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Abstract— Power management of networked many-core
systems with runtime application mapping becomes more chal-
lenging in the dark silicon era. It necessitates considering network
characteristics at runtime to achieve better performance while
honoring the peak power upper bound. On the other hand,
power management has a direct effect on chip temperature,
which is the main driver of the aging effects. Therefore, alongside
performance fulfillment, the controlling mechanism must also
consider the current cores’ reliability in its actuator manipulation
to enhance the overall system lifetime in the long term. In this
paper, we propose a multiobjective dynamic power manage-
ment technique that uses current power consumption and other
network characteristics including the reliability of the cores as
the feedback while utilizing fine-grained voltage and frequency
scaling and per-core power gating as the actuators. In addition,
disturbance rejecter and reliability balancer are designed to help
the controller to better smooth power consumption in the short
term and reliability in the long term, respectively. Simulations
of dynamic workloads and mixed criticality application profiles
show that our method not only is effective in honoring the power
budget while considerably boosting the system throughput, but
also increases the overall system lifetime by minimizing aging
effects by means of power consumption balancing.

Index Terms— Dark silicon, feedback controller, lifetime
reliability, networks on chip (NoCs), power management, runtime
mapping.

I. INTRODUCTION

THE number of transistors per chip still steadily
increases by about 2.0× for each technology node

generation. However, due to increased power densities and
consequent thermal issues, power budget represents a con-
straint in the usability of such computational resources:
in fact, the number of transistors that can be used at the same
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time on a chip increases with a lower trend (only 1.4× each
generation [1]). Consequently, only a subset of the available
processing cores can be used at full throttle at any time,
while the rest of the resources have to be left inactive, thus
representing dark silicon [2], [3]. Thermal issues do represent
a problem not only in the short term by idling resources
but also in the long term. In fact, as discussed in the ITRS
reports in 2011 [4], due to transistor shrinking the higher
temperatures cause the devices to be more susceptible to aging
and wear-out phenomena (such as time-dependent dielec-
tric breakdown, thermal cycling, and electromigration), thus
decreasing the system lifetime. As stated in [5], many failure
mechanisms are exponentially dependent on temperature, and
a 10 °C–15 °C difference in operating temperature may result
in a 2× difference in the overall lifespan of a device.

An investigated solution to mitigate dark silicon phenom-
enon is the near-threshold computing (NTC), also dubbed
as dim silicon [6], and more in general acting on the volt-
age/frequency (VF) levels of the processing cores. The basic
idea is to increase the number of concurrently active cores
by considerably lowering their operating VF level. However,
to implement an efficient NTC-based approach, an intelli-
gent and stable power management mechanism is required.
Such a mechanism becomes more challenging, considering
that current and future many-core systems integrate various
hundreds of networked resources and use to execute a highly
variable and unpredictable workload. Therefore, to accurately
handle an upper limit on power consumption (fixed Thermal
Design Power, TDP, or dynamic Thermal Safe Power, TSP
[7]), and at the same time guarantee a certain level of quality of
service (QoS) in the running applications, a feedback control
mechanism monitoring several parameters of the system is
mandatory. Finally, the quest of such a feedback control
mechanism is even more motivated when we aim also at
limiting the aging trend and to prolong system lifetime.

The previous work on feedback-based dynamic power
management (DPM) for multicore/many-core systems can be
classified into two main categories.

1) Techniques that use workload and network character-
istics as feedback (e.g., queue utilization and injec-
tion rate) and then adjust VF of processing elements,
routers, or VF islands (VFIs) accordingly (see [8], [9]).

2) Power budgeting (i.e., capping) techniques [10], [11]
that utilize chip/per-core power measurement and per-
core performance counters (i.e., core utilization) as
feedback, and then apply dynamic voltage and frequency
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scaling (DVFS) or per-core power gating (PCPG)
techniques to optimize the system performance within
a fixed power cap (i.e., TDP).

Even though all the techniques in these categories efficiently
save and control the power consumption for their target
platforms, they are not comprehensive and do not take aging
effects into account. The techniques in the first category do
not consider any safe upper bound on the total system power
consumption (i.e., TDP) at runtime, and therefore, they do
not feed any power metric back to the management unit.
The power capping techniques from the second category are
mainly targeted for bus-based systems. Therefore, they are
unable to address the power management issues in many-core
systems that are typically based on a network on chip (NoC)
and with multiple applications running simultaneously. Finally,
very few approaches in the literature also consider aging
issues in the dynamic mapping decisions, with [11] as a
notable exception. In conclusion, we contend that dark silicon
awareness necessitates an efficient multiobjective feedback-
based control approach that considers many parameters such
as workload characteristics, per-core power, aging and per-
formance measurements, network-load, and total chip power
consumption all together.

We propose a novel comprehensive dark-silicon-aware and
reliability-aware power management framework for NoC-
based many-core systems under limited power budget (both
TDP and TSP) and running dynamic workloads, by supporting
runtime mapping. This framework benefits from a multiobjec-
tive feedback-based controller that performs the following:

1) pursues performance and lifetime reliability optimization
while fulfilling the power budget;

2) acts on PCPG and DVFS;
3) considers several monitoring parameters such as

workload characteristics, network congestion, and
power/performance/aging characteristics of processing
cores.

A preliminary version of the approach has been proposed
in [12]. We extend it to consider lifetime reliability issues
together with power and performance optimization as follows.

1) Adding the reliability analysis unit to calculate fine
grained reliability based on the temperature feedback
profile from the system.

2) Developing novel decision policies targeted for two
different operating modes: overboosting mode, when
the system is experiencing an intensive workload, and
reliability-aware mode, when the nonintensive workload
offers the controller the opportunity to prolong the
system lifetime.

3) Extending the metrics to performing VF scaling to
consider reliability of the system.

4) Adding an additional reliability balancing module
running at coarse time intervals.

5) Evaluating the efficiency of our approach to provide high
performance while prolonging the system’s lifetime and
fulfilling the given power budget.

The rest of this paper is organized as follows. In Section II,
related work is presented. An overall view of the

NoC-based many-core system together with the envisioned
runtime management framework is presented in Section III,
while subsequent sections, Sections IV and V, present the
internals of the companion monitoring infrastructure and the
proposed power controller, respectively. An experimental eval-
uation of the proposed approach is provided in Section VI, and
finally, Section VII draws conclusions.

II. RELATED WORK

Various approaches for dark-silicon-aware power man-
agement have been proposed in the literature. In [10],
a hierarchical power management controller for asymmetric
multicores is demonstrated in an ARM big.LITTLE platform.
Ma and Wang [11] propose a similar technique called PGCap-
ping by exploiting power gating and DVFS for power capping
in symmetric multicore processors. These two approaches use
a feedback loop to manage power consumption, and their
main limitation is that they target a bus-based architecture.
Therefore, they do not consider many relevant issues man-
ifesting in NoC-based many-core systems. Khan et al. [13]
propose a method to allocate shared energy-efficient accelera-
tors among competing applications to minimize the overall
power while fulfilling the application deadlines. In [14], a
hierarchical technique is proposed to partition TDP among
running applications. Shafique et al. [15] propose a power
management technique for many-core systems. In their plat-
form, applications use feedback to monitor other running
application activity to self-manage their power consumption
and degree of parallelism. However, none of these works
consider any power feedback from the system at runtime and
instead use a predefined dedicated power budget.

Chen and Marculescu [16] present a power allocation tech-
nique for many-core system performance improvement under
power constraints. They formulate a performance optimization
problem and apply an optimal power allocation method using
on-line distributed reinforcement learning. This contribution
does not consider on-chip communication. However, it should
be noted that this work is orthogonal to our multiobjective con-
trol management and can complement and enhance our method
by integrating the concept of on-line learning toward more
efficient global power budget reallocation. In [8], a control-
based approach is proposed to minimize dynamic power in
multi-core device made of multiple VFIs. Their goal is to
determine optimal operating frequencies for both cores and
routers. This work is not dark silicon aware either, as they do
not utilize feedback from power sensors to avoid violating the
TDP/TSP.

Haghbayan et al. [17] present a power management tech-
nique for many-core systems using power feedback from the
system to meet the TDP bound. This technique is also catego-
rized into the class of single objective control approaches as it
lacks feedbacks from workload characteristics and per-core
performance measurements from the system during DVFS.
In addition, this technique is designed for fixed TDP and does
not benefit from a dedicated disturbance rejector to handle
sudden overshoots when new applications start.

A more advanced approach for power management of many-
core systems in the dark silicon era has been proposed in [12].



RAHMANI et al.: RELIABILITY-AWARE RUNTIME POWER MANAGEMENT FOR MANY-CORE SYSTEMS 429

Fig. 1. Overview of our multiobjective dark-silicon-aware power management system.

The controller implements a feedback control loop collecting
a large set of information from the running workload and
the underlying architecture (such as network congestion and
performance/power consumption status of the various cores)
and acting on both PCPG and DVFS to optimize system
performance while fulfilling the available power budget.

With the exception of the bus-based power capping tech-
nique presented in [11], none of the above approaches take
into account the effects on the thermal stress with its impact
on aging. As a matter of fact, reliability management cannot be
performed by only considering TDP or TSP; in fact, TDP/TSP
can only guarantee that excessive temperature peaks are not
reached but does not mitigate the effects of high temperatures
in the long term. For this reason, some approaches [18], [19]
act on DVFS to balance the tradeoff among performance,
power consumption, and reliability. However, they are mainly
targeted for bus-based systems.

III. SYSTEM OVERVIEW

Fig. 1 shows the overall architecture of the considered
system. It consists of a classical hardware many-core platform
and the above software stack, composed of the newly proposed
runtime resource management layer, and the running applica-
tion workload. The hardware platform we consider captures
the main characteristics of modern many-core systems, such as
the Intel single-chip cloud computer (SCC [20]) or the Kalray
MPPA [21]. This platform contains a set of homogeneous
processing tiles organized in a 2-D mesh-based topology and
connected by an NoC. Moreover, the platform is connected to
a host machine controlling all the activities.

Each tile contains a processing core provided with a local
private instruction/data memory and a communication con-
troller connecting to a corresponding router in the NoC;
communications among tiles are performed by means of a
message-passing protocol over the NoC. Finally, we assume

each tile to be provided with HW sensors for temperature and
power consumption measurements (as in [16], [20], and [11]),
performance counters measuring the number of executed
instructions (as in [20]), and actuators for PCPG and DVFS
(as in [11] and [16]).

The many-core system generally executes data-intensive
and highly parallel applications, organized in a group of
interdependent processing tasks. Applications may also present
priority requirements (e.g., soft realtime and non-realtime)
correlating to the level of expected QoS. Such requirements are
here expressed in terms of a priority index that can be used
to rank applications while the QoS in terms of a minimum
throughput (or a deadline on the overall execution time) to
be guaranteed. To be executed, each application needs to be
mapped on the architecture, by reserving a group of tiles on
which the application tasks are dispatched.

The system supports the concurrent execution of a highly
dynamic workload, characterizing the nowadays on-demand
computing scenario. Multiple applications dynamically arrive
with an unknown trend and are characterized by different
structures (in terms of the number of tasks and their organiza-
tion), latencies, and QoS requirements. Therefore, the architec-
ture loads a software layer for runtime resource management
performing two main tasks: runtime mapping and DPM. More
precisely, similar to Intel SCC or Kalray MPPA, the main part
of this software layer, implementing all the decision policies
for mapping and power management, is executed on the host
machine. Then, each tile loads a minimal scheduler running
the received tasks and managing transmissions. Furthermore,
the tile scheduler also executes a set of routines performing
monitoring activities by means of the available sensors.

The runtime mapping unit (RMU) is in charge of performing
the dispatching of the workload. Entering applications are
initially stored in a ready queue, and the RMU performs the
mapping of a ready application according to the availability
of idle resources (i.e., the tiles set as dark since they are
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not allocated for the execution of any other applications)
and power assigned by the power controller. The RMU also
categorizes information of the applications running on the
system, defined as running application information (R AI ),
such as the idle/active tile matrix, the application mapping
matrix, and the applications’ priority list.

The second component within the runtime resource man-
agement layer is the power controller. This module is in
charge of accurately handling the available power budget and
distributing it among the various groups of tiles executing
the running applications. The available power budget is used
as a target value for the power controller unit, as shown
in Fig. 1, and can be TDP or TSP (only TSP is mentioned
in the figure). The activity of the controller is supported by
means of a set of auxiliary monitoring modules preprocessing
RAI gathered from the RMU and raw measures from the
architectural sensors and providing a set of high-level informa-
tion and statistics driving the decisions on DVFS and PCPG
actuation. It is worth noting that the power controller does
not scale the voltage and frequency of on-chip interconnection
network components (e.g., NoC routers and links), to ensure
that there are no unnecessary delays in the transmission, thus
causing additional static power consumption of waiting tile.
Finally, the controller also provides commands to the RMU to
coordinate mapping decisions with the power management.

The novel contribution of this paper is the power
controller, with the utility modules, while a state-of-
the-art RMU [22] will be considered. The monitoring
and power management policies are presented in the
following.

IV. SYSTEM MONITORING

As depicted in Fig. 1, a set of auxiliary modules perform
monitoring activities on the system to collect various kinds
of information. Each module is implemented by means of
two parts: 1) a software routines periodically running on each
tile that collect data from HW sensors and send them to the
host machine and 2) the counterpart function integrated in the
software layer on the host machine that will group all values
of the same type in a matrix-based data structure.

Many aspects in the current system status may be relevant to
take the most efficient choices on DVFS and PCPG actuation
in order to get high performance for each running application,
and at the same time optimize the power consumption of the
system and slowing down the aging trend of the processing
units. As an example, it is intuitive that the change of the
current VF level of a set of cores allocated to the exe-
cution of an application will have a direct effect on both
the performance and the power consumption. Nevertheless,
it is also fundamental to monitor the traffic on the NoC as
congestion in the network may represent a bottleneck that
would make the increase in VF on the tiles to have no gain
on the performance, while adding an additional contribution
on power consumption. Such a scenario becomes even more
complex when considering that the proposed approach aims
at also considering, as a novelty, system’s lifetime reliability
as the third objective. As a conclusion, the auxiliary modules
collect detailed information on the status of the processing

units, i.e., the tiles, and of the communication infrastructure
at router level, and aggregate these data with the granularity
of each single application.

A. Application-Level Power Calculator

This module periodically samples the tile’s power consump-
tion by means of the available HW sensors and sends it to the
host machine. Then, the host machine groups all these values
in a tile power matrix. According to the application matrix
provided by the RMU, the application-level power calcula-
tor (APC) module calculates the current power consumption of
each application by aggregating the values of all tiles involved
in its execution creating the application power vector (APV ),
and transmits it to the power controller. As depicted in Fig. 1,
the input matrices (as the ones of the subsequent modules),
which store the collected tile-level measures, have the same
shape and dimension of the architecture grid. Then, the output
is a vector with a length equal to the number of running
applications.

B. Application-Level Processor Utilization Calculator

As in [11], the APC exploits the performance counters
integrated within each tile to collect the processor utilization
matrix, which measures the utilization of each processing
unit (in percentages) during the previous timing window. Then,
the application-level processor utilization calculator (APUC)
module aggregates the utilization values of the various tiles
allocated for the same application by means of a sum. Such
aggregated metrics, showing the performance demand of the
running applications, form the application processor utilization
vector (APU V ), passed to the power controller.

C. Application-Level Packet Injection Rate Calculator

Another useful information to decide how to tune the
VF level of the various tiles is related to the amount of
traffic generated by each single application. As noted in [23],
a communication-intensive application may not benefit from
an increase in the VF level in terms of higher performance.
Indeed, the network would represent a performance bottleneck
and an increase in the VF level would only worsen such overall
network congestion and consume more power without any
benefit. Thus, we consider applications’ network intensity in
order to classify them into intensive and nonintensive ones,
and we use application packets injection rate as a metric that
closely correlates to network intensity.

The packets injection rate of each task is measured at the
network interface of the allocated tile based on its recent
history. The application-level packet injection rate calcula-
tor (AIRC) receives such measures in the form of a tile
injection rate matrix, and it accordingly calculates the average
injection rate for each application by selecting the related
values according to the application matrix. The obtained
application-level packet injection rate vector (AI RV ) is trans-
mitted to the power controller.
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Fig. 2. Share of network bandwidth per core diminishes with the increasing
number of cores as shown here for uniform traffic.

D. Application-Level Buffer Utilization Calculator
Monitoring the utilization level of the routers involved in the

execution of a single application (i.e., the routers connected to
the allocated tiles) is also fundamental to detect possible traffic
congestions that would affect the application performance.
Indeed, the network capacity does not grow proportionally
to accommodate traffic generated with the increasing number
of tiles [24]. As a consequence, the network traffic gets
more easily congested proportionally with the number of
tiles, and the overall throughput per tile decreases. Therefore,
the total network performance gives a diminishing return due
to increased communication distance. Fig. 2 shows that this
issue leads to a network performance gap where every tile is
not able to send or receive packets in every cycle.

In the considered platform, each router is equipped with a
buffer utilization meter (as in [8]) monitoring router congestion
levels in its recent history. More precisely, it dynamically
measures the traffic in terms of average congestion level Ct

at any given cycle t , by calculating the moving average
of packet flow in every link of a router. Then, similar to
the previous modules, the application-level buffer utilization
calculator (ABUC) elaborates the router buffer utilization
matrix and the application matrix to compute the application
buffer utilization vector (ABU V ) where buffer utilizations are
averaged per application. As a final note, AIRC and ABUC are
complementary in the analysis of the network status. In fact,
the former monitors the amount of traffic generated by each
single application, which depends on the characteristics of
the application and the VF configuration of the processing
cores, while the latter represents the actual congestion of the
network due to the packets flow among the various routers,
which depends on the intrinsic characteristics of the network
in terms of the speed and routing scheme that would cause
the actual accumulation of packets in the buffers.

E. TSP Lookup Table

The last input for the power controller is the available power
budget. TDP has been classically used to define such a power
budget at design time in order to avoid excessive temperatures.
However, as shown in [7], TDP leads to a suboptimal usage
of the device and results in large performance loss. For this
reason, in [7], a dynamic power budgeting approach, called
TSP, is defined as a function of the number of active
(i.e., nondark) tiles in a system. In this paper, we use the
T S Pworst strategy, which defines the safe power budget by
considering the worst case mapping scenario (i.e., assuming

that all the active tiles are physically packed and influence
the temperature of their adjacent tiles). From a practical point
of view, our approach is based on the precomputation of
the T S Pworst values for a different number of active tiles
in the system to build a TSP lookup table. Thus, at runtime,
the number of active tiles can be used as an input of this lookup
table to get the corresponding safe power budget Pworst

T S P .
The TSP lookup table is queried whenever an application
enters or leaves the system at runtime since these two events
may cause a change in the number of active tiles. It should be
noted that if using a fixed TDP value is desired, the lookup
table can be simply replaced with the fixed value.

F. Reliability Monitor and Application-Level
Reliability Calculator

The framework is also provided with a monitor devoted
to the observation of the aging status of the various tiles.
The most precise way to monitor the aging of each component
is using hardware wear-out sensors. However, even though
there is a large effort on the study and the design of wear-out
sensors for the various aging phenomena (e.g., [25]), they are
not currently integrated in commercial devices. For this reason,
a commonly used strategy to estimate the aging status within
a system is to employ statistical lifetime reliability models
relying on the existence of per-core thermal sensors within
the platform (e.g., [18]).

In this paper, we consider the standard lifetime reliability
model for a given system based on a Weibull distribution [26]

R(t) = e
−

(
t

α(T )

)β

(1)

where t is the current instant of time (generally measured
in hours), T the constant worst-case processor tempera-
ture (Kelvin degrees), β the Weibull slope parameter, and
α(T ) the scale parameter or aging rate. The α(T ) parameter
formulation depends on the considered wear-out mechanisms,
which are, for instance, electromigration, hot carrier injection,
and thermal cycling.

Since the temperature of a tile varies in time due to the
changes in the resource utilization and the intensity of the
executed workload, the reliability monitor implements the
advanced reliability model defined in [27] supporting temper-
ature changes as follows:

R(t) = e
−

(∑i
j=1

τ j
α j (T )

)β

(2)

where τ j represents the duration of each period of time with
constant steady-state temperature Tj starting from time 0 up
to time t (i.e., t = ∑i

j=1 τi ). From the implementation point
of view, the module periodically samples the temperature Ti

of each tile by means of the available sensor and computes
the corresponding αi (T ). The reliability of the tile is updated
by accumulating the duration of the last period τi and the
computed αi (T ) to the exponent in (2). Finally, all reliability
values are collected in a tile reliability matrix transmitted
to the power controller. Then, a downstream module, called
application-level reliability calculator, aggregates the informa-
tion contained in the tile reliability matrix on the basis of
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the application matrix to compute the so-called application
reliability vector (ARV ). Each value in the ARV is computed
by multiplying the reliability values of the set of tiles allocated
to a single application (i.e., from a reliability point of view,
we consider the set of allocated tiles as a series system).

As a final note, the overhead caused by the proposed
monitoring infrastructure is negligible in both computation and
communication. In fact, the monitoring routines periodically
collect few single floating point values and transmit them on
the network. Moreover, at each period, the amount of traffic
generated for power management is equal to approximately
1 kbit in the considered architecture in Fig. 1, which is mainly
due to the transmission of the five floating point matrices.

V. POWER CONTROLLER UNIT

The novel power controller unit integrated in the overall
system is shown in Fig. 1 (bottom). The unit is invoked
periodically or at specific events, i.e., application’s start and
termination, and performs a DPM. The mission of this unit
is to maximize the system throughput in terms of executed
applications per unit of time and considering possible applica-
tion QoS requirements, while not violating the available power
budget, and at the same time to prolong the system lifetime
by avoiding unnecessary thermal stress causing and slowing
down the aging process in the various processing tiles. To this
end, PCPG is used for power gating the cores that are not
running any task, while an advanced tuning of per-core DVFS
is performed to achieve the specified mission.

Within the power controller unit, a proportional–integral–
derivative (PID) controller monitors the error between the
actual power consumed by the system and the provided
TSP over time. Then, the downstream reliability-aware power
allocator unit uses the output of the PID controller together
with the data collected from the monitoring units to han-
dle the power management features. In particular, it tunes
VF levels of the various tiles with the granularity of the
mapped applications to optimize applications’ execution times
by exploiting available power budget in an efficient way.
Moreover, in some specific situations where there is a deficit
of power, the unit may also command the RMU to kill some
running applications.

The reliability-aware power allocator is composed of three
different submodules. An operating mode selector moni-
tors the intensity of the current workload experienced by
the system and properly selects the corresponding operating
modes: overboosting mode when experiencing an intensive
workload or reliability-aware mode in the other cases. Thus,
the actual power allocator applies specific policies in the two
operating modes; while in the first case the system is used
at full speed to satisfy the highly demanding user requests,
in the second case power allocation is performed by leveraging
also the aging status of processing tiles. Finally, the last
submodule, called the reliability balancer and invoked only
in the reliability-aware mode, performs a minimal refinement
of the decisions of the power allocator unit in order to further
reduce the stress on the regions of the grid experiencing fast
aging. The overall workflow of the reliability-aware power

Algorithm 1 Reliability-Aware Power Allocator

allocator is sketched in Algorithm 1, while the internals of
the various modules are presented in the following sections.

A. PID Controller

A classical PID controller is used for controlling the power
consumption of the system in a feedback control loop. In par-
ticular, the error between the current power consumption and
the available TSP is monitored over time to decide the power
budget that can be allocated to the current instant of time. The
general formula for the PID controller is

P I Dout(t) = K pe(t) + Ki

∫
e(t)dt + Kd

de(t)

dt
(3)

where P I Dout(t), e(t), K p , Ki , and Kd are the controller out-
put, error, proportional gain, integral gain, and derivative gain,
respectively. The gains of the PID controller are appropriately
adjusted after several MATLAB simulations. Two key factors
were considered in our simulations, viz., the system stability
and the system robustness against power disturbance. When
considering a many-core system featuring runtime application
mapping, there are three main events that influence the power
trace curve and therefore e(t):

1) the start of a new application;
2) the end of a running application;
3) the intra-application variations in the running applica-

tions due to the task dependencies and varying switching
activities of the various tasks.

During our preliminary experimental analysis, we observed
that the PID controller can efficiently support the power
allocator in making decisions on handling the latter
two situations. However, when an application enters the sys-
tem, a high overshoot may easily happen especially when the
application size is large and demands several dark cores to be
activated. In fact, the newly incoming application will cause
an increase in instantaneous power consumption. Since this
phenomenon causes a drastic drop down in the error e(t) not
properly handled by the PID, we introduced a disturbance
rejector unit within the power allocator to handle such power
spikes in a proactive way (see Section V-C).

B. Operating Mode Selector

The two objectives the power controller unit aims at
optimizing, i.e., the system’s performance and reliability,
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are frequently conflicting if not accurately handled. In fact,
to achieve higher performance, it is necessary to increase
VF and consume more power, but this would cause higher
temperature hotspots within the chip and a faster aging.
In contrast, a reliability-aware power capping approach would
unstress the architecture but also worsen the performance.
Another interesting difference between the two considered
objectives is the highly different time horizon along which
they are analyzed. Performance is generally measured in quite
short time intervals lasting seconds to a few hours. In fact,
applications arrive and leave the system with a very fast trend,
and consequently, management decisions taken on each single
application may considerably affect the system’s performance.
On the other hand, the aging status of a system is a very
slow process, which is influenced by the average trend in the
management decisions over a long period of time.

As discussed in [28] and [29], computing systems are
generally subject to a variable workload over the time alter-
nating periods of intensive activity and periods with a low
number of running applications. Moreover, to fulfill the QoS
demands of the running workload, it is not always necessary
to execute at highest VF levels especially when the system
is not experiencing an intensive workload composed of many
applications in the ready queue. To face with this variability
and handle the two conflicting goals, we define two different
operating modes, called overboosting mode and reliability-
aware mode, in which different decision policies are used in
the power allocator. The overboosting mode is characterized
by a highly intensive workload. For this reason, the system
needs to work at full speed, and consequently, reliability
issues are ignored. On the other hand, in the reliability-aware
mode, metrics from the reliability monitoring are taken into
account to avoid thermal hotspots while trying to obtain good
performance as well. Therefore, the ultimate goal of these two
operating modes is to obtain in the short-term optimal system’s
performance while mitigating unnecessary stress and wear out
in the architecture in the long term. Therefore, the power
controller unit is provided with an operating mode selector,
which monitors the overall amount of workload the system is
experiencing in the current period of time and consequently
decides the operating mode to select. The amount of workload
is computed by the operating mode selector in percentage
value by monitoring the status of the ready queue. Then,
the operating mode is transmitted to the power allocator that
will use the corresponding decision policies. The operating
mode selector internally behaves as a finite-state machine,
as shown in Fig. 3, which on the basis of a given threshold
switches between the overboosting mode and the reliability-
aware mode. A tolerance guard band can be used around the
threshold value to avoid excessive oscillations between the two
different operating modes.

C. Power Allocator

The overall behavior of power allocator is represented in
Algorithm 2. As the first step, the module preprocesses some
input data useful for subsequent elaborations. First, the per-
core power limit PCPowerLimit is computed by dividing the

Fig. 3. State machine diagram of the operating mode selector.

Algorithm 2 Power Allocation Algorithm

TSP in the same portions by the number of active cores
in the system (#activeCores). When TDP is chosen over
TSP, this step can be ignored. Next, running applications
are partitioned by means of the IRClassifier function in
intensive (Iset ) and nonintensive (N I set) sets in terms of the
network intensity, based on the AI RV . The classification
algorithm has been borrowed from [23], where it is possible
to find all the implementation details. Similarly, in the second
step, applications are partitioned into congested (Cset) and
noncongested (NCset ) sets, based on ABU V . In particular,
as previously discussed, an application is tagged as congested
if the average buffer utilization of its associated routers is
larger than a predefined threshold (e.g., 75%). As a conclusion,
each application is tagged with a 2-bit label that can get one
of these values: N I _NC (nonintensive, noncongested), N I _C
(nonintensive, congested), I_NC (intensive, noncongested),
and I_C (intensive, congested). Applications are classified
every time the controller is executed.

After classification, the event that has triggered the exe-
cution of the power controller and the current output of the
PID controller are analyzed to select a proper DVFS policy.
In particular, when the power controller is woken up by
the periodic timer or by an application’s completion event,
the PID output, P I Dout, is compared against zero. In the case
of overshoot (i.e., when P I Dout > 0, which means power
consumption exceeding T S P/T DP), V Fdownscaler function
is invoked to scale down VF levels of a subset of selected
applications, while in the case of undershoot, the V Fupscaler

function performs VF upscaling. When a newApp_interrupt
is asserted by the RMU due to the start of a new application,
the disturbance rejecter module is invoked to proactively
handle the large overshoot caused by the newly running
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Algorithm 3 Voltage and Frequency Downscaling Function

application. V Fdownscaler and V Fupscaler functions are dis-
cussed in the following.

1) V Fdownscaler: Here, the main idea is to select the candi-
date applications to be downscaled among the ones with the
lowest priority, letting the high-priority applications run at a
higher QoS level. Algorithm 3 describes the VF downscaling
process. The L Papps function is applied on the overall set
of running applications (Cset ∪ NCset) to get the subset
of applications with the lowest priority, namely appSet .
The filtering is performed according to the application priority
vector contained in the R AI . Then, appSet is even more
filtered to consider only the subset of congested applications,
with the aim at improving network throughput. In fact, tiles
residing in a congested region of the architecture potentially
dissipate unnecessary power (particularly static) due to low
network throughput. As VF downscaling has also the effect
on throttling of packet injection, it can alleviate the network
congestion for such applications and save power. In case the
selected appSet is empty, congested set is replaced by the
noncongested set (NCset).

Finally, the target application to be downscaled is selected
in the appSet by means of a specific policy of the current
operating mode. In the case of reliability-aware operating
mode, the application characterized by the lowest reliability
in the ARV is selected in order to reduce heating in the
allocated tiles and, consequently, unstress the region. On the
contrary, in the case of overboosting mode, a lowDprf-pwr

function is used to select the application with the lowest
performance loss to power reduction ratio. The identified target
application (target App) is then downscaled by the DV FS
function as per P I Dout and PC Power Limi t .

The downscaling process continues iterating on the
availableApps list to look for the next target application.
Moreover, the DVFS function will fail when it cannot throttle
the target application any further according to the application
type. This occurs when voltage and frequency cannot be
reduced anymore. When the failed DV FS variable is asserted,
the application will be removed from availableApps and the
algorithm continues iterating on the list until an alternative

Algorithm 4 Voltage and Frequency Upscaling Function

application is found. Finally, if no application can be found to
scale down, the last target application to be scaled down will
be assigned to kill App, so that the RMU will kill it.

2) V Fupscaler: VF upscaling of processing tiles is presented
in Algorithm 4. The algorithm works on the set of already
downscaled applications, DV FSList , and performs a set of
filtering to identify the target application. More precisely, first,
DV FSList is filtered to consider only the nonintensive and
noncongested applications. In case the result is an empty set,
the filtering is relaxed to consider only the nonintensive tag,
and if also this last filter fails obtaining a nonempty set,
the original DV FSList content is considered. Finally, the last
filtering is performed to select only the applications with the
highest priority by means of the H Papps function to consider
the QoS demands. The basic idea at the basis of this selection
process is that upscaling VF levels of a tile residing in a
congested area and having a high injection rate may result
in zero performance gain if on-chip communication network
is the bottleneck. That is the reason why in VF upscaling
process, in contrast with downscaling, a higher priority is given
to congestion than application priority in the algorithm.

The target application to be upscaled is selected by means
of a specific policy according to the current operating mode.
In the case of reliability-aware operating mode, the application
characterized by the highest reliability in the ARV is selected.
In this way, we will put the stress in the youngest region
of the device. On the contrary, in the case of over -boosting
mode, a HighDprf-pwr function is used to select the application
with the highest performance loss to power increase ratio. The
chosen target application is then upscaled by the DV FS func-
tion as per P I Dout and PC Power Limi t . The algorithm will
continue iterating until an application is not found by removing
the attempted candidates from the availableApps list. Finally,
the target application is removed from the DV FSList .

3) HighDprf-pwr and LowDprf-pwr Functions: These func-
tions search for an application with the highest or lowest
performance–power ratio, respectively, in a given set to be
the target of VF upscaling or downscaling. The original idea
of such functions can be found in [11], where the product
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of core utilization (Util) and aggregated frequency (Freq)
is used as a high-level computational capacity metric. In this
metric, the frequency is weighted to deduct the idling cycles.
We extend this metric by aggregating core utilization in an
application (appUtil), provided by APUC, to calculate the
performance of an application as

Perfcurrent = appUtil × Freqcurrent. (4)

Then, the performance–power ratio is calculated as

Dpr f −pwr = Per f next − Perfcurrent

Powernext − Powercurrent
(5)

where Powercurrent is the power consumption of the current
application provided by the APC unit and Powernext and
Perfnext are the estimated power consumption and performance
of the application after the DVFS process, respectively. The
next VF level (Vdd_next and Freqnext ) are estimated for the
candidate applications based on the magnitude of PIDout and
application size. Perfnext and Powernext are calculated as

Perfnext = Perfcurrent × Freqnext

Freqcurrent
(6)

Powernext = Powercurrent × Freqnext

Freqcurrent
×

(
Vdd_next

Vdd_current

)2

. (7)

After calculating Dpr f −pwr for all the applications in
appSet, lowDpr f −pwr and highDpr f −pwr functions find the
application with the lowest and highest Dpr f −pwr values
as the target application for downscaling and upscaling,
respectively.

4) DVFS Function: This function actuates the VF downscal-
ing or upscaling of all the tiles allocated for the target applica-
tion according to the specified PIDout and PC Power Limi t .
In the case of downscaling, the minimum throughput specified
for the application in the R AI is considered as an addi-
tional parameter to identify the minimum VF level applicable
(as in [30]). Thus, the function identifies the minimum
VF level for the downscaling or the maximum VF level for
the upscaling to be applied to all the cores in order to satisfy
the three constraints. If no solution can be found, the function
returns a failure.

5) Proactive disturbance rejection: As discussed in the
overall description of the approach, the commence of a new
application may cause a drastic overshoot in the error between
the consumed power and the available TSP/TDP and this
phenomenon cannot be properly managed by the PID con-
troller with the functionalities of the power allocator discussed
so far. For this reason, these sporadic events can be effi-
ciently managed by scaling down a selected set of already
running applications in a proactive way in order to collect the
power budget required by the new application before its start.
The proactiveDist Rej function is depicted in Algorithm 5.
The strategy first estimates the power consumption of the new
application will have appPredicted Power , using the number
of tasks of the application (N) and average power consumed by
actively running tiles (Pavg), extracted from R AI and APV .
Then, it computes proactiveError as the difference between
Error and appPredicted Power . Actually, proactiveError
represents the PID input without the contribution of the new

Algorithm 5 Proactive Disturbance Rejection (proactive
DistRej())

application supposing that it is already running. Actually,
we need such a value since the aim is to collect the necessary
power budget by scaling down other applications. Therefore,
if proactiveError is positive, there is availability of power
budget for the new application, and it is mapped without any
further scaling. Conversly, as shown in the second part of the
algorithm, if proactiveError is negative, other applications
are scaled down. To perform this task, a proportional controller
with gain K ′

p is used. Here, the integral and derivative terms
are removed because when such sporadic rises occur, history-
based (i.e., integral term) or prediction-based (i.e., derivative
term) decision making will most likely affect the controller’s
response. Then, the output of the controller (Pout ) determines
the extent to which currently running applications are to be
scaled so that the new application can be mapped without
violating TSP/TDP. Such downscaling of the currently run-
ning applications is performed as discussed above using the
VFdownscaler function.

D. Reliability Balancer

Even though when the controller is in the reliability-aware
mode the amount of stress on the cores is used as one of
the metrics in scale up/down process, there might be still
possibility to further decrease the VF level of the cores with
a negligible performance penalty. In this way, we can achieve
a more efficient reliability balancing in the long term. For
this, the last module in the power controller is a reliability
balancer that tries to adjust the distribution of power on chip
by marginal changes in VF levels of the tiles to reshape the
unbalanced reliability distribution. Algorithm 6 shows a relia-
bility balancing function that is running periodically whenever
the system operating in the reliability-aware mode. In the first
step, the average of all the application reliability values (ARV )
is calculated by function calcAvg Rel. After that, among
all the running applications, if the reliability value for one
application appi is lower than the overall average reliability
and this application can be downscaled according to its priority
and required QoS (using the checkdownscaling function), the VF
level of the allocated cores will be scaled down by one
step. This downscaling provides a power slack (the difference
between current power consumption and maximum upper
bound). Hence, after that, one application among DV FSList
whose reliability is higher than avg Rel is selected to be
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Algorithm 6 Reliability Balancing (reliabilityBalancing())

scaled one step up. The reliabili ty Balancing function is
managed to be run at coarse interval time (see Line 10 in
Algorithm 1) and its time interval is selected to be much
longer than RA-powerAllocator to obviate considerable nega-
tive effect on the system performance that can be imposed by
the reliabili ty Balancing function. It should be noted that as
the sizes of the applications are different and the relationship
between the VF level and power is nonlinear, V Fonestep_down

scaling down the resources of an application and V Fonestep_up

scaling up another application to adjust power might cause
disturbance in overall power consumption. However, as such
disturbance is marginal, it can be handled by the power
allocator in the subsequent iterations.

VI. EXPERIMENTAL EVALUATION

We experimentally evaluated the proposed multiobjective
dark-silicon-aware power management approach by means
of an in-house SystemC system-level many-core simulation
framework, based on the one used in [12]. The tool is based
on Noxim [31] to simulate the network infrastructure. A func-
tional model of the processing tiles is implemented and charac-
terized according to the specifications of the Niagara2 in-order
core obtained from McPAT [32]. Physical scaling parameters
were extracted from the Lumos framework [33] by considering
the 16-nm CMOS technology node; in particular, we imported
specifications for power modeling, voltage–frequency scaling,
and TDP calculation. In the simulations, we considered a
12 × 12 many-core having a chip area equal to 138 mm2.
For the DVFS purpose, we use 15 VF levels (similar to
Intel SCC) including near-threshold operation extracted from
the Lumos framework (the pessimistic model). The minimum
and maximum VF levels are set to (0.456 V, 300 MHz)
and (0.908 V, 5.2 GHz), respectively. The frequency of the
on-chip communication network (e.g., routers) is set to the
maximum level (i.e., 5.2 GHz) to demonstrate that even at
the maximum NoC speed, the network can get congested
and should be taken into account in power management
along with the other parameters. For the TSP calculation,
we used the chip characterization in [7]. We set the ambient
temperature to 45 °C, a threshold temperature that triggers
thermal management to 80 °C, a maximum chip power con-
sumption from the power supply to 300 W, and the power
consumption of an inactive core to 0.3 W. Finally, we used
Hotspot [34] to calculate the temperature from the power
traces at runtime, and, for a proof of concept, for the reliability

model, we considered the electromigration aging mechanism,
characterized as in [27].

Two different application types have been defined: non-
realtime, having a low priority, and soft realtime, with a
high priority. Several instances of non-realtime applications
spanning from 4 to 35 tasks have been generated using
TGG [35]; communication and computation volumes are
randomly distributed. We model MPEG4 and VOPD
multimedia applications as soft realtime applications. We
precalculate the minimum VF level for soft realtime tasks
for their worst case contiguous mapping. The workload has
been defined in terms of a random sequence of applications
entering the incoming application ready queue. The workload
mix consists of 30% of soft realtime applications and 70%
of non-realtime ones. This sequence is kept fixed in all
experiments for the sake of fair comparison.

The runtime resource management layer has been integrated
into the described simulator. For the RMU, we adopted the
state-of-the-art methods SHiC [22] and CoNA [36]. The
controller period has been set to 50 ms as in [11].

In the first experimental campaign, we compare the power
management capabilities and performance efficiency of the
proposed approach by considering different approaches:

1) Our proposed reliability-aware multiobjective controller
(RA-MOC).

2) Our multiobjective controller without reliability consid-
eration (MOC as proposed in [12]).

3) PGCapping [11], where only the core’s power–
performance ratio is considered as feedback for the
PCPG and per-core DVFS actuation.

4) DSAPM [17], where no information on performance and
packet injection rate of tiles is used as feedback.

5) without TSP/TDP constraint where the system is not
limited in terms of maximum power consumption.

The last one is the situation when, in reality, the chip would
be damaged due to overheating. To perform a fair compari-
son, we aligned PGCapping and DSAPM techniques to the
proposed approach, to use the same 15 VF levels for per-core
DVFS. Finally, we consider a 10 s warm up phase for the
results.

Fig. 4 presents the power traces of the system managed by
the various considered approaches when honoring a constant
TDP set to 126 W (the value has been calculated based on the
chip power density). Deviation of power consumption from
the TDP line reflects either violation or underutilization of
power budget. It is worth mentioning that the power trace is
reported after the warm up phase through which the system
application entrance rate and power consumption become
stable. It is possible to observe that PGCapping, DSAPM,
and without-constraint power managements mostly tend to
overshoot or undershoot from TDP presenting a considerable
oscillation, while the proposed approach (with or without
reliability management) is able to better exploit the available
power budget. Even though PGCapping benefits from the
cores’ power–performance values fed back by the controller,
and thus increases the system throughput to some extent,
it suffers from the underutilization issue as it does not con-
sider the network congestion and applications injection rates.
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Fig. 4. System’s power consumption to honor TDP.

Fig. 5. System’s power consumption to honor TSP.

DSAPM considers network congestion; however, it also suffers
from the underutilization issue as it is agnostic of cores’
performance value and applications’ injection rates. Finally,
both PGCapping and DSAPM techniques refuse to properly
handle occasional overshoots due to new application arrivals.
When considering the proposed approach, both MOC and
RA-MOC have the best control on the power trace to stay in
close proximity to TDP. In cases where power consumption
exceeds TDP, the MOC controller rapidly reduces the power
consumption by a proper VF scaling.

Fig. 5 demonstrates the aforementioned power management
scenarios to honor dynamic TSP values. The conclusions we
made for TDP are also valid for dynamic TSP; the MOC-based
system is stable even when budget is changed at runtime.
It is worth noting that TSP does not radically change (often
between 141 W and 149 W) as the system is mostly busy and
the majority of cores are active. To summarize, we computed
the percentage of time the power budget is violated by
the various power management policies over the overall
simulation time. The results presented in Fig. 6 show that
differently from the state-of-the-art approaches, the proposed
MOC approach honors the TDP/TSP constraints for more
than 99% of the simulation time.

Fig. 6. TDP/TSP violation for different DPMs.

Fig. 7. Normalized throughput for different DPMs.

To assess the performance efficiency of our approach while
optimizing the utilization of the power budget, we also ana-
lyzed in the same experiment the normalized throughput,
in terms of the number of completed applications per unit of
time, for the considered power management approaches. The
results shown in Fig. 7 reveal that the proposed MOC method
can significantly improve the overall system throughput for
different power budget types (up to 29% compared with
PGCapping and up to 15% compared with DSAPM). This
result is obtained due to the advantage of our proposed mul-
tiobjective controller, which considers both the computation
and communication aspects in power management. At the
same time, RA-MOC has a slightly minor improvement, even
if considerably better than state-of-the-art approaches. The
motivation is related to the fact that it is also focused on
avoiding excessive thermal stress and aging in the architecture,
thus scarifying a bit on the performance. To show the impact
of the power limit on the system performance, we also added
the system throughput while no power management technique
is applied (dubbed as Without Constraint in Fig. 7); as it can
be seen, the dark silicon phenomenon has an impact of around
50% on the performance under the same workload.

In a second experimental campaign, we evaluate the reliabil-
ity of the tiles during the time. To this purpose, we performed
a long-term simulation in which we analyzed the evolution
of the lifetime reliability of the various tiles for the overall
operational life. To perform an accelerated experiment (with a
reasonable simulation time), we enlarged the execution times
of the applications to last a few days. Finally, to stimulate
the system to switch with a realistic trend between the two
different operating modes supported by the proposed approach,
we modeled a variable workload during 24 h, according to
the measures on a typical server in Facebook data center
from [29]. In order to better show the efficiency of our pro-
posed approach, we considered the proposed approach using
only the reliability-aware power allocator technique without
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Fig. 8. Effect of reliability-aware power management approach on overall system reliability (TDP-based approach). (a) RA-MOC. (b) RA-MOC-no-balancing.
(c) MOC. (d) PGCapping.

Fig. 9. Effect of reliability-aware power management approach on overall system reliability (TSP-based approach). (a) RA-MOC. (b) RA-MOC-no-balancing.
(c) MOC. (d) PGCapping.

Fig. 10. Effect of reliability-aware power management approach on cores’ reliability after 2 years of system activity (TDP-based approach). (a) RA-MOC.
(b) RA-MOC-no-balancing. (c) MOC. (d) PGCapping.

Fig. 11. Effect of reliability-aware power management approach on cores’ reliability after 2 years of system activity (TSP-based approach). (a) RA-MOC.
(b) RA-MOC-no-balancing. (c) MOC. (d) PGCapping.

reliability balancing (i.e., without Algorithm 6), namely,
RA-MOC-no-balancing and the full-fledged approach, namely,
RA-MOC. Using these two steps, we aim at better demon-
strating the contribution of reliability-aware power allocation
and balancing technique in balancing the overall reliabil-
ity on the chip. Moreover, we compared RA-MOC and
RA-MOC-no-balancing with two state-of-the-art approaches:
the original power management strategy without considering
reliability [12], called MOC, and PGCapping [11], which also
features lifetime optimization.

Figs. 8 and 9 compare the reliability curves of the three
approaches while using TDP and TSP as the maximum power

TABLE I

SYSTEM LIFETIME IN TERMS OF MTTF

upper bound, respectively. Each graph reports the minimum,
the maximum, and the average reliability values of the various
cores within the architecture over 6 years of activity. When
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Fig. 12. Standard deviation of reliability for different DPMs after 2 years
of system activity.

comparing with MOC and PCGating, the proposed approach
minimizes the variance in the reliability values, thus maxi-
mizing the average lifetime of the various tiles. Instead, since
the two state-of-the-art approaches are reliability agnostic,
they distribute the applications without considering the aging
values and therefore lead to an unbalanced distribution of
the workload and, consequently, of the aging on the cores.
This will lead to a lower reliability of some cores that
probabilistically will fail earlier. All these considerations are
also confirmed by Table I, which reports the mean-time to fail-
ure (MTTF) of the system computed according to the obtained
reliability curves. RA-MOC is able to obtain an improvement
in MTTF of around 23% and 22% for TDP and TSP-based
approaches with respect to the reliability-agnostic approach.
Finally, if we consider RA-MOC and RA-MOC-no-balancing,
it is possible to note that both the two techniques (reliability-
aware power allocation and reliability balancing) give a con-
tribution on the prolonging of the lifetime. RA-MOC-no-
balancing presents better results than the reliability-agnostic
MOC; then the reliability balancing technique in RA-MOC
even more improves such results. From this comparison, it is
possible to conclude that the proposed approach is able to
balance the reliability of the cores and increase the lifetime
with negligible performance penalty comparing with the state-
of-the-art reliability-agnostic solution (i.e., MOC). In fact,
MOC selects regions to apply DVFS only by means of
performance-centric metrics. In contrast, RA-MOC performs
an accurate selection by also taking into account the aging
status.

In order to better appreciate the capabilities of the proposed
approach, we take a snapshot of the reliability status of
the system after 2 years presented in Figs. 10 and 11 for
TDP and TSP, respectively. As can be seen, the reliability
distribution obtained by RA-MOC is more evenly distributed
compared with those by the other scenarios. The worst case
is when no reliability consideration is applied. Moreover, it is
interesting to observe that cores age faster while using TSP
as the power bound compared with cores while using TDP.
That is because of the fact that while using TSP, there exists
much more utilization compared to while using TDP, which
results in more power consumption and overall temperature
and stresses the cores faster. As a final note, Fig. 12 reports
the standard deviation regarding the reliability distribution for
the aforementioned scenarios in Figs. 10 and 11.

VII. CONCLUSION

In this paper, we presented a multiobjective feedback con-
troller approach to manage the power budget among the
various processing elements of a many-core system running
a highly variable workload. The feedbacks to the controller
are the processing tiles’ power–performance measurements,
the tiles aging status, application workloads, and network
congestion. Comparing the total system power with the
maximum power budget, the controller efficiently changes
the voltage and frequency of appropriate tiles to opti-
mize performance while prolonging the lifetime of the sys-
tem by avoiding stress and thermal hotspots. The results
showed enhanced system’s throughput, TDP/TSP violation,
and overall lifetime for the proposed platform compared
with state-of-the-art power management policies. Future direc-
tions will consider the integration of more advanced power
management policies also acting on the communication
subsystem and reliability-aware mapping strategies to bet-
ter prolong lifetime while not incurring much performance
penalty.

REFERENCES

[1] N. Goulding-Hotta et al., “The GreenDroid mobile application proces-
sor: An architecture for silicon’s dark future,” IEEE Micro, vol. 31, no. 2,
pp. 86–95, Mar./Apr. 2011.

[2] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” IEEE Micro,
vol. 32, no. 3, pp. 122–134, May 2012.

[3] A. M. Rahmani, P. Liljeberg, A. Hemani, A. Jantsch, and H. Tenhunen,
The Dark Side of Silicon, 1st ed. Springer, Switzerland, 2016.

[4] ITRS, International Technology Roadmap for Semiconductors, accessed
on May 27, 2016. [Online]. Available: http://www.itrs2.net/.

[5] Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang, “System-
level reliability modeling for MPSoCs,” in Proc. Conf. Hardw./Softw.
Codesign Syst. Synth. (CODES), 2010, pp. 297–306.

[6] L. Wang and K. Skadron, “Implications of the power wall: Dim cores
and reconfigurable logic,” IEEE Micro, vol. 33, no. 5, pp. 40–48,
Sep. 2013.

[7] S. Pagani et al., “TSP: Thermal safe power: Efficient power budgeting
for many-core systems in dark silicon,” in Proc. Int. Conf. Hardw./Softw.
Codesign Syst. Synth. (CODES), 2014, Art. no. 10.

[8] P. Bogdan, R. Marculescu, and S. Jain, “Dynamic power management for
multidomain system-on-chip platforms: An optimal control approach,”
ACM Trans. Design Autom. Electron. Syst., vol. 18, no. 4, 2013,
Art. no. 46.

[9] R. David, P. Bogdan, R. Marculescu, and U. Ogras, “Dynamic power
management of voltage-frequency island partitioned networks-on-chip
using intel sing-chip cloud computer,” in Proc. Int. Symp. Netw.-
Chip (NOCS), 2011, pp. 257–258.

[10] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-core
in dark silicon era,” in Proc. Design Autom. Conf. (DAC), 2013, pp. 1–9.

[11] K. Ma and X. Wang, “PGCapping: Exploiting power gating
for power capping and core lifetime balancing in CMPs,” in
Proc. Int. Conf. Parallel Architect. Compil. Techn. (PACT), 2012,
pp. 13–22.

[12] A.-M. Rahmani et al., “Dynamic power management for many-core
platforms in the dark silicon era: A multi-objective control approach,”
in Proc. Int. Symp. Low Power Electron. Design (ISLPED), 2015,
pp. 219–224.

[13] M. U. K. Khan, M. Shafique, and J. Henkel, “Power-efficient accelerator
allocation in adaptive dark silicon many-core systems,” in Proc. Int.
Conf. Design, Autom. Test Eur. (DATE), 2015, pp. 916–919.

[14] M. U. K. Khan, M. Shafique, and J. Henkel, “Hierarchical power
budgeting for dark silicon chips,” in Proc. Int. Symp. Low Power
Electron. Design (ISLPED), 2015, pp. 213–218.



440 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 25, NO. 2, FEBRUARY 2017

[15] M. Shafique, B. Vogel, and J. Henkel, “Self-adaptive hybrid dynamic
power management for many-core systems,” in Proc. Int. Conf. Design,
Autom. Test Eur. (DATE), 2013, pp. 51–56.

[16] Z. Chen and D. Marculescu, “Distributed reinforcement learn-
ing for power limited many-core system performance optimiza-
tion,” in Proc. Int. Conf. Design, Autom. Test Eur. (DATE), 2015,
pp. 1521–1526.

[17] M.-H. Haghbayan et al., “Dark silicon aware power management for
manycore systems under dynamic workloads,” in Proc. Int. Conf.
Comput. Design (ICCD), 2014, pp. 509–512.

[18] P. Mercati, F. Paterna, A. Bartolini, L. Benini, and T. S. Rosing,
“Dynamic variability management in mobile multicore processors under
lifetime constraints,” in Proc. Int. Conf. Comput. Design (ICCD), 2014,
pp. 448–455.

[19] T. Kim, B. Zheng, H.-B. Chen, Q. Zhu, V. Sukharev, and S. X.-D. Tan,
“Lifetime optimization for real-time embedded systems consider-
ing electromigration effects,” in Proc. Int. Conf. Comput.-Aided
Design (ICCAD), 2014, pp. 434–439.

[20] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45 nm CMOS,” in Int. Solid-State Circuits Conf. Dig. Tech.
Papers (ISSCC), 2010, pp. 108–109.

[21] Kalray. Kalray MPPA Manycore, accessed on May 27, 2016. [Online].
Available: http://www.kalrayinc.com/

[22] M. Fattah, M. Daneshtalab, P. Liljeberg, and J. Plosila, “Smart hill
climbing for agile dynamic mapping in many-core systems,” in Proc.
Design Autom. Conf. (DAC), 2013, pp. 1–6.

[23] K. K.-W. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu, “HAT:
Heterogeneous adaptive throttling for on-chip networks,” in Proc. Int.
Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD), 2012,
pp. 9–18.

[24] A. Y. Weldezion et al., “Scalability of network-on-chip communication
architecture for 3-D meshes,” in Proc. Int. Symp. Netw.-Chip (NOCS),
2009, pp. 114–123.

[25] J. Blome, S. Feng, S. Gupta, and S. Mahlke, “Self-calibrating online
wearout detection,” in Proc. Int. Symp. Microarchitecture (MICRO),
2007, pp. 109–122.

[26] Failure Mechanisms and Models for Semiconductor Devices,
document JEP122G, JEDEC Solid State Tech. Association,
2010.

[27] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele, “A light-
weight and open-source framework for the lifetime estimation of mul-
ticore systems,” in Proc. Int. Conf. Comput. Design (ICCD), 2014,
pp. 166–172.

[28] L. A. Barroso and U. Holzle, “The case for energy-
proportional computing,” Computer, vol. 40, no. 12, pp. 33–37,
Dec. 2007.

[29] O. Bilgir, M. Martonosi, and Q. Wu, “Exploring the potential of
CMP core count management on data center energy savings,” in Proc.
Workshop Energy Efficient Design, 2011, pp. 1–7.

[30] C. Silvano, G. Palermo, S. Xydis, and I. Stamelakos, “Voltage island
management in near threshold manycore architectures to mitigate dark
silicon,” in Proc. Int. Conf. Design, Autom. Test Eur. (DATE), 2014,
pp. 1–6.

[31] V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, “Noxim:
An open, extensible and cycle-accurate network on chip simulator,”
in Proc. Int. Conf. Appl.-Specific Syst., Archit. Process. (ASAP), 2015,
pp. 162–163.

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc. Int.
Symp. Microarchitecture (MICRO), 2009, pp. 469–480.

[33] L. Wang and K. Skadron, “Dark vs. dim silicon and near-threshold
computing extended results,” Dept. Comput. Sci., Univ. Virginia,
Charlottesville, VA, USA, Tech. Rep. TR-2013-01, 2012.

[34] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 94–125, Mar. 2004.

[35] TGG: Task Graph Generator, accessed on Apr. 4,2013. [Online].
Available: http://sourceforge.net/projects/taskgraphgen/

[36] M. Fattah, M. Ramirez, M. Daneshtalab, P. Liljeberg, and J. Plosila,
“CoNA: Dynamic application mapping for congestion reduction in
many-core systems,” in Proc. Int. Conf. Comput. Design (ICCD), 2012,
pp. 364–370.

Amir M. Rahmani (M’08) received the M.Sc.
degree from the University of Tehran, Tehran, Iran,
in 2009, the Ph.D. degree from the Department of
Information Technology, University of Turku, Turku,
Finland, in 2012, and the M.B.A. degree jointly
from the Turku School of Economics, Belgium,
University of Turku, Belgium and European Institute
of Innovation and Technology ICT Labs in 2014.

He is currently a University Teacher with the
University of Turku. He is co-leading three Academy
of Finland projects entitled MANAGE, InterSys, and

SPA. His current research interests include energy-efficient and dependable
computing, parallel and distributed systems, and Internet-of-Things.

Mohammad-Hashem Haghbayan (S’14) received
the B.A. degree in computer engineering from the
Ferdowsi University of Mashhad, Mashhad, Iran,
and the M.S. degree in computer architecture from
the University of Tehran, Tehran, Iran. He is cur-
rently pursuing the Ph.D. degree with the Univer-
sity of Turku, Turku, Finland. His current research
interests include high-performance energy-efficient
architectures, power management techniques, and
online/offline testing.

Antonio Miele (M’12) received the
M.Sc. degree in computer science from the
University of Illinois at Chicago, Chicago, IL,
USA, in 2006, and the M.S. degree in computer
engineering and the Ph.D. degree in information
technology from the Politecnico di Milano, Milan,
Italy, in 2006 and 2010, respectively.

He is an Assistant Professor with the Politecnico
di Milano since 2014. His research interests include
the design of dependable embedded systems,
run-time resource management in multi-/many-core

systems and reconfigurable systems.

Pasi Liljeberg (M’09) received the M.Sc. and
Ph.D. degrees in electronics and information
technology from the University of Turku, Turku,
Finland, in 1999 and 2005, respectively.

He was an Academy of Finland Researcher
from 2007 to 2009. He is currently the Leader of the
Internet-of-Things for Healthcare Research Group.
He is currently an Adjunct Professor of Embedded
Computing Architectures with the Embedded Com-
puter Systems Laboratory, University of Turku.

Axel Jantsch (M’97) received the Dipl.-Ing and
Dr.Tech. degrees from the Vienna University of
Technology, Vienna, Austria.

He was a Professor of Electronic System Design
with the Royal Institute of Technology, Stockholm,
Sweden. He is currently a Professor of System-
on-Chip with the Vienna University of Technology.
His current research interests include VLSI design
and synthesis, system-level specification, modeling
and validation, HW/SW co-design and co-syntheses,
reconfigurable computing, and networks-on-chip.

Hannu Tenhunen (M’83) received the Diploma
degree from the Helsinki University of Technology,
Espoo, Finland, in 1982, and the Ph.D. degree from
Cornell University, Ithaca, NY, USA, in 1986.

He joined the Signal Processing Laboratory,
Tampere University of Technology, Tampere, Fin-
land, as an Associate Professor in 1985, where
he later served as a Professor and the Department
Director. Since 1992, he has been a Professor with
the KTH Royal Institute of Technology, Stockholm,
Sweden, where he also served as the Dean. He has

authored over 600 publications and 16 patents.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


