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Abstract—The System-on-Chip revolution has not impacted
the field of safety-critical systems as widely as the rest of the
electronics market. However, it is nowadays acknowledged that
sharing resources between applications of different criticality
is a key leverage to reduce costs and improve performance.
Certification of systems hosting such mixed-criticality applica-
tion sets requires sufficient isolation between criticality levels,
i.e. a low-critical task must not cause a fault in a high-critical
task, especially a temporal fault, which is likely when several
co-running tasks compete for a shared resource. This digest
describes implementation schemes which can be included, at
both hardware and software levels, in mixed-critical systems
to enforce such isolation.
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I. INTRODUCTION

A. Why Mixed-Criticality?

Mixed-Criticality results from the application of the global
trend in electronics, consisting in integrating more and more
components onto a single chip, in the domain of safety-
critical applications. Until recently, isolation of tasks re-
quired by certification authorities implied that safety-critical
tasks were executed on dedicated hardware. Therefore, real-
time hardware was often under-utilized due to pessimistic
Worst-case Execution Time (WCET) analysis. Since the
average execution time is usually much shorter than the
WCET, resources had to be reserved much longer than what
was actually needed in most cases for the execution of
safety-critical tasks.

It is nowadays acknowledged that safety-critical applica-
tions should be able to run on the same platform as non-
critical applications, complete isolation being deemed too
costly with the spread of systems-on-chip. This is regarded
as a way to improve resource utilization, by running low
or non-critical tasks on slack time made available when a
high-critical task terminate before its WCET, which is very
common in practice. However, safety-critical and best-effort
applications have somewhat conflicting requirements, hence
the numerous challenges arising.
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Mixed-criticality is an active research field, as reflected
in the review by Burns and Davis [1]. Research can be
pigeonholed in two categories: implementation schemes to
enable safe and efficient sharing of resources for a part, and
scheduling policies maximizing processor utilization while
maintaining schedulability at all Criticality Levels (CL) for
a second part.

The rest of this digest focuses on the former and is
organized as follows. The next two paragraphs provide some
explanation about key concepts of Mixed-Criticality Systems
(MCS). Section II describes several temporal partitioning
mechanisms, making use of mixed-criticality to go beyond
static partitioning, thus allowing for efficient resource usage
while guaranteeing service latency bounds for critical tasks.
Sections III and IV describe communication media arbitra-
tion policies aimed at guaranteeing communication latencies
for critical traffic, while sacrificing neither resource utiliza-
tion nor Quality of Service (QoS) for best-effort traffic.
Section V gives a couple of examples of how those elements
can be integrated into system-wide architectures well-suited
for mixed-criticality. Section VI briefly concludes this paper
on open problems and topics of mixed-criticality which are
not covered in this paper. All mentioned mechanisms are
gathered in figure 1.

B. Fundamental concepts

1) Isolation: Certification requires that neither temporal
nor logical correctness of a task is jeopardized by another
task. While tasks of the same CL can be certified together
as a single-criticality subsystem, it is costly and useless to
certify the whole system at the higher level of insurance.
In fact, as non-critical applications are often developed
independently from safety-critical ones, it is well possible
that the safety-critical applications must be certified without
any knowledge about the behavior of non-critical ones.
Therefore, task sets of different criticality must be isolated
from each other. Isolation can be achieved in two ways,
either spatial or temporal partitioning. In spatial partitioning,
applications run on separate hardware. In temporal partition-
ing, applications run on the same hardware in separate time
windows. Full spatial partitioning is deemed too costly to
be a viable solution at the system scale, however, it is still



Figure 1. Summary of mechanisms and architectural blocks presented in this paper.

relevant for some elements, like memories, or Networks-
on-Chip (NoC) input buffers (see section IV-A). Temporal
partitioning enables the sharing of resources, but that is
not yet sufficient to achieve good hardware utilization. As
already mentioned, WCET are pessimistic bounds which
almost never occur in practice, especially for safety-critical
applications. Therefore, if a resource is statically reserved
for a given application during its entire WCET, this resource
will actually not be utilized most of the time. Some dynamic
scheme is required to make the partitioning more flexible.
Examples of such a scheme are described in section II.

2) Interference: A major challenge in multicore MCS
is dealing with interference. Interference occur when an
application attempts to access an already in use resource. In
that case, either the application must wait for the resource
to be available, or the former activity of the resource will
be suspended, so that the new application can preempt the
resource. Whether preemption is allowed or not, and under
which circumstances, depends on the arbitration policy of
the resource controller. However, in both cases an applica-
tion is delayed. Interference is not necessarily a problem, but
it must be predictably bounded so that WCET taking it into
acount can be derived. Next to that, reducing interference is a
key leverage to improve performance of multicore platforms.
A list of potential interference sources was established by
Kotaba et al. in [3], alongside with some possible solutions
to limit them.

The first category of interference sources is interconnects.
Predictable arbitration policies are required to derive upper
latency bounds taking interference into account. Advanced
arbiters make use of criticality and priority to obtain guaran-
teed latencies while sacrificing neither average performance

nor resource utilization (see sections III and IV). However,
advanced arbiters need to be implemented in hardware
and are often not available on Commercial Off-The-Shelf
(COTS) components. An alternate way is to use rate limiters
to prevent a master to flood the bus or NoC, like in the
IDAMC (see section V-A). Note that those two approaches
are complementary and do not exclude each other. The other
major sources of interference are memories and especially
shared caches. Cutting interference resulting from memory
devices is an active research topic, but is outside the scope
of this digest focused on communication. Next to those,
there are several minor sources of interference, including
shared co-processors, interrupt controllers, or I/O devices.
Such interference generally has less significant effects, as
those resources are relatively often idle in most systems
compared to interconnects and memories, and therefore is
not as widely studied.

II. TEMPORAL PARTITIONING MECHANISMS

A. Introduction : Full-Scale Mode Switches Limitations

The most basic mixed-criticality specific partitioning
mechanism is the so-called criticality mode switch, as de-
scribed in [2]. Each application in the system is assigned a
Criticality Level (CL), and the system can run in different
criticality modes. There are as many criticality modes as
CL. When the system works normally, it stays in the lowest
criticality mode and tasks of all criticality are scheduled.
When the system encounters a rare event (e.g. overheat)
which degrades its performance, it switches to a higher
criticality mode. In criticality mode l, tasks of criticality
higher than l are still executed on schedule, but tasks of
criticality lower than l are dropped. Depending on the model,



tasks of criticality l are either executed on schedule or on
slack time, when no task of higher criticality is running.

Triggering the mode switch is done through monitoring
execution times and assigning time requirements which
depend on the criticality mode. Tasks WCET are considered
to depend on the criticality mode. Tasks deadlines, periods
(for periodic tasks) or minimum inter-arrival times (for
sporadic tasks), can also be considered to depend on the
criticality mode, but this is not the case in all models. In a
higher criticality mode, the WCET are longer and the periods
are shorter. The deadlines can be either shorter of longer at
higher criticality mode, depending on the model. Assuming
the system is currently in criticality mode l, if a task of
criticality higher than l takes longer than its l-criticality
WCET, the system shall switch to a higher-criticality mode,
thus dropping low-critical tasks to ensure that high-critical
tasks will meet their deadlines.

With such a mode switch, one could imagine certifying l-
criticality functions only in the restricted case of a system in
criticality mode l. This tackles the need to certify the whole
system at the highest level of insurance. However, it does
not come without several difficulties. First, different WCET
values for safety-critical functions may not necessarily be
acceptable, especially considering that the gap between
WCET at different CL has to be sufficient to prevent the
task, which triggered the mode switch, from missing its
deadline. This is not clear when one takes the overhead,
induced by a mode switch, into account. Second, when the
system features 4 or 5 CL (like in AUTOSAR and ARINC
standards, respectively for automotive and avionics fields),
dropping tasks of CL 3 to prevent a CL 4 deadline miss
is not an acceptable solution. As a matter of fact, low-
criticality tasks are still critical, and must guarantee some
service in any situation. A possible answer is proposed by
Giannopoulou et al. [23] (see section V-B), in the form of a
degraded, minimal insurance level that low-criticality tasks
must maintain in all criticality modes. Third, the return of
the system to a normal execution mode after a criticality
mode switch is seldom addressed [1].

Though the mode switch model is widely assumed, espe-
cially in the field of mixed-criticality scheduling, it is not
suitable for actual implementation of certified systems, or
at least not sufficient by itself. Therefore, more advanced
mechanisms were proposed, based on stalling or delaying
low-criticality tasks rather than dropping them completely.
Those mechanisms tolerate interference up to the point
where it might cause a high-criticality deadline miss.

B. Memory Access Budgeting for Non-Critical Tasks

This approach was originally proposed by Yun et al. [4],
later extended by Flodin et al. [5], and reused by Lampka
and Lackorzynski [6]. The principle is to assign a memory
access budget to non-critical tasks, to monitor the number of
cache misses of those tasks, and to suspend their execution

when they exceed their memory access budget. This way,
interference resulting from both the memory bus and the
memory controller can be bounded. However, response
latency is only considered as a whole, without distinction
between communication latency and memory read latency.

1) Original approach: The case studied in [4] is restricted
to a single critical core for critical tasks, and an arbitrary
number of non-critical interfering cores. For each critical
task, its WCET in isolation and its worst-case number of
cache misses are assumed to be known, as well as the worst-
case latency between the issue of a request and its comple-
tion. The memory access budget granted to non-critical tasks
is periodically replenished to a constant value. The authors
propose an algorithm to compute the highest budget which
can be granted while ensuring that all critical tasks will meet
their deadlines, given the budget replenishment period.

This approach was implemented by the authors on a dual
core platform with a Linux kernel. They found their method
to yield rather conservative utilization. As a matter of fact,
they consider that each memory request from the critical
core will take its worst-case time to be responded to, i.e.
that every critical memory request will be delayed due to
interference from a non-critical one. This pessimistic as-
sumption entails a budget lower than what would be needed
for efficient resource utilization. They conclude that their
method would probably not scale well w.r.t. an increased
number of cores, because the pessimism involved would
make the utilization of additional resources low.

2) Extended approach: To improve on the previous
mechanism, the authors of [5] abandoned the fixed periodic-
ity of the budget allocator to synchronize budget shifts with
arrivals and terminations of critical tasks, what they call hard
real-time co-runner specific budgeting. This way, the avail-
able budget for non-critical tasks depends on which critical
tasks are currently running. Furthermore, if no critical task
is running, this method allows slack transfer from critical
tasks to non-critical ones. They also extended their method
to support any number of critical cores instead of a single
one. They assume a given budget for each critical task. The
mechanism is based on budget queues, one queue for each
critical core. The budget at the head of a queue corresponds
to the currently running critical task. If no critical task is
running, the budget is shifted to an unlimited one. The
control mechanism stalls non-critical cores when one of the
queue heads exposes a depleted budget.

The authors have implemented their mechanism on a 6-
core platform, using a microkernel and interrupts to transmit
the budget updates from critical cores to non-critical ones.
They show a significant improvement over the static period
mechanism, and claim that the induced overheads are neg-
ligible if the hardware platform features suitable interrupts.

A way to compute maximum budgets for this scheme was
proposed by Lampka and Lackorzynski in [6]. Assuming a
periodic time-triggered scheduling for the critical task set,



they evaluated the worst-case number of memory requests
from critical tasks per scheduling time slot. Given the worst-
case memory access latency (including communication de-
lays), the minimal number of requests which can always
be served during a time slot is easy to calculate. The
budget for non-critical cores is then obtained as the minimal
number of serviceable requests minus the maximal number
of requests from the critical cores. These budgets are safe
but pessimistic, especially because the response time of the
memory access is always assumed to be the worst-case
one, which was already a shortcoming in [4]. Note that the
assumption of a static time-triggered scheduling somewhat
shifts the scheme back towards the original one, in which
budget replenishment were periodic, but the possibility of
slack transfer when a critical task terminates early remains
an important improvement.

3) Conclusion - Pros and Cons: The main advantages of
this mechanism are the low overheads and its implementabil-
ity on COTS platforms, provided they feature performance
counters (for cache miss monitoring) and inter-processor
interrupts. A major limitation is its inapplicability to systems
with more than 2 CL. Besides, an algorithm for deriving tight
budgets compatible with flexible scheduling policies is not
yet available, and deriving case-by-case budgets for specific
applications remains a difficult problem. The distinction be-
tween critical cores and non-critical cores could be dropped
if needed, at the cost of higher overheads and simplicity
loss.

C. Execution Time Monitoring of Critical Tasks

This method was developed by Kritikakou et al. in [7],
[8], [9]. The idea is to monitor the execution times of critical
tasks at given observation points, by inserting a routine in
the code. When interference from non-critical tasks might
cause a high-criticality deadline miss, non-critical tasks are
suspended until the critical task termination. The eventuality
of a deadline miss is determined by the Remaining WCET
(RWCET) at the observation point. The authors distinguish
the RWCET in isolation, computed assuming that only
critical tasks may run, from the total RWCET, which is
the sum of the former plus the worst-case delay due to
interference from non-critical tasks.

The authors defined an Extended Control Flow Graph
(ECFG) grammar to model and analyze critical tasks, and a
low overhead algorithm to compute the RWCET at run-time
based on exploiting pre-computed data from static analysis.
[7] defines the ECFG grammar and presents a formal proof
that a single critical task will always meet its deadline, for
any co-running task set, provided that its WCET in isolation
is lower than its deadline. [8] extends the mechanism to an
arbitrary number of critical tasks and describes a software
implementation on a COTS component. [9] improves on the
previous scheme, using dynamic setting of the observation
points to reduce the run-time monitoring overhead.

1) Safety condition: At a given observation point, the
condition under which it is safe to continue normal execution
(i.e. tasks of all CL enabled) is called the safety condition.
It is valid if the sum of the current execution time, plus
the RWCET in isolation, plus the worst-case additional
interference delay until next observation point, plus the
monitoring and mode switch overheads, is lower than the
task deadline.

This condition guarantees that in case of interference
peak, there will be enough time remaining by next obser-
vation point to switch mode and suspend non-critical tasks,
so that the monitored critical task is guaranteed to meet its
deadline. Interference from non-critical tasks is only taken
into account for the WCET between the current observation
points and the next one, since it will be possible to switch
mode at the next observation point if needed, to prevent
interference afterward.

2) Dynamically computing next observation point: A
question to answer when implementing this scheme is the
granularity of the observation points. On the one hand,
if there are too few of them, the WCET between two
points will be consequently larger than the average execution
time, which makes the safety condition pessimistic and
therefore yields a high number of criticality mode switches.
On the other hand, many observation points cause large
overheads. In order to mitigate this trade-off, the authors
proposed to compute at run-time the furthest observation
point by which the safety condition will hold, and to disable
intermediate observation points. This way, it is possible to
increase the granularity of observation points while limiting
the subsequent overheads.

3) Run-time Control Mechanism: At each observation
point of each critical task, the safety condition is checked.
If the system can run normally until next observation point
without any chance that the critical task misses its deadline,
nothing happens. Otherwise, a request is send to a central-
ized controller to suspend non-critical tasks. This controller
works in two slightly different ways, depending on whether
the observation points are statically or dynamically defined.

With static observation points, the critical task which sent
the suspension request will also send a notification to the
controller when it terminates. This controller increments a
counter by each request it receives, and decrements it when
it receives a task termination message. Non-critical tasks
execution is enabled only when the counter is zero.

With dynamic observation points, the controller stalls non-
critical tasks when requested to do so, and re-enables them
only when no critical task is running (idle state). This is
because with dynamic observation points, once the non-
critical tasks are disabled, all observation points are also
disabled. Therefore, only one suspension request can be sent
to the controller at a time, and there is no way to know
whether it is safe to re-enable non-critical tasks when the
critical task which originally issued the suspension request



has terminated, because other critical tasks might need to
execute in isolation as well.

4) Conclusion - Pros and Cons: Except the con-
troller which gathers suspension requests, which is very
lightweight, this method consists only in instrumentation
of the high-critical code. This makes it easy to implement
on COTS platforms, but also entails rather large overheads.
Besides, it only supports dual-criticality systems. Its main
advantage is that monitoring the actual execution time in-
duces less conservative utilization than monitoring resource
access requests like in the previous scheme. The worst-case
interference is assumed only between two observation points
at a time, and if a critical task has already started to execute
smoothly, the actual execution time of its already executed
part, which is likely much shorter than the WCET, will be
used to determine the need for mode switching.

D. Workload Arrival Monitoring

This method is specifically tailored for event-triggered
systems. It was originally developed for hard real-time
systems in numerous papers including [10], then extended
to MCS by Neukirchner et al. [11], [12]. The idea is to
monitor the activation of tasks, in order to detect when an
incoming task might cause a deadline miss of an already
running task or might not meet its own deadline (those two
cases are not necessarily discriminable). If the incoming task
is of low criticality, it can be dropped or delayed, and if it is
of high-criticality, already running low-criticality tasks can
be temporarily stalled. The reaction to take is not developed
by the authors. This method is primarily intended to monitor
the activity of CPU, but can in principle be used with diverse
kind of resources.

1) System and Event Models: This model was described
by Wandeler et al. [10]. Tasks are activated by events; each
of those events has a given type, which can be mapped to
the WCET of the requested task. The metric which serves
as reference is the Workload Arrival Function (WAF). It
denotes the requested workload, in terms of WCET, occur-
ring per time interval. On each task activation, the monitor
computes the workload based on the newly incoming event
and the events associated to tasks which may still be running.
An exception can then be triggered if the latest incoming
request might cause the WAF to exceed the serviceable
workload. The authors of [11] show how to make the
monitoring overhead constant w.r.t. the number of events
in terms of computation time and of memory space, using
a safe approximation of the exact WAF.

2) Group Monitoring Scheme: In the hard real-time ver-
sion of the method, all task activations are individually mon-
itored. This enforces interference bounds between all tasks
without consideration of criticality levels, whereas it is only
necessary to do so between tasks of different CL. Besides,
monitoring the activations of tasks independently from each
other prevents from using any information about correlation

between tasks, therefore the assumed scenario is always the
worst-case interference. The method described in [11] uses
monitoring of task group activations. By grouping together
tasks of the same criticality, the redundant isolation between
those is dropped. By grouping together tasks correlated with
each other, it is possible to take correlation into account to
make the estimation of the worst-case requested workload
more accurate and less pessimistic. A group of tasks is
regarded as one virtual task, which fires upon firing of any
task the group contains. What differs between activations
resulting from one task or another is the ensuing event type.
There are as many event types as different WCET of tasks
within the group.

The authors evaluated the benefits of their method against
individual tasks monitoring. They showed that group mon-
itoring yields a significantly lower rate of triggered excep-
tions, and this effect increase with the number of tasks
per group. This is caused by the possibility given to some
tasks to exceed their WAF budget as long as other tasks in
the same group can compensate for it by not using their
whole budget. The second effect is the reduction of the
worst-case interference when tasks of a group are correlated.
Correlation indicates some kind of activation pattern, which
can be used to lower the WAF estimate (compared to
individual task analysis) without compromising the ability
of the system to execute those tasks.

An example of computing WAF upper bounds from an
event stream model is proposed in [10]. The same method
could be applied to both high- and low-critical tasks, but in
order to reduce the analysis effort on the latter, the authors
propose to use as maximum allowed WAF value the highest
WAF observed in test or in simulation. This way, the highest
measured low-critical WAF becomes the actual, accurate,
worst-case WAF, as any overrun of this WAF bound would
cause tasks to be dropped or delayed.

3) Combining Several Monitors: So far, only one monitor
was considered. This is extended in [12] to several mon-
itors for different groups of tasks. Rather than assigning
independent WAF to each monitor, this method is based
on guarantee interface tuples. Those are vectors containing
WAF upper bounds for each monitor, so that timeliness can
be guaranteed. It is likely that several tuples exists which are
safe, as more activations in a task group can be compensated
by fewer in another. Interface tuples can be obtained by
computing highest WAF bound for a monitor (i.e. interface
tuple element) while other elements are kept constant and
recursively doing so for all elements in the tuple. Varying
the order in which individual WAF bounds are maximized,
a pareto set of interface tuples is obtained.

Each monitor has an active interface tuple, which corre-
sponds to the one with lowest WAF for this monitor, and
which has not been invalidated. When a monitor notices
a WAF overrun comparing to its active interface tuple, this
tuple gets invalidated for every monitor in the system, and all



monitors whose active tuple was the invalidated one switch
to another tuple. As long as each monitor has at least one
active tuple, all tasks will meet their deadlines. When a
monitor has no tuple left to switch to, newly incoming tasks
through this monitor might cause a deadline miss, but tasks
issued through another monitor might still be executed safely
if this monitor still has an active tuple. Interface tuples can
be safely set as valid anew when the system is idle.

4) Conclusion - Pros and Cons: This method is inter-
mediate in terms of pessimism between the two previous
ones. No information about the actual execution time is used
contrary to the execution time monitoring scheme, so only
worst-case data is used. However, correlation between tasks
activations within groups and sets of pareto interface tuples
between monitors enables more accurate assumptions about
interference profiles than a global budgeting. Besides, even
if event-triggered tasks are often supported, they are usually
treated as periodic tasks with their period equal to their
minimal inter-arrival time, which leads to overallocation
of resources when the event doesn’t occur that often, and
generally causes a mode switch if the event occurs too soon.
This tailored method captures the actual properties of event-
triggered tasks.

III. MIXED-CRITICALITY BUS ARBITERS

Communication protocols for mixed-criticality must abide
by some specific requirements, and therefore some specific
metrics should be used to evaluate their performance. As
discussed by Napier et al. [13], the lack of well established
performance metrics and test cases led to difficult compari-
son of different protocols. If some metrics are often used
(e.g. maximal measured latency for non-critical message
delivery under various critical loads), the test cases are
not necessarily comparable. Besides, the schemes are often
evaluated based on the sole metric they were designed to im-
prove, without consideration of the potential decreases they
might induce in other performance metrics. The key point in
all protocols is a guaranteed worst-case latency for critical
traffic. This being given, Napier et al. identified 3 important
properties. The first one is resource utilization. This is linked
to the ability to derive sufficiently tight worst-case latencies
for critical traffic, i.e. not over-allocating resources. This can
also be analyzed in terms of schedulability, i.e. the amount
of (critical) task sets which can be scheduled on fixed
hardware resource, as this depends directly on tightening
latency bounds. The second one is Quality of Service (QoS)
for non-critical traffic. This consists in reducing the average
latency of non-critical traffic. The third one is scalability
w.r.t. number of bus masters or NoC nodes. It is not
independent from the two others, as, especially for NoC,
the gain achieved by a protocol over another might strongly
depend on the NoC size and load.

A summary of all described communication protocols is
given in table I. Most of them feature only 2 CL, nevertheless

it is not necessarily a big shortcoming. Even if more CL are
required at the system level, it can be sufficient that the
interconnection media allow for two QoS classes, namely
guaranteed latency traffic for high-criticality tasks and best-
effort traffic for non and low-criticality tasks.

A. TDMA-based Bus Arbiters

1) Limitations of the TDMA protocol: The simplest fully
predictable bus arbitration scheme is the so-called Time-
Division Multiple Access (TDMA) protocol. With a TDMA
arbiter, each bus master is assigned time slots, and data
transfer is allowed during those time slots only. The assigned
time slots sequence is statically defined and repeats itself
periodically. The two major limitations of TDMA are its lack
of flexibility, and that it often yields low bus utilization, since
a slot will be unused if the master to which it is assigned has
no data to transmit. Optimization of the assignation sequence
to minimize the execution time of a given communication
task set has been addressed by Rosén et al. [14]. Their
minimization algorithm consists of two nested optimization
loops. The inner one is aimed at finding the slots order
which minimizes the total worst-case latencies of a given
communication task set (that is the time needed to transmit
a given set of messages, with specified sizes, arrival time
and dependencies), given a slot size for each master. The
outer loop minimizes the same cost function, but modifies
the slots sizes. The authors also considered the special case
of equal slot sizes for all masters. Since the optimization
assumes a given communication task set, the result is only
optimal for the static schedule of computation tasks issuing
that particular communication task set. Besides, no notion
of criticality is used. However, this can still be useful for
assigning slots to high-criticality tasks within more complex
protocols built on top of TDMA, like the one described in
the next section.

2) Extending the TDMA protocol: This arbiter was pro-
posed by Cilku et al. [15]. The CPU are virtualized through
a hypervisor, and virtual CPU are separated into critical and
non-critical ones. The arbitration is done between virtual
CPU rather than between tasks. This allows to reduce
overheads compared to a task-based arbitration, without loss
of flexibility. The arbiter is layered. The first layer is TDMA
and is used for arbitration between critical cores. The second
layer is Round Robin (RR) and is used for non-critical cores.
The Round Robin policy grants the bus control to each
master in turn. The master releases his control only when it
has no data left to transmit, and the control is then passed
on to the next master. This scheme yields maximal bus
utilization, but is not predictable, especially if the behavior
of some non-critical masters is not accurately known, which
is common in practice. Besides, nothing prevents a master
from monopolizing the bus, causing starvation of others.

In this scheme, the RR arbiter can be seen as a bus master,
which is assigned time slots in the TDMA sequence. Critical



virtual cores have their own TDMA slots, while non-critical
virtual cores have none and thus can only access the bus
through the RR arbiter. The slots assigned to non-critical
cores are all consecutive, and followed by an empty slot
during which none of the masters is allowed to transmit.
This makes sure that even in case of an error in a non-
critical task, the bus will be ready to be used by the critical
core as soon as it is granted control.

The authors tested their arbiter on a Field Programmable
Gate Array (FPGA) board with a synthetic task executed
concurrently on 4 cores accessing a shared memory through
a bus. They measured the computation time needed to
complete the task on each core, for three different bus
arbiters. They claim that their dual-layer arbiter yields only
a 20% increase in computation time compared to bare RR
arbitration for running the task on non-critical cores, and
divides the computation time by more than 3 compared to
pure TDMA. However, they do not mention the way they
assigned TDMA slots to different cores, while this was
shown to be of utmost importance by Rosén et al. [14].
Besides, the synthetic task set they used is the same on all
cores, critical and non-critical ones, and critical and non-
critical hardware are also identical. It would be interesting
to evaluate this scheme on a more heterogeneous task set.

B. Criticality and Requirements Aware Bus Arbiter

This arbiter, abridged CArb, was proposed by Hassan and
Patel in [16].

1) System Model: The target system is a multicore plat-
form, with one task per core (this condition serves the
sole purpose of discarding any side complexities due to the
scheduling algorithm, as the focus is set on the bus arbiter).
An arbitrary number of criticality levels is supported. Tasks
are grouped into criticality classes based on their CL.
The system features as many criticality modes as CL. In
criticality mode l, tasks of criticality c ≤ l are executed
on slack time and prioritized by descending criticality, and
tasks of criticality c > l are executed on schedule. This is
true for both computation and communication resources.

2) Weighted Harmonic Round Robin Arbiter: CArb is
built on an improved RR arbiter, called weighted harmonic
RR. This differs from the basic RR arbiter in two ways.
First, starvation is prevented by granting the bus control
for one request only. If a master has several requests to
transmit, it must wait until it is granted control again. The
window in which the master has control of the bus is called
a slot, which is actually very similar to TDMA slot, but
defined in the domain of transmission requests rather than
time. Second, the slots are not equally distributed between
masters. Some masters get more slots than others. The order
in which slots are allocated to masters is designed to enforce
evenly distributed slots. For example, if a master has two
slots per period, the number of slots between its first and

second slots of a given period is the same as between its
second slot of this period and its first slot of the next period.

3) CArb: CArb is a two-level arbiter, of which both levels
are based on weighted harmonic RR. The first level consists
in inter-class arbitration, that is arbitration is first performed
between criticality classes. Once a criticality class has been
elected, a second intra-class arbitration occurs between all
the tasks comprised in this criticality class. The scheduling
scheme needs 3 sets of parameters: the class weights, i.e.
the number of class slots allocated to each criticality class
per period; the window sizes, i.e. the number of task slots
in a class slot (this can be set independently for each class,
but must be the same in all slots of a given class); the task
weights, i.e. the number of task slots allocated to each task
per period. It is worth noting that the period of the inter-
class arbiter is not the same as the one of the intra-class
arbiter, and furthermore that different criticality classes can
feature different values of their intra-class arbiters periods.

Finding values for those parameters is addressed by the
authors in the form of a proposed optimization problem for-
mulation, which can be solved using traditional optimization
algorithms. They do not seek to optimize the transmission
time of a given message set, but rather the bus utilization,
expressed by the length of the arbiter period, i.e. the number
of slots in the sequence which is periodically repeated.

4) Making CArb Dynamic: If the system runs on criti-
cality mode l, and a task of criticality c > l exceeds its
l-criticality WCET, the basic scheme for MCS would be
to switch the full system to criticality mode l + 1. The
authors propose to perform a mode switch at the arbiter
level only rather than a full-scale mode switch. The idea is
based on the decomposition of the total WCET as the sum
of the WCET in isolation plus the worst-case interference
delay. When the WCET in isolation is exceeded by a small
amount, the arbiter reassigns the slots of criticality lower
than c to higher criticality tasks, and the tasks of lower
criticality can access the bus on slack time only. When the
WCET increase is too large to be compensated solely by
reducing interference from the bus, mechanisms like the
ones described in section II can be applied and a full-scale
mode switch be performed if necessary. Since the arbiter slot
sequences for each criticality mode are statically defined, the
reduction of the worst-case response time of the bus that can
be achieved is known, so setting the limit at which an arbiter
mode switch is not sufficient is easy. The only additional
need for this scheme compared to the previously described
static CArb is a scheduling table for each criticality mode
of the arbiter instead of a global one.

It is further possible to reassign only part of the time
slots, and not all of them, based on how large the WCET
overrun is. The cost is an additional scheduling table for each
intermediate WCET overrun limit. This improves the QoS
of low-criticality tasks, but does not yield any improvements
w.r.t. avoiding full-scale mode switches.



With such an arbiter mode switch, the overheads are
considerably lower than with a full-scale mode switch, and
what is more, the low-criticality tasks are not dropped, even
if they are no longer guaranteed to meet their deadlines. If
execution times return to lower values, the arbiter will also
return to its normal scheduling table at the beginning of the
next period. The authors tested their arbiter in simulation,
based on an avionics use case and synthetic task sets. They
showed the effectiveness of their arbiter at enforcing worst-
case latencies and at postponing full-scale mode switches.

IV. MIXED-CRITICALITY NOC PROTOCOLS

There are two main categories of NoC protocols : Worm-
hole and Store-And-Forward (SAF). The former is more
widely used, as it requires smaller buffers than SAF. Two
mixed-criticality wormhole-based protocols were proposed
by Burns, Harbin and Indrusiak [17], [18] on the one hand
and Tobuschat and Ernst [19] on the other hand. A protocol
combining wormhole for low-criticality messages and SAF
for high-criticality ones was proposed by Dridi et al in
[20]. An orthogonal approach based on adaptive routing was
developed by Kostrzewa et al. [21].

A. Wormhole Protocol for Mixed-Criticality (WPMC)

WPMC was originally proposed by Burns et al. [17], and
then improved into WPMC-FLOOD by Indrusiak et al. [18].

1) Generic Wormhole NoC Protocols: In a wormhole
NoC, messages are divided into fixed-size flits. They include
a header flit, which contains the number of flits in the
message and its destination. Each router has a number of
input buffers to store received flits, and those buffers are
associated to Virtual Channels (VC). All flits of a message
shall use the same VC, and the VC index shall be encoded
in each flit. The routing policy is deterministic, so that all
flits of a message follow the same path. The router knows
to which message an incoming flit belongs based on the VC
which transmitted the message and the size of the message
which was encoded in the header flit. A priority preemptive
arbitration is often used for the output stage, based on the VC
indexes, e.g. a VC with smaller index has higher priority. If
preemption is available at message level only, it is no longer
needed to encode the VC index in each flit, but a flit-level
preemption is essential for MCS, if non-critical message are
not ensured to be sufficiently short. Within a VC, simple
arbitration such as FIFO (as in WPMC) or RR (as in the
protocol defined in [19]) can be used between messages.

A flow control is furthermore needed, to ensure that no
data can be transmitted through a VC when the correspond-
ing buffer at the input of the downstream router is full. For
WPMC, the authors consider a credit-based mechanism [17].
For the protocol proposed in [19], the authors assume no
back pressure, i.e. buffers of sufficient length to handle any
potential load.

2) Introducing Criticality Levels - WPMC: Criticality
is introduced in two ways. First, a criticality mode is
implemented at the link level. That is, each link can be
independently set to a criticality mode. When a link is in
high-criticality mode, it can only transmit high-criticality
messages. At startup, all links are in low-criticality mode.
When a router receives a flit from a link in high-criticality
mode, it switches all its output links to high-criticality
mode. This way, high-criticality mode propagates through
the network alongside with high-criticality flits. Besides,
the network interfaces are responsible to check whether the
incoming messages are within their timing specifications or
not. If some message is not, the network interface can drop
the message or trigger a mode switch at all the output links
of the local router. Mode switches are always initiated by a
network interface.

This takes us to the second way criticality is intro-
duced. Messages (and VCs) are divided into high-criticality
and low-criticality ones. Three parameters are considered
criticality-dependent, and thus have different values depend-
ing on the criticality mode of the NoC: the period or
minimum inter-arrival time, the maximum network latency
without interference, and the maximum additional delay
due to interference. The period is shorter at higher CL,
the latencies are larger at higher CL. When a network
interface notices a high-criticality message that is not within
its low-criticality specifications, it triggers the mode switch,
which will then be propagated by the message. When a
low-criticality message is detected outside its low-criticality
specifications, it is dropped, but no criticality mode switch
occurs.

The authors considered only 2 CL, but there is no
limitation to the number of supported CL in theory. In
practice, transmitting criticality mode requires dedicated
control wires, so supporting 4 CL would be possible with
one additional line (2 link state lines), and so on. Supporting
more CL would therefore induce area overheads.

3) WPMC-FLOOD Improvements: The authors proposed
two improvements of their protocol in [18]. The router for
this protocol is presented in figure 2. First, to avoid dropping
low-criticality messages in case of criticality mode change,
they allow low-criticality messages to be transmitted over a
link in high-criticality mode if this link cannot be used to
transmit any high-criticality message. This can happen for
two reasons. First, there are no critical flits in the upstream
router buffers. Second, the downstream router buffers are
full, thus preventing the high-criticality flits from being
transmitted. Since high and low criticality messages are
transmitted over different VCs, they use different buffers,
so there could be space available for transmitting low-
criticality messages. This makes the mode switch equivalent
to changing the priorities of a VC, so that high-criticality
VCs have always priority over low-criticality ones. When
the system works normally, it can be beneficial to grant high
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Figure 2. Router for WPMC-Flood protocol. Only one input and one
output link are presented. s is the flit size.

priority to low-criticality VCs to improve the QoS of best-
effort traffic.

Second, they propose to modify the way the high-
criticality mode propagates through the network. Instead of
transmitting it alongside high-criticality messages, the mode
switch propagates to all neighboring routers, thus forcing
the whole network to switch mode. They demonstrated
an increase in schedulability in simulations with randomly
generated task sets compared to the basic WPMC. However,
this might not scale too well w.r.t. the NoC size, as it depends
strongly on how long it takes in the worst case for the whole
network to switch mode, which is directly proportional to
the NoC size. Besides, though they showed an increase of
the QoS for low-criticality tasks compared to WPMC, they
do not compare this new mode switch procedure with the
mode switch propagation procedure used in WPMC while
enabling low-criticality messages to use high-criticality links
on slack time.

B. Wormhole Protocol with Blocking Counter

Tobuschat and Ernst [19] proposed a protocol with criti-
cality on the VC/message level only. They consider guaran-
teed latency critical traffic and best-effort non-critical traffic.
VCs used by critical messages have lower priorities than
VC used by non-critical messages. This optimizes the QoS
of best-effort traffic. To enforce critical messages to be
delivered in time, the header flits of critical messages contain
a Blocking Counter (BC). This counter is initialized by
the network interface at the highest number of times the
message can be stalled in the network while keeping to its
time requirements. Each time the message cannot access
the output link of the router in which it waits, its BC is
decremented.

The BC is only stored in the header flit of the message,

therefore the message must not be split. Thus, a best-effort
VC can be preempted at flit level, but a guaranteed latency
VC can only be preempted at message level.

When a buffer exposes a message whose BC is zero,
the authors propose three alternative actions. First, the
corresponding VC becomes critical and gets priority over
all best-effort VCs and normal (non critical) guaranteed
latency VCs. This demands low hardware overhead, but
allows for some more stalling of the critical message if there
are flits from another message in the same VC/buffer. In the
second possibility, the critical message can be redirected to a
specific queue, thus bypassing the arbiter. A third possibility
is to introduce some priorities depending on the BC of each
message.

It is here assumed that no back pressure will ever occur,
i.e. that the input buffers of all routers are large enough
to handle any potential load. Including back pressure into
this scheme would be possible but complex. This is because
once a message BC has reached zero, it must not be delayed
due to back pressure. If the first of the three aforemen-
tioned actions is taken, a mechanism anticipating messages
switching into critical mode and making sure that buffers
of the downstream routers will not get full at the wrong
instant would be very complex to implement. The authors
argue that a rate constraining mechanism (e.g. the one
described in section II-D) at the network interface coupled
with sufficiently large input buffers is simpler and can make
the assumption of no back pressure safe. Therefore, they
assume a given upper arrival curve for each type of message,
that is an upper bound to the number of messages of a
certain type which can be issued per time interval. In the
second proposed reaction, this is a lesser problem, as no
back pressure should ever occur on a VC reserved for traffic
that cannot be delayed any more.

The authors demonstrate how to formally compute upper
limits to the transmission latencies of all messages in a
given message set. The message set comprises the size,
the criticality class, the timing requirements (minimum and
maximum arrival curves, deadline) and the initial BC value
of each message. Non-critical messages have neither a
deadline nor a BC value.

Furthermore, a method is proposed to compute the maxi-
mal initial BC value which enforces that all critical messages
are delivered before their deadline. First, the BC of all
critical messages are set to zero, then the worst-case delivery
time of each message is computed, and the results are
compared to the critical messages deadlines. If a message
is delivered earlier than needed, its BC is increased and
all latencies are computed again. These steps are repeated
until a message latency is found which exceeds the message
deadline. They also simulated their protocol, implementing
the first of the 3 possibilities described above and using a
RR arbitration within messages of a same VC. They showed
improved QoS of non-critical traffic compared to a standard



Table I
SUMMARY OF COMMUNICATION PROTOCOLS

Designation Type Nr. of CL Main feature(s) Ref.
TDMA-based arbiter Bus 2 Complete temporal isolation between CL (down to TDMA) → easy timing analysis [15]
CArb Bus n 2 arbitration layers, between criticality classes and within them; arbiter-level mode switch [16]
WPMC NoC 2+ Network-level mode switch; check for traffic timing compliance in the network interface [17], [18]
Wormhole with BC NoC 2 Priority given to non-critical traffic as long as possible to improve its QoS [19]
DAS NoC 2 Prioritized SAF transmission of critical message aimed at tightening WC bounds [20]
Adaptive Routing NoC 2 Spatial (instead of temporal) partitioning triggered upon critical messages issues [21]

wormhole scheme with higher priorities for critical traffic,
and upper bounded latency for critical traffic.

C. Double Arbiter and Switching (DAS)

This protocol was proposed by Dridi et al. in [20]. It
aims at a less pessimistic WCET analysis compared to
wormhole protocols like the ones described above. DAS
features N + 1 VCs, where N is the maximum number
of high-criticality flows which can request a link at the
same time. The N first VCs are dedicated to high-criticality
traffic, the remaining one is for low-criticality traffic. A
wormhole protocol without priorities is used for non-critical
traffic. Low-criticality traffic has lowest priority and can be
preempted at flit level by any high-criticality message. High-
criticality messages are transmitted following a Store And
Forward (SAF) protocol, requiring the buffering of complete
messages in the routers. Additionally, high-criticality traffic
can only be preempted at message level. Arbitration between
high-criticality VCs is done according to a RR policy. The
use of SAF for high-criticality traffic is justified because
high-criticality messages are expected to be short, therefore
the induced buffering overheads are tolerable. The authors
claim that the use of SAF allows less pessimistic WCET
analysis. However, they do not provide any formal proof of
this assertion. They simulated their scheme at transaction
level and compared it against a standard wormhole proto-
col and observed significantly smaller latencies for high-
criticality traffic.

D. Adaptive Routing of Non-Critical Messages

This scheme was proposed by Kostrzewa et al. [21].
While the former protocols use temporal partitioning to
isolate critical from non-critical traffic, this approach uses
spatial partitioning. Upon critical message issue, all links
this message will go through are reserved, and non-critical
traffic is re-routed to alternate, longer paths. Once the critical
message has been delivered, links are again accessible for
non-critical traffic.

There are two kinds of routing policies: destination-based
routing and source routing. With source routing, the full path
of a message is specified by its sender. With destination-
based routing, only the destination is specified by the sender
and the path is computed by the routers along the way.
Destination-based routing is more widely used, as specifying

a full path for each message induces some overhead. It is
used in all previously described protocols. However, imple-
menting dynamic destination-based routing would require
complex router design, hence the use of source routing here.

A control layer is responsible for multicasting the NoC
state (i.e. which links are currently reserved for critical
traffic) to all best-effort senders which may use a reserved
link. When a critical message is sent, its sender also notifies
the control layer and indicates the path of the critical
message. When another sender specifies the path for a best-
effort message, if the shortest path goes through a link which
is currently reserved for critical traffic, the sender must
specify a detoured path which does not interfere with any
critical path. This increases the latency for best-effort traffic,
but avoids stalling it, and improves resource utilization by
redirecting the load to links where congestion cannot cause
a deadline miss. However, interference is not completely
suppressed, as some non-critical messages may have been
issued before the critical one, which will use some links
along the critical path. This must be taken into account in
the static analysis, but this interference is bounded by the
sum of the control layer response time plus the best-effort
message transmission time. Besides, critical traffic could
be prioritized over best-effort traffic, however this is not
addressed in this paper [21], which considers RR arbitration
between all messages in the routers.

Since computing the shortest free path is demanding
in terms of computation time, the authors use statically
defined sets of paths. Critical traffic has only one path (not
necessarily the shortest one) to achieve predictability, and
best-effort traffic can have an arbitrary number of paths,
sorted by their lengths. At run time, the sender only has to
select the shortest path of which no link is currently reserved
for critical traffic.

The senders are also responsible for sending notifications
when the transmission of the critical message is over. This
can be done either based on a timeout mechanism, that is the
message is considered delivered a fixed amount of time after
its transmission began, or when the last flit of the message
has been transmitted. In the latter case some blocking might
occur if a non-critical message is issued downstream of the
critical message sender, depending on the latency of the
control signal transmission.

Assuming that upper and lower latency bounds for the



transmission of a message along a given path are available,
the authors show how to calculate the available slack for
each critical message, and the maximum transmission time
overhead needed to re-route best-effort traffic. If the avail-
able slack is larger than the overhead, then the scheme will
ensure that all critical messages are delivered in time. If
the slack is not sufficient, then the path used by the critical
message can be permanently reserved for critical traffic, thus
eliminating the need for detouring non-critical traffic.

The authors tested their scheme in simulation. They
showed significant gains in best-effort traffic average la-
tency compared to a standard wormhole protocol. They also
showed that the overheads in terms of transmission time
increase proportionally with the number of critical senders
and the number of critical messages they issue, which is
reasonable.

V. MIXED-CRITICALITY ARCHITECTURES

A. Integrated Dependable Architecture for Many-Cores

This architecture, proposed by Motruk et al. [22], is
oriented toward fault tolerance and fault containment. It
is based on a NoC suited for mixed-criticality, intercon-
necting tiles. Tiles can contain any component or group of
components. One can imagine basic processing tiles, with
one core, a timer and an interrupt controller, memory tiles
with a DRAM bank and its controller, I/O tiles, or much
more complex tiles, e.g clusters of cores with several local
memory banks like proposed in [23] (see section V-B). There
is no limitation to the complexity of a tile. The mixed-
criticality is not explicitly considered, except at the NoC
level. Since the content of tiles is left unspecified, some
mixed-criticality relevant problems are not addressed, e.g.
arbitration between incoming requests on a memory tile.
The resource server presented in section V-C is a possible
addition. This architecture focuses on the NoC, the network
interface, and a centralized System Controller (SC).

1) Network Interface: The network interface is presented
in figure 3. It is divided in two distinct parts, which
are parallelized. The first one is the Address Translation
Table (ATT), which enables the virtualization of resources
physically on distant tiles but which need to be accessed
from the local tile. Those distant resources are assigned a
virtual address, valid on the local tile only. The ATT maps
this virtual address to the data needed to actually access
the corresponding resource: a VC index, a route to the
destination tile (source routing is used here, but destination-
based routing could be used as well), and the address of
the resource on the destination tile. Note that the VC used
does not depend on the actual destination, but on its virtual
address. A same destination may have several distinct virtual
addresses on the local tile, to enable data transmission over
different VCs, and hence transmission of traffic of different
CL.

The second part of the network interface is the run-time
monitoring mechanism. This works in a very similar way
to the first version of the budgeting mechanism described
in section II-B. On the one hand, there is a counter for
each entry in the ATT, which is incremented each time a
request is issued to the corresponding virtual address, and
an access budget to this virtual address. On the other hand,
there is a time interval counter which resets all counters
when it reaches its maximum value, provided no budget
overrun happened during the last time interval. Note that
if a single budget was exceeded, none of the budgets on the
tile will be replenished.

When a budget overrun occurs, 4 reactions can be taken.
The tile can be stalled until the end of the current time
interval. It can be reset at the end of the interval. It can be
disabled until the whole system is reset. A message can be
sent to the SC. The authors suggest that the latter should
always be done, at least as information to the SC. Those
actions do not exclude each other, i.e. any combination of
them can be set.

2) Centralized System Controller: The SC has several
important roles to ensure dependability, beside being able
to issue messages and requests like any other tile. First,
it specifies which reactions should be taken in case of
budget overrun for each tile (the authors did not consider
individually specified reactions for each virtual address of
each tile). This can be changed dynamically, depending on
the overrun messages received by the SC, the current NoC
load, or other available information. Second, the SC can
externally force any of the possible automated reactions of
the network interface, i.e. it can reset, stall or disable tiles, at
any time. Third, and most important, the SC is responsible
for dynamically configuring the ATT. To demonstrate how
useful this can be, let the two following examples be
reviewed.

First example, if the SC detected a tile as faulty and
disabled it, this tile cannot be accessed from other tiles
any more. To prevent other tiles trying to access it from
being impacted by the fault, the virtual addresses leading to
the faulty tile can be remapped to another tile, identical to
the former one but correctly functioning. This achieves fault
tolerance through active redundancy. Second example, if a
faulty task running on a tile attempts to flood the NoC, but
the tile cannot be stalled right now because of other tasks
running on it, the corresponding ATT line can be disabled, to
prevent faulty messages from flooding the NoC, and to allow
other tasks on the same tile to access the NoC (since request
counters are only reset when no budget overrun occurs on the
whole tile). This achieves fault containment between the tile
and the NoC, and to a certain extent between applications
running on the same tile.
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B. Cluster-Based Many-Cores Architecture

This architecture was presented by Giannopoulou et al.
[23]. Compared to the previously introduced IDAMC, it
also uses a NoC and largely independent tiles. However,
it does not feature a centralized controller, rather the control
is distributed over all tiles. Two types of tiles are specified,
respectively called computation clusters and I/O subsystems.

1) Hardware Architecture: The hardware architecture
corresponds to the Kalray MPPA 256 platform. It includes
16 identical computation clusters and 4 I/O subsystems,
interconnected via a NoC. Each computation cluster inte-
grates 16 processing cores with caches, 16 SRAM banks of
128 kB, each with its own memory controller, a resource
management core, and 3 NoC interfaces for transmission,
reception, and resource management respectively. All mem-
ory controllers are directly connected to all cores and NoC
interfaces. Thus, they are de facto responsible for arbitration
between all cores and NoC interfaces. The NoC receiver
interface has always priority. When the input buffer of the
NoC receiver is empty, RR arbitration is performed between
other components. Each I/O subsystem is connected to 4
NoC nodes to improve the available throughput.

2) Task Model: Tasks are considered to be periodic. A
task execution profile contains the worst-case and best-case
execution time without considering time spent for memory
accesses, and also the worst-case and best-case number of
memory accesses of the task. Each task features as many
execution profiles as its criticality level (as a task of CL l
must be scheduled at all CL under l), plus one degraded
execution profile for the case when the system has switched
to a CL higher than l. This enables to specify a minimal
service for low-critical tasks rather than dropping them
completely, thus improving on most basic mixed-criticality

models. Should the task be dropped completely, its degraded
execution profile is set to (0, 0, 0, 0). Next to the periods,
deadlines, CL and execution profiles of all its tasks, a task set
model also includes a dependency graph. This is a directed
acyclic graph with weighted edges. Nodes represent tasks,
and an edge from a task τi to a task τj indicates that τi
should terminate before the execution of τj starts, because
of data dependencies. Additionally, the weight on the edge
from τi to τj indicates the minimum time interval between
the termination of τi and the execution of τj .

3) Task Scheduling: The scheduling is performed at the
cluster level, that is a task set is scheduled to execute on
a given cluster. The proposed scheduling policy (presented
in [23]) divides the scheduling period into frames and sub-
frames. Within a given sub-frame, only tasks of the same
CL can execute. This prevents tasks of different criticality
to interfere with each other on the cluster. Besides, when a
task needs to read data from a distant resource, be it off-
chip memory, any peripheral linked to an I/O subsystem, or
another computation cluster, an additional task is created,
which sends the request to get these data through the
NoC. The dependency graph features an edge between the
task which requests the data and the task which needs it,
and the weight of this edge corresponds to the worst-case
response time of the resource, plus worst-case latency of
both transmissions through the NoC. This way, a task will
never be delayed due to interference from other clusters.
Interference is not suppressed, as it must be taken into
account in the NoC and resource response time, but it is
kept under control. So, interference can only cause additional
delay within a cluster, and only between tasks of the same
criticality. This is sufficient for certifying mixed-criticality
integration provided that task sets of various criticality
levels meet their corresponding certification requirements,



but not necessarily for efficient resource usage and good
schedulability.

4) Optimization problem: Optimizing resource allocation
is in this case a two-fold problem. First, tasks must be
scheduled onto cores, and second, data must be stored onto
memory banks. The task mapping problem solution should
minimize the worst-case sub-frame length. This has to do
with load balancing. The data mapping problem solution
should minimize the worst-case interference. Those two
aspects are highly interdependent, as interference will arise
when two tasks are scheduled on the same sub-frame and
need to access the same memory bank, and as interference
is a major contributor to WCET of tasks, which are used
for scheduling. The authors propose two methods, based
on simulated annealing, to solve this optimization problem.
They found that the most efficient method depend on the
particularities of each case. The first possibility is to compute
a Pareto set of possibly optimal memory mappings assuming
worst-case task mapping, then to solve the task mapping
problem for each points in this pareto set. The final result
is the solution for which the given task set WCET is the
shortest. The second possibility is to solve both problems
iteratively, one after the other, until convergence.

C. Resource Server

The application of resource servers to support mixed-
criticality was proposed by Brandenburg in [24]. Resource
servers prevent direct access to shared resources. Their pur-
pose is to control the accesses to a given peripheral, which
can ensure some properties about the resource accessibility,
provided the inter-process communication (IPC) protocol
which manages accesses to the server is suitably designed.
Typical examples of those properties are fault containment
and worst-case response time. Resource servers coupled to
IPC protocols which take criticality into account are there-
fore particularly suitable architectural blocks for MCS. A
generic IPC protocol for resource server access, specifically
tailored for MCS, and aimed at being implemented within a
microkernel, was described in [24]. It is described at the
transaction level, which means communication and some
hardware details are abstracted. Nevertheless, communica-
tion must be taken into account for the static analysis, either
within the WCET of the operating system calls composing
the server implementation or within the response time of
the resource itself. As the described protocol makes use of
some scheduling properties to ensure worst-case latencies,
it does require two assumptions about the scheduling policy
to hold, but remains very widely applicable. Figure 4 shows
the system model and the detailed server structure.

1) System Model and Assumptions on Scheduling: Cores
are grouped into clusters. Each cluster is equipped with its
own top-level scheduler. Tasks are grouped into reserva-
tions, which are statically assigned to a given cluster. Each
reservation features a budget and a priority. The top-level

scheduler assigns as many reservations as available cores
in the cluster, more precisely the reservations of highest
priority with non-depleted budget. The two assumptions
made on the scheduling policy are the following. One,
whenever a reservation is active, it spends its budget at
a fixed, unique speed. A reservation which has a pending
request is always regarded as active, even if it is currently not
running. Two, a reservation priority can only change when
its budget gets either depleted or replenished. Provided those
two assumptions hold, this resource server can be used with
any scheduling policy. The system model itself is sufficiently
generic to include a wide range of cases.

2) Server Structure: The proposed server is built upon
several queues, which gather requests from all clusters. Two
of them are shared FIFO queues and can be accessed by
any cluster. There are two more queues per cluster, which
are reserved for requests coming from a given cluster.

The first shared queue is called background queue, and
gathers non-critical requests. Requests from this queue can
only be served when the second shared queue, called global
queue, is empty. The global queue gathers critical requests,
but at most one per cluster at a time. This implements
starvation-free RR arbitration between clusters. When a
cluster issues a request before the previous one was served,
this additional request cannot enter the global queue, thus it
is stored in a queue reserved for the cluster.

There are two cluster-specific queues for that purpose.
The first one, called head queue is FIFO and its size is
equal to the number of cores in the cluster minus one. As
long as there are any spots free in the head queue, requests
are appended at the tail of this queue. The second sub-
queue, called tail queue is priority-based and its size is left
unspecified. When the cluster’s head queue is full, requests
are inserted in the tail queue based on the priority of the
reservation which issued the request. Critical requests pass
from the tail queue to the head queue, and from the head
queue to the global queue when spots get free. The size of
the head queue should be minimized to make an efficient
use of priorities, but the proposed static analysis makes the
given size a minimum: with a shorter head queue latency
bounds cannot be ensured, as a request could be blocked in
the tail queue for ever.

3) Methods for Server Implementation: The author splits
the software needed to implement its scheme at the mi-
crokernel level in four methods. Those methods enable
communication between the high-level software and the
server through calls to the operating system. The first
method is invoke, and is called by a task to instantiate a
request. The second one is reply, and is called upon request
completion by the server itself to send back the output of
the serviced request (if any) to the processor. This method
is also responsible for checking if there are any pending
requests to service next, and if so, to update request queues
according to their respective policies. The third one is abort,
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and is called by the top-level scheduler when a task having
issued a request is aborted to remove this request from the
queue. The last one is wait and is called when all queues
are empty to wake up the server upon arrival of the next
request.

The author provides in [24] a formal analysis to demon-
strate that the worst-case latency is effectively bounded,
and simulation results indicate the same. The upper bound
derived is quasi proportional to the number of cores within
the cluster which issued the request and also to the total
number of clusters which can simultaneously access the
resource. This highlights the strong dependence between the
worst-case latency and the scheduling parameters.

4) Introducing more than two Criticality Levels: This part
is suggested as an improvement in [24], but neither a formal
proof of correctness nor simulation results are provided.

This system integrates well with a full-scale criticality
mode switch, as when low-criticality tasks are dropped down
to such a mode switch, the top-level scheduler may call the
abort method to abandon requests issued by low-criticality
tasks. Next to that, a mode switch is also possible at the
server level. Two parameters can be considered criticality-
dependent, the worst-case service latency of the resource
(without considering the server delays and overheads), and
the number of clusters which might concurrently compete for
the resource. The server can easily detect whenever one of
those parameters exceeds its low-criticality value, and react
accordingly by displacing low-criticality requests to the head
of the background queue.

VI. CONCLUSION

This digest describes mechanisms to implement systems
supporting the integration of mixed-criticality task sets.
It is limited to considerations on shared resource access,

and especially communication media. However, this is only
part of the challenges of mixed-criticality integration. As
stated in the introduction, there are 2 main branches of
the mixed-criticality research, namely mechanisms to enable
safe and efficient sharing of resources on the one hand
and mixed-criticality scheduling policies on the other hand.
Combination of those two domains with each other has just
begun to be addressed, and most mixed-criticality scheduling
researches assume the basic mode switch model described in
section II-A. [23] is the only paper to our knowledge deeply
integrating scheduling with a specific hardware architecture.

Without speaking of mixed-criticality scheduling, which
is a very active research field, some research on imple-
mentation mechanisms were not covered in this paper.
Extensive research has been conducted on memory elements:
controllers, memory architectures, cache organizations and
cache replacement policies supporting MCS. See [1] for an
extensive review. Static analysis has also been overlooked in
this paper, however getting worst-case response times and
latency bounds in the context of complex multicore systems
is a real challenge. Some research points have not yet
been addressed in detail, especially interrupts management
and data sharing between tasks of different criticality. Both
those elements can jeopardize the correctness (temporal resp.
logical) of a critical task, unless all interrupt routines are
certified at the highest level of insurance, and all data used
by a task of criticality l can only be accessed by tasks of the
same criticality. Those constraints are yet too restrictive to
permit actual co-running of applications of different critical-
ity. In a nutshell, mixed-criticality integration is a promising
paradigm to increase resource utilization and efficiency of
safety-critical systems, but there is still much work to do on
this topic.
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