected trade-off between computa-
tional efficiency and accuracy due to reduced precision. VIPT
and VIET strategies show a balanced tradeoff by optimizing
model performance and computational resources. While these
models have reduced accuracy compared to the baseline, they
have a similar accuracy trend to 8-bit and 16-bit multipliers.
This pattern suggests that these methods, involving variable
or targeted precision techniques, offer a balanced approach
for deployment on non-specialized hardware or edge devices.

Table IIIa shows precision metrics for vision models on
a subset of the nuScenes dataset. Analyzed models include
ResNet18, ResNet34, TinyViT, and EfficientViT under differ-
ent conditions such as baseline, 8-bit and 16-bit, Ax-Conv (ap-
proximate multiplication for convolution) and methods apply-
ing variational inference like VIPT, and VIET. Precision values
show transformer models (TinyViT and EfficientViT) perform
better than ResNet models in baseline settings. When precision
is reduced to 8-bit, all models show a drop in precision,
with the least impact on EfficientViT. The 16-bit precision
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TABLE III: Results for nuScenes subset using approximate multipliers and variational inference

(a) Precision results

ML Models for object detection tasks
Method ResNet18 ResNet34 TinyViT EfficientViT
Baseline 34.3 39.1 52.7 55.9

8-bit 22.7 29.5 44.1 49.9
16-bit 24.3 34.7 49.5 51.8

Ax-Conv 29.1 30.8 - -
VIPT 33.9 38.2 51.3 54.7
VIET 33.4 37.4 49.7 52.1

aAx-Conv: Variational inference on convolution operations
bVIPT: Variational inference with post-training quantization
cVIET: Variational inference with energy-aware training

(b) Model Performance

Metrics Measurements
Model Param Flops (G) MACs Latency (ms)

ResNet18 11.7 1.8 1.9 14
ResNet34 21.8 3.7 3.1 26
TinyViT-1 25.4 2.0 4.6 21
TinyViT-2 8.1 0.5 2.1 17

EfficientViT-1 40 1.5 3.4 39
EfficientViT-2 13.4 1 2.0 23
aLatency: Tested over Jetson Xavier NX
bModel-1: Trained using VIPT
cModel-2: Trained using VIET

Fig. 6: EfficientViT models (baseline, variational inference) training loss on the nuScenes dataset

provides better results than 8-bit, showing less data loss. Ax-
Conv performs better than both 8-bit and 16-bit settings by
preserving more accuracy for ResNet models; however, this
behaviour can be attributed to the heavy matrix multiplication
and convolution operation. VIPT and VIET show results close
to baseline, suggesting effectiveness in maintaining precision
during quantization and training. Table IIIb compares model
performance based on parameters, FLOPs, MACs, and latency
metrics. Model complexities vary significantly, from TinyViT-
2’s lower parameter count to EfficientViT-1’s higher count.
ResNet34 shows the highest FLOPs, whereas TinyViT-2 is the
most compute-efficient. MACs correlate with FLOPs across all
models, with TinyViT-1 having the highest MACs value. For
model inference overview, we measure the above-mentioned
metrics and latency on the Jetson Xavier NX with a range
from 14 ms for ResNet18 to 39 ms for EfficientViT-1, showing
that higher model complexities do not necessarily correspond
to increased latency, suggesting optimizations in architecture
and further possibility of hardware-aware optimization.

Figure 6 shows the loss landscapes of the EfficientViT
model under three different training strategies: baseline, Vari-
ational Inference with Post-Training Quantization (VIPT), and
Variational Inference with Energy-Aware Training (VIET).
The left plot is the baseline model, showing the loss landscape
with few variations and peaks. These loss patterns are standard
across optimized neural networks such as EfficientViT, show-
ing areas where the model parameters adjust to minimize the
loss effectively, with a balance between parameter stability
and sensitivity. The middle plot shows the model trained
using the VIPT strategy; the loss shows variation as compared

to the baseline model. The plot also shows the effect of
quantization as it stabilizes the loss landscape, though with
a slight increase in peak values. This trend shows that while
quantization helps in general stabilization, it also restricts the
model’s ability to reach the lowest possible loss values within
the quantized parameter space. The right plot shows the loss
landscape from the VIET training approach. Compared to the
baseline and VIPT, this landscape has higher peaks and loss
values, showing the challenges in achieving optimization. This
trend or pattern can be associated with the trade-offs made
for energy efficiency, where adjustments to model parameters
or operational precision are made at the runtime cost of
smooth optimization. Overall, the visualized loss landscapes in
figure 6 provide insight into how each training method affects
the model’s optimization dynamics. VIPT provides a balance
by smoothing out sharp gradients, whereas VIET introduces
complexities that prevent loss minimization. Additional strate-
gies such as adjusting regularization, exploring other energy-
efficient modifications, or adapting learning rates might be
necessary to optimize training further under VIET strategy.

Figure 7 compares the weight matrices of the EfficientViT
model under three configurations: baseline, 16-bit quantiza-
tion, and mixed precision using the first proposed approxi-
mation strategy (approximate multipliers: algorithm 3). The
attention layer shows minimal visual change despite different
precision levels, maintaining a clear diagonal pattern which
signifies self-attention, with a little granularity under reduced
precision. In the MLP layer, the transition from full to lower
precision levels shows a more pronounced pixelation, showing
the impact of the quantization process, with information loss
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Fig. 7: EfficientViT weights distribution on different precision levels and layers

increasing in mixed precision. The embedding layer has the
most differences, where lower precision results in visibly
coarser gradients, affecting the representation of spatial corre-
lations within the weights. Information loss is also higher in
mixed precision, confirming a more substantial impact on the
layer’s pattern. This comparison from full precision through
various quantization levels visually shows the impact of pre-
cision reduction on weight matrix structure across different
model components.

V. RESULTS ANALYSIS

This section analyses multiple benchmark models using
approximation strategies over nuScenes and Waymo validation
set. We also run models for a single inference on Xavier NX to
capture energy consumption, model performance and system
metrics for a valid comparison.

Energy Consumption: When considering the energy con-
sumption of these models on a Xavier NX, we must account
for the device’s power draw and the time taken to perform a
single inference. Under the assumption that the Jetson Xavier
NX draws an average power of 15 watts during inference,
which is a mid-range estimate for this device—the energy
usage for each model can be calculated by multiplying this
power with the inference time (latency). The energy consumed
E can be:

E = P × t

Where P is the power usage in watts, and t is the time in
seconds. As shown in Figure 9, the ResNet18 model trained
using the approximation consumes about 0.21 microjoules of
energy per inference with a latency of 14 milliseconds. Simi-
larly, ResNet34, with a longer latency of 26 milliseconds, uses
approximately 0.39 microjoules per inference. We observe
a difference for TinyViT models (Model-1 is trained using
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Fig. 8: Memory comparison of vision transformer models with variational inference strategies

VIPT, and Model-2 is trained using VIET). TinyViT-1, with a
21-millisecond latency, consumes around 0.315 joules, while
the more efficient TinyViT-2, with its 17-millisecond latency,
only use about 0.255 joules per inference. These results show
that even within the same family of models, architectural
differences and optimization approaches can lead to on-board
energy savings. The EfficientViT-1 shows a higher latency of
39 milliseconds, resulting in an energy consumption of about
0.585 joules per inference, higher than any of the models
discussed. EfficientViT-2, with a 23-millisecond latency, uses
about 0.345 joules, showing a similar trend as the TinyViT-2
model. It’s important to note that these energy results are based
on static power draw values recorded by nvml and tegrastats
manager of the device, while actual energy consumption would
fluctuate because of the computational and memory load at any
given moment.

Memory Footprint: Figure 8 gives an overview of the
memory footprint across different models and optimization
strategies and shows improvements in memory efficiency
through the application of VIPT (Variational Inference with
Post-Training Quantization) and VIET (Variational Inference
with Energy-Aware Training) strategies. The baseline mea-
surements show the actual memory demands of each model,
with Swin-Tiny having the highest memory requirement at
approximately 451-452 MB due to its extensive parameter and
optimizer requirements. Models like MobileViT (xx-small)
have minimal memory usage, around 24-25 MB, suitable for

Fig. 9: Energy usage comparison on Nvidia Xavier NX

environments like smartphones or edge devices with strict
memory constraints. After applying the VIPT strategy, we
observe a reduction in memory usage across all models. For
e.g., Swin-Tiny total memory usage decreases from 452 MB to
approximately 406-407 MB. This reduction is primarily driven
by optimized memory management in parameter storage and
the optimizer’s memory footprint, aligning with VIPT’s objec-
tive to enhance post-training quantization efficiency without
architectural changes. The VIET strategy, focused on energy-
aware optimizations, further reduces the memory footprint. It
achieves higher savings, as seen in Swin-Tiny, reducing the
total memory requirement to about 360.9-361.9 MB. This
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strategy optimises parameter storage and also reduces the
optimizer memory, making it the first choice for deployment in
power-sensitive or memory-constrained environments. Overall,
these results show the effectiveness of VIPT and VIET in re-
ducing the memory footprint and enhancing the deployability
of models in diverse operational contexts, particularly where
memory efficiency is important. Such optimizations facilitate
the broader adoption of advanced models like Swin-Tiny
and EfficientViT in edge devices, highlighting the practical
benefits of these advanced optimization techniques in real-
world applications.

TABLE IV: Performance comparison of models [12], [11].

Model #Para GFLOPs Latency (ms) mIoU(%)
TransFusion 27.8M 38.3 268.2 69.3
DeiT-Ti 5.7M 1.3 125.1 62.4
SSP-DeiT-Ti 4.2M 1.0 120.9 61.1
UVC-DeiT - 0.7 115.2 60.2
SPViT-DeiT-Ti 4.8M 1.0 122.4 61.3
DeiT-S 22.1M 4.6 210.5 68.6
EViT-DeiT-S 22.1M 3.0 210.8 68.1
eTPS-DeiT-S 23.5M 3.0 214.6 68.2
dTPS-DeiT-S 23.8M 3.0 223.1 68.2
MDC-DeiT-S - 2.9 208.4 67.7
ToMe-DeiT-S 22.1M 2.7 206.6 67.9
UVC-DeiT-S - 2.5 206.9 67.5
SPViT-DeiT-S 15.9M 3.3 182.4 66.2
DeiT-B 86.4M 17.5 250.1 70.4
VTP-DeiT-B 67.3M 13.8 247.6 69.8
IA-RED2-DeiT-B 86.4M 11.8 257.3 70.2
S2ViTE-DeiT-B* 56.8M 11.7 232.9 68.3
EViT-DeiT-B 86.4M 11.6 252.6 70.1
eTPS-DeiT-B 86.4M 11.4 248.7 70.7
dTPS-DeiT-B 87.0M 11.4 241.5 70.4
MDC-DeiT-B - 11.2 246.4 69.2
VTP-DeiT-B 48.0M 10.0 225.4 67.4
SPViT-DeiT-B 41.6M 8.4 222.1 66.1
Swin-Ti 28.3M 4.5 215.9 68.2
STEP-Swin-Ti 23.6M 3.5 190.4 65.5
SPViT-Swin-Ti 25.8M 3.4 192.7 65.6
Swin-S 49.6M 8.7 230.1 69.7
STEP-Swin-S 36.9M 6.3 218.2 67.3
SPViT-Swin-S 38.9M 6.1 212 .4 67.5
TinyViT 21.4M 27.0 210.2 69.5
EfficientViT 49M 9.1 170.4 70.8
MobileViT 38.9M 6.1 212.4 67.8
TinyViT-1 21.4M 35.4 188.2 65.1
EfficientViT-1 25.5M 38.6 212.5 69.0
MobileViT-1 27.9M 39.4 236.9 74.6
TinyViT-2* 16.7M 32.1 145.1 63.8
EfficientViT-2* 19.1M 33.7 155.2 64.6
MobileViT-2* 10.3M 24.4 122.9 72.9

Model Metrics: Table IV provides a detailed performance
analysis of several vision transformer models, compared with
TinyViT, EfficientViT, and MobileViT trained using VIPT and
VIET strategies on nuScenes validation set. The model adapted
for training are described by suffixes Model-1 for VIPT and
Model-2 for VIET. TinyViT-1 model has 21.4M parameters,
utilizing 35.4 GFLOPs, resulting in a latency of 188.2 ms
and a mIoU of 65.1%. This model balances processing speed
and analytical performance, which is ideal for edge devices.
EfficientViT-1 has a higher resource demand with 25.5M pa-
rameters and 38.6 GFLOPs. It also has a higher latency value
at 212.5 ms, with an mIoU of 69.0%. The model is suitable for
a design choice to enhance image understanding at the expense
of higher resource use. MobileViT-1, with 27.9M parameters

and 39.4 GFLOPs, experiences an increase in latency to 236.9
ms. However, it has a higher accuracy with an mIoU of 74.6%,
highlighting its capability to have better model performance.
Overall, these models show two approaches to balance the
trade-offs between resource demands, processing time, and
accuracy, highlighting the effectiveness of VIPT and VIET
strategies in optimizing vision transformer architectures for
specific application needs.

TABLE V: Validation Results on Waymo Dataset

3D mAP
Method Overall 0-30m 30-50m 50m-Inf

ResNet18 71.5 87.8 69.3 47.3
BevFusion 69.7 91.3 68.5 41.3

FusionFormer 75.7 91.5 74.1 51.3
PointPillar 72.1 88.5 69.9 48.0

MV3 62.9 86.3 60.0 36.9
Pillar-OD 69.8 88.5 60.5 42.6
PV-RCNN 70.3 91.9 69.2 42.2
CenterNet 76.5 92.0 74.8 53.0

CenterPoint 77.0 92.0 76.8 56.1
MobileViT-1 83.8 86.9 78.1 64.6
MobileViT-2 81.5 83.3 71.4 56.3

Efficient-ViT-1 79.2 92.4 78.2 59.7
Efficient-ViT-2 78.7 92.2 77.5 58.9

TinyViT-1 76.1 91.6 76.4 55.2
TinyVit-2 78.5 92.8 75.3 56.3

Table V shows the validation results of various benchmark
models on the Waymo dataset, focusing on the performance
metrics of 3D mean Average Precision (mAP) and 3D mean
Average Precision with Heading (mAPH), which are critical
for assessing the accuracy of 3D object detection models.
Among the traditional DNN models, PointPillar has a bench-
mark accuracy with a 72.1% overall 3D mAP, showing better
results in closer ranges (0-30m) with an 88.5% score but
dropping in performance at distances beyond 50m. MV3
shows a 62.9% overall 3D mAP, with a performance de-
cline after the 30m mark. Pillar-OD shows 69.8% overall
3D mAP, comparable close-range performance to PointPillar
but reduced effectiveness at medium and long ranges. From
our proposed method, MobileViT-1 shows higher performance
with an 83.8% overall 3D mAP, consistent accuracy across
all ranges, and the highest long-range (50m-Inf) detection at
64.6%, shows efficiency in detecting objects across varying
distances with high precision. The TinyVit-1 model trained
using VIPT shows reduction in average precision as compared
to any other models on the waymo validation set.

Edge Inference: Table VI shows the inference speedup and
energy savings for various Vision Transformer models using
batch size. The first row is the baseline (1.00×) and the
following next rows are the different quantization configura-
tions: 8/8/4, 4/8/4, and 8/4/4, which are the precision levels
for weights, activations, and attention, respectively. TinyViT-1
shows speedup of up to 1.92× and energy savings of up to
1.88× compared to the baseline. TinyViT-2 trained using VIET
shows higher speedups and energy efficiencies, reaching up
to 1.96× and 1.93×, respectively. For the MobileViT models
the speed up and energy savings are minimal on the tested
devices. The key takeaway from the test and evaluation can
be summarized as:
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TABLE VI: Results for Inference Speedup and Energy Saving on ViT models

Speedup (×) Energy Saving (×)
TinyViT-1 TinyViT-2 MobileViT-1 MobileViT-2 TinyViT-1 TinyViT-2 MobileViT-1 MobileViT-2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.92 1.96 1.80 1.83 1.88 1.93 1.75 1.80
1.62 1.53 1.43 1.39 1.51 1.47 1.38 1.32

• Optimized Balance: The approximation methods like 8-
bit multipliers and variational inference effectively bal-
ance model accuracy with significant improvements in
energy efficiency, showcasing only a minimal drop in
accuracy for substantial gains in GFlops and latency.

• Adaptive Techniques for Diverse Hardware: Tested across
various architectures, the approximation techniques offer
adaptable solutions tailored to match specific hardware
capabilities, enhancing both the scalability and practical-
ity of AI models on devices ranging from CPUs to GPUs.

• Practical Implementation for Edge AI: By integrating
these techniques into distributed edge AI frameworks,
the research advances the deployment of AI models that
are energy-efficient and capable of real-world application,
setting a foundation for future AI developments in edge
computing and cyber-physical systems.

VI. CONCLUSION

This paper explores the training and on-device deployment
of data and memory-intensive AI models used in perception
tasks. The focus is on balancing model performance metrics
against energy consumption using optimized software approx-
imation techniques, such as 8-bit multipliers and variational
inference. Our evaluations show that these approximation
methods balance model accuracy and energy efficiency. The
different architectures used for training and testing provide
valuable insights into choosing an appropriate approximation
scheme for a balanced trade-off. While comparing the model
performance, we observe an improved GFlops and latency
gain of 5x while reducing accuracy with a margin of 3-4%
for the transformer models. The fundamentals from these ap-
proximation schemes can be incorporated within a distributed
edge AI framework to match the device resources against
the AI models for on-device training and inference. Adopting
such techniques is essential for sustainable and feasible AI
deployment as the AI landscape evolves towards edge com-
puting and cyber-physical systems. By focusing on the trade-
offs involved in training and inference on edge devices, this
research contributes to the ongoing efforts to make AI models
more accessible and practical in real-world applications.
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