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Abstract. The interest in high performance chip architectures for biomedical 
applications is gaining a lot of research and market interest. Heart diseases 
remain by far the main cause of death and a challenging problem for biomedical 
engineers to monitor and analyze. Electrocardiography (ECG) is an essential 
practice in heart medicine. However, ECG analysis still faces computational 
challenges, especially when 12 lead signals are to be analyzed in parallel, in real 
time, and under increasing sampling frequencies. Another challenge is the 
analysis of huge amounts of data that may grow to days of recordings. 
Nowadays, doctors use eyeball monitoring of the 12-lead ECG paper readout, 
which may seriously impair analysis accuracy. Our solution leverages the 
advance in multi-processor system-on-chip architectures, and it is centered on 
the parallelization of the ECG computation kernel. Our Hardware-Software 
(HW/SW) Multi-Processor System-on-Chip (MPSoC) design improves upon 
state-of-the-art mostly for its capability to perform real-time analysis of input 
data, leveraging the computation horsepower provided by many concurrent 
DSPs, more accurate diagnosis of cardiac diseases, and prompter reaction to 
abnormal heart alterations. The design methodology to go from the 12-lead 
ECG application specification to the final HW/SW architecture is the focus of 
this paper. We explore the design space by considering a number of hardware 
and software architectural variants, and deploy industrial components to build 
up the system. 

Keywords: Multiprocessor System-on-Chip, embedded system design, 
HW/SW, electrocardiogram algorithms, real-time analysis, hardware space 
exploration. 
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1   Introduction 

Despite the ongoing advances in heart treatment, in the United States [1] and Canada 
[2] as well as in many other countries, the various forms of cardiovascular disease 
(CVD) and stroke remain by far the number one cause of death for both men and 
women regardless of ethnic backgrounds. According to the World Health 
Organization (WHO) Report in 2003, 29.2% of total global deaths are due to CVD, 
many of which are preventable by action on the major primary risk factors and with 
proper monitoring [1].  It is estimated that by 2010, CVD will be the leading cause of 
death in developing countries. Since the rate of hospitalization increases with age for 
all cardiac diseases [3], a periodic cardiac examination is recommended. Hence, more 
efficient methods of cardiac diagnosis are desired to meet the great demand on heart 
examinations. However, state-of-the-art biomedical equipment for heartbeat sensing 
and monitoring lacks the ability of providing large-scale analysis and remote, real-
time computation at the patient’s location (point of need). The intention of this work 
is to use MPSoC microelectronic technology to meet the growing demand for 
telemedicine services, especially in the mobile environment. The project attempts to 
address the existing problem of reducing the costs for hospitals/medical-centers 
through using MPSoC-based designs that may replace biomedical machines and have 
higher quality, reduce the nurse’s and doctor’s work-load, and improve the quality of 
healthcare for patients suffering from heart diseases by exploring one potential 
solution. From the hospital side, deploying this solution will further reduce the costs 
of rehabilitating and following up on patients “primary care” since it allows better 
home-care. Home-care ensures continuity of care, reduces hospitalization costs, and 
enables patients to have a quicker return to their normal life styles. From a technical 
viewpoint, real-time processing of ECG data would allow a finer-granularity analysis 
with respect to the traditional eyeball monitoring of the paper ECG readout. 
Eventually, warning or alarm signals could be generated by the monitoring device and 
transmitted to the healthcare center via telemedicine links, thus allowing for a 
prompter reaction of the medical staff. In contrast, heartbeat monitoring and data 
processing are traditionally performed at the hospital, and for long monitoring periods 
a huge amount of collected data must be processed offline by networks of parallel 
computers. New models of healthcare delivery [2] are therefore required, improving 
productivity and access to care, controlling costs, and improving clinical outcomes. 
This poses new technical challenges to the design of biomedical ECG equipment, 
calling for the development of new integrated circuits featuring increased energy 
efficiency while providing higher computation capabilities. 

The fast evolution of biomedical sensors and the trend in embedded computing are 
progressively making this new scenario technically feasible. Sensors today exhibit 
smaller size, increased energy efficiency and therefore prolonged lifetimes (up to 24 
hours) [4], higher sampling frequencies (up to 10 kHz for ECG) and often provide for 
wireless connectivity. Unfortunately, a mismatch exists between advances in sensor 
technology and the capabilities of state-of-the-art heart analyzers [5][6][7]. They 
cannot usually keep up with the data acquisition rate, and are usually wall-plugged, 
thus preventing for mobile monitoring. On the contrary, the deployment of wearable 
devices such as SoC devices has to cope with the tight power budgets of such devices, 
potentially cutting down on the maximum achievable monitoring period. In this paper 
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we propose a wearable multi-processor biomedical-chip for electrocardiogram 
(MPSoC ECG biochip) paving the way for portable real-time electrocardiography 
applications targeting heart disorders. The biochip leverages the computation 
horsepower provided by many (up to twelve) concurrent DSPs and is able to operate 
in real-time while performing the finest granularity analysis as specified by the ECG 
application. Moreover, in case of heart failure emergency aid should arrive in a period 
of few minutes from the time when the heart failed, otherwise brain damage may 
occur. Hence, real time analysis must be done in few seconds to allow the alarm 
signal to reach the emergency aid team, which should act immediately. The biochip 
system builds upon some of the most advanced industrial components for MPSoC 
design (multi-issue VLIW DSPs, high-throughput system interconnect and 
commercial off-the-shelf biomedical sensors), which have been composed in a 
scalable and flexible platform. Therefore, we have ensured its reusability for future 
generations of ECG analysis algorithms and its suitability for porting of other 
biomedical applications, in particular those collecting input data from wired/wireless 
sensor networks [8].  

This article builds upon the results of a paper from the ACM International 
Conference on Computing Frontiers 2006 [9]. We present our investigation that goes 
through all the steps of the design process, from application functional specification to 
hardware modeling and optimization. System performance has been validated through 
functional, timing accurate simulation on a virtual platform. We point out the need for 
simulation abstractions matching the application domain. A 0.13μm technology-
homogeneous power estimation framework leveraging industrial power models is 
used for power management considerations [10][11]. The paper presents the process 
of software functional specification, optimization and parallelization, as well as the 
results of the hardware design space exploration, which leads to the final 
performance- and energy-optimized solution. 

2   Biomedical Background 

The electrocardiogram (ECG) is an electrical recording of the heart activity that is 
used as a diagnosis tool by physicians and doctors to check the status of the heart. The 
most commonly used way to detect the heart status is the 12-lead ECG technique. 
This technique uses nine sensors on the patient's body (Fig. 1).  The three main 
sensors are distributed by: placing one sensor on the left arm (LA), a second sensor on 
the right arm (RA), and a third sensor on the left leg (LL). The right leg (RL) is 
connected by only a wire to be used as ground for the interconnected sensors. By only 
having these three sensors physicians can use a method known as the 3-lead ECG, 
which suffers from the lack of information about some parts of the heart but is useful 
for some emergency cases to have quick analysis. In this respect, medical doctors 
require more sensors (i.e., more leads).  Hence, six more sensors (V1-V6) are added 
on the chest (Fig. 1). The voltages V1-V6 are measured with respect to Ground (G) 
on the right leg (RL). In some cases, physicians use these six chest-placed sensors to 
analyze the heart. Using all the nine sensors and interconnecting them for the 12-lead 
ECG gives twelve signals known in biomedical terms as: Lead I, Lead II, Lead III, 
aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6 (Fig. 1). The 12-lead ECG produces 
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huge amounts of data especially when used for a long number of hours. Physicians 
use the 12-lead ECG method, because it allows them to view the heart in its three 
dimensional form; thus, enabling detection of any abnormality that may not be 
apparent in the 3-lead or 6-lead ECG technique. Fig. 2 shows an explanatory example 
of a typical ECG signal. The most important points on the ECG signal are the peaks: 
P, Q, R, S, T, and U. Each of these peaks is related to a heart action that is of 
importance to the medical analysis. Figure 3 shows real recorded signals from 12-
leads, which are printed on the eyeballing paper.  
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Fig. 1. 12-lead ECG: RA, LA, LL, & RL are the right arm, left arm, left leg, and right leg  
sensors; RL is grounded (G) 
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This paper printout is the classical medical technique used for looking at ECG signals, 
and it is still used. However, the eyeballing paper print makes the check of the 
different heart peaks and rhythms difficult and inaccurate due to its dependence on the 
physician’s eyes. On the other hand, when using digital recording and filtering we can 
determine the peaks more accurately. Consequently, we can use digital computing to 
process the sensed data and analyze the heart beat. In addition, there are normal 
medical ranges for the inter-peak time intervals, and every combination of different 
inter-peak intervals proves a type of heart illness. The most important of the peaks is 
the R peak, which refers to the largest heart blood pump.  

3    Previous Work 

Electrocardiogram methods for heart analyses have been one of the most important 
medical practices, hence, the monitoring and analyses of ECG signals have not only 
gone through a lot of research work, but also many companies have investigated and 
worked on commercial solutions. 

However, we are not aware of any solution in the research or the commercial 
markets that is composed of a single-chip real-time analysis solution for full 12-lead 
ECG, and that is able to estimate the heart period independent of the peak signals and, 
at the same time diagnose all the peaks: P, Q, R, S, T and U and their inter-peak 
intervals to result in disease diagnosis. Most of the work done involves only recording 
huge amounts of data in large storage media and then analyzing the stored data, but 
not allowing the ease of patient mobility. Most of the time, the patient has to be 
confined to a bed for a number of hours (could be for a whole day). Some commercial 
solutions are only capable of concluding if the heart beat is normal or abnormal but 
can not specify the period nor could they diagnose the disease. Other real time 
solutions available in the market, in healthcare institutes, and in research 
organizations, are only capable of sensing and transmitting ECG data [12] to: either a 
local machine [13] or to a distant healthcare center [14]. In both cases, the work that 
is executed involves checking if the heart beat is healthy or unhealthy without 
analyzing the disease and not in real-time. Moreover, the commercial solutions under 
study [15] do not look into the parallelization of the ECG analysis into multiple cores, 
so to speed up processing. 

4   Sensing and Filtering Stage 

ECG analysis requires three main phases: (i) acquiring the signals from the leads, (ii) 
filtering the lead-signals (each alone), and (iii) analysis (Fig. 4). Firstly, the sensing 
phase requires an A/D converter in order to be able to have digital data for our digital 
filter. We use 16 bit A/D converters, because our analysis algorithm and ECG biochip 
are designed based on having 16-bit filtered data as input. We briefly discuss the 
filtering method we use as an essential part of our proposed solution, and then we 
discuss the biochip design that depends on this filtering step.  
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The high investment in sensor technology and biomedical research in general gave 
the birth to biomedical sensors that have more advanced features than the commercial 
available ones just a few years ago. For instance, the nowadays sensors are 
characterized by prolonged lifetimes (up to 24 hours), and higher sampling 
frequencies (up to 10 kHz for ECG). Some sensor companies have produced wireless 
biomedical sensors in order to aid patient mobility [4]. This advance in biomedical 
sensors faces a mismatch with biomedical heartbeat analyzers that still lack behind to 
cope with the huge amounts of data, the high rates, and the wireless features that 
modern sensors can provide [6]. In our work, many sensors may be chosen, and for 
the moment we choose the sensors that can serve our real-time aim and that have 
reasonable prices for the market success of the solution, hence we choose the state of 
the art commercial sensor from Ambu Inc. silver/silver chloride ”Blue Sensor R” [4] 
shown in Fig. 4. It is characterized by: 24 hour lifetime, superior adhesion, optimal 
signal measuring during stress tests. It is small to carry (57mm x 48mm), and it is 
easily wearable. 

On the other hand, even the state of the art sensors suffer from the usual problems 
that most biomedical sensors suffer from. For instance, data provided by biomedical 
sensors suffers from several types of noise: physiological variability of QRS 
complexes (The QRS Complex is shown in Fig. 2), baseline wander, muscle noise, 
artifacts due to electrode motion, power-line interference [16]. The presence of 
several noise sources might impair ECG analysis accuracy, as showed in the R-Peak 
detection marked by circled areas in Fig. 5. Two peaks may be detected where there 
should be only one. In order to deal with noisy input signals, we designed an IIR filter 
with order 3 that outputs its results in 16-bit binary format (Fig. 4). 

However, we need to be aware of the fact that we want to look in our solution at 
high sampling frequencies (250Hz, 1000Hz and above), because we want to: (a) make 
use of the available accuracy of the state of the art sensors, (b) have finer granularity 
of data, and (c) get more accurate analysis since in some cases more data samples are 
needed to discover a disease; like, for instance, the medical case known as the R on T 
phenomena [17], where the R and the T peaks are very near in time so we need a very 
high number of samples and an intelligent algorithm to discover them. Moreover, it is 
extremely important to choose a sampling frequency that minimizes the risk of 
aliasing. The highest frequency needed for the ECG signal is 90Hz (due to the 
medical frequencies of the heart), which implies that the lowest sampling frequency 
that can be used is equal to the Nyquist rate (180Hz). However, in order to sample at 
such a frequency, the analogue signal has to be band limited to 90Hz, which can be 
achieved by the use of a complex analogue bandpass filter with a very sharp 
frequency response. This solution, although advantageous on limiting the amount of 
data to be stored, has a disadvantage on the analogue side, since the bandpass filter, 
being complex in order to meet the sharpness requirement, will probably have a 
considerable power consumption.  An alternative solution would be to sample at a 
frequency much higher than the Nyquist rate, such that the analogue bandpass filter 
can have a relaxed frequency response, while still effectively filtering out the 
frequencies that would cause aliasing during sampling. For instance, by choosing a 
sampling frequency of 5kHz, all frequencies beyond 2.5kHz would have to be filtered 
out before sampling, but that task is simpler than before, since all frequencies between 
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90Hz and 2.5kHz can be attenuated without affecting the data needed for analysis. 
After sampling, band limitation to 90Hz can be implemented using a digital filter. 
This approach has the advantage of using a lower-complexity bandpass filter, and 
reducing considerably the risk of aliasing and folding. Moreover, increasing the 
number of samples increases the accuracy of the sample, and makes the overall 
filtered signal smoother when used for analysis.  

Our IIR filter is built to deal with these problems. Another main advantage of using 
the IIR filter is to eliminate the noise that is directly proportional to the DC offset of 
the sensed ECG [16], which is around 0.1mv. The two plots in Fig. 5 clearly show 
how the filtering algorithm remedies this problem. In our implementation, the filter is 
implemented in hardware on a dedicated chip feeding the external SDRAM memory 
of our biochip. Our filter is the convolution of the noisy signal with the filter impulse 
response given in (1): 

[ ] [ ] [ ]∑ −×=
k

knxkhny . (1) 

where, x[n] is the noisy signal, h[n] is the filter impulse response, and n is the sample 
index. This filter in (1) is also an infinite impulse response (IIR, Chebyschev filter), 
so it can be written as (2): 

[ ] [ ] [ ] [ ] [ ]∑∑
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where, y is the output of the filter and x is the input, b is the vector that contains the 
filter coefficients for signal x, and a is the vector that contains the filter coefficients 
for output y.  

 

Fig. 4. The System for sensing and filtering of ECG lead signals before sending data to the 
ECG Biochip for analysis. Blue Sensor R is from Ambu Inc. [4]. 
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Fig. 5. ECG raw and filtered data (lead I) 

can improve our filter (when needed) by simply knowing the needed values of the 
coefficients in vectors a[.] and b[.]. 

5   ECG Algorithm 

Most ECG systems make use of the Pan-Tompkins analysis algorithm [18], which 
targets QRS complexes (Fig. 2) detection and consists of the cascade of four filters: 
(i) band pass, (ii) differentiator, (iii) squaring operation, and (iv) a moving window 
integrator. In principle, traditional ECG analysis starts from a reference point in the 
heart cycle (the R-peak is commonly used as the reference point). As a 
consequence, accurate detection of the R-peak of the QRS complex is a prerequisite 
for the reliable functionality of ECG analyzers [18]. However, as an effect of ECG 
signal high variability, R-peak detection might be inaccurate. For instance, in the R 
on T phenomena, a T peak may be wrongly taken for an R peak, and then the R-T 
interval will be considered as an R-R interval, and the period will be wrong. Hence, 
other QRS parameters will be consequently inaccurate. As a result, traditional 
techniques may fail in detecting some serious heart disorders such as the R-on-T 
phenomenon (associated with premature ventricular complexes) [17]. 

Our approach takes a different perspective: instead of looking for the R-peaks 
and then detecting the period, we detect the period first (via autocorrelation) and 
then look for the peaks. We use an autocorrelation function (ACF) to calculate the 
heartbeat period without looking for peaks. Then, we can restrict our analysis to a 
time window equal to the period and detect all peaks. Although potentially more 
accurate, our algorithm incurs a higher computational complexity: 3.5 million 
multiplications, which have been reduced to 1.75 million through a number of code 

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6
-0.4

-0.2

0

0.2

0.4

0.6

Time (sec)

V
ol

ta
ge

 (
m

V
)

Q

P

R

S

T
U

Sensor Raw Data

Filtered Data

Two confusing R peaks before filtering 

One clear R peak after filtering 



 Hardware/Software Architecture for Real-Time ECG Monitoring 247 

(SW) optimizations. The single-chip multiprocessor architecture that will be 
selected for the practical implementation of the algorithm will provide the scalable  
computation horsepower needed for the highly accurate ECG analysis that we are 
targeting. The autocorrelation we use, as shown in (3), has a certain number of Lags 
(L) to minimize the computation for our specific application as discussed below. 
We validated our algorithm over several medical traces [19][20].  

[ ] [ ] [ ]∑
∞=

−∞=

−×=
n

n
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where Ry is the autocorrelation function, y is the filtered signal under study, n is the 
index of the signal y, and k is the number of lags of the autocorrelation (L has an 
effect on the performance due to the high number of multiplications). 

We run the experiments for n = 1250, 5000 and 50,000 relative to the sampling 
frequencies of 250, 1000, and 10,000Hz, respectively. In order to minimize errors 
and execution time we use the derivative of the ECG filtered signal since if a 
function is periodic then its derivative is periodic. Hence the autocorrelation 
function of the derivative can give the period as shown in Fig. 6. In order to be able 
to analyze ECG data in real-time and to be reactive in transmitting alarm signals to 
healthcare centers (in less than 1 minute), a minimum amount of acquired data has 
to be processed at a time without losing the validity of the results. For the heart beat 
period, we need at least 4 seconds of ECG data in order for the ACF to give correct 
results.  

The autocorrelation function is deployed within the algorithm shown in Fig. 7, 
which computes the required medical parameters: heart period, peaks P, Q, R, S, T, 
and U, and inter-peak time spans. Peak heights and inter-peak time ranging outside 
normal values, which indicates different kinds of diseases, are detected with our 
algorithm. From a functional viewpoint, the algorithm consists of two separate 
execution flows: one that finds the period using the autocorrelation function (process 
1 in Fig. 7), and another one that finds the number, amplitude and time interval of the 
peaks in the given 4-second ECG data (process 2 in Fig. 7). In process 1, we firstly 
find the discrete derivative of the ECG signal.  

This will not affect the analysis since the derivative of a periodic signal is 
periodic with the same period. The advantage of taking the derivative, and thus 
adding some overhead to the code, is that the fluctuations taking place in the signal 
and especially those around the peaks would be reduced to a near-zero-value. 
Moreover, performance overhead associated with derivative calculation of the ECG 
signal is negligible compared to the rest of the algorithm, especially the 
autocorrelation part. Finally, if the original signal is periodic, then the 
autocorrelation of the derivative of the signal is periodic by definition, with the 
same period as that of the original signal under test. In process 2, a threshold is used 
to find the peaks. This threshold was experimentally set to 60% of the highest peak 
in the given search interval. 
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Fig. 6. Heart period analysis: (a) ECG signal peaks P, Q, R, S, T, and U; (b) derivative 
amplifying R peaks; (c) autocorrelation of the derivative characterized by significant periodic 
peaks having the same value as the period of the ECG signal in (b) and thus (a) 
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Fig. 7. The Autocorrelation function-based methodology for ECG analysis 

Our proposed ECG-analysis algorithm was conceived to be parallel and hence 
scalable from the ground up. Since each lead senses and analyzes data independently, 
each lead can then be assigned to a different processor. So, to extend ECG analysis to 
15-lead ECG or more, then what is required is to change the number of processing 
elements in the system. Alternatively, more leads can be processed by the same 
processor core provided the real-time requirements are achieved. 

6   MPSoC Architecture 

In order to process filtered ECG data in real-time, we chose to deploy a parallel 
Multi-Processor System-on-Chip architecture. The key point of these systems is to 
break up functions into parallel operations, thus speeding up execution and allowing 
individual cores to run at a lower frequency with respect to traditional monolithic 
processor cores. 

Technology today allows the integration of tens of cores onto the same silicon die, 
and we therefore designed a parallel system with up to 13 masters and 16 slaves (see 
Fig. 8).  Since we are targeting a platform of practical interest, we chose advanced 
industrial components [21]. The processing elements are multi-issue VLIW DSP 
cores from STMicroelectronics, featuring 32KB instruction and data caches. 
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Processor speed can achieve 400 MHz, although 200 MHz can be preferred in more 
power-aware solutions. These cores leverage the flexibility of programmable cores 
and the computation efficiency of DSP cores. Each processor core has its own private 
memory (512KB each), which is accessible through the bus, and can access an on-
chip shared memory (8KB are enough for this application) for storing computation 
results. Other relevant slave components are a semaphore slave, implementing the 
test-and-set operation in hardware and used for synchronization purposes by the 
processors or for accessing critical sections, and an interrupt slave, which distributes 
interrupt signals to the processors. Interrupts to a certain processor are generated by 
writing to a specific location mapped to this slave core. The STBus interconnect from 
STMicroelectronics was instantiated as the system communication backbone. STBus 
can be instantiated both: as a shared bus or as a partial or full crossbar, thus allowing 
efficient interconnect design and providing flexible support for design space 
exploration. Bus frequency is 200 MHz. 

In our first implementation, we target a shared bus to reduce system complexity 
(see Fig. 8) and assess whether application requirements can already be met or not 
with this configuration. We then explore also a crossbar-based system, which is 
sketched in Fig. 9. The inherent increased parallelism exposed by a crossbar topology 
allows decreasing the contention on shared communication resources, thus reducing 
overall execution time.  In our implementation, only the instantiation of a 3x6 
crossbar was interesting for the experiments. We put a private memory on each 
branch of the crossbar, which can be accessed by the associated processor core or by a 
DMA engine for off-chip to on-chip data transfers. Finally, we have a critical 
component for system performance which is the memory controller. It allows efficient 
access to the external 64MB SDRAM off-chip memory. A DMA engine is embedded 
in the memory controller tile, featuring multiple programming channels. The 
controller tile has two ports on the system interconnect: one slave port for control and 
one master port for data transfers. The overall controller is optimized to perform long 
DMA-driven data transfers. Embedding the DMA engine in the controller has the 
additional benefit of minimizing overall bus traffic with respect to traditional 
standalone solutions. Our implementation is particularly suitable for I/O intensive 
applications such as the one we are targeting in this work.  

In the above description, we have reported the worst case system configurations. In 
fact, fewer cores can be easily instantiated if needed. In contrast, this architectural 
template is very scalable and allows for further future increase in the number of 
processors. This will allow to run in real time even more accurate ECG analyses for 
the highest sampling frequency available in sensors (10,000Hz, and 15 leads, for 
instance), since this platform is able to provide scalable computational power. The 
entire system has been simulated by means of the MPSIM simulation environment  
[21], which provides for cycle-accurate functional simulation of complete MPSoCs at 
a maximum simulation speed of about 200Kcycles/second (running on a P4 at 
3.5GHz). The simulator provides also a power characterization framework leveraging 
0.13μm technology-homogeneous industrial power models from STMicroelectronics 
[10][11]. We believe that for life-critical applications such as ECG real-time analysis, 
it is important to conduct low-level accurate simulations in order to perfectly 
understand system level behavior and have a predictable system with minimum 
degrees of uncertainty.   
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Fig. 8. Single bus architecture with STBus interconnect 

Each processor core programs the DMA engine to periodically transfer input data 
chunks onto their private on-chip memories. Moved data typically corresponds to 4 
seconds of data acquisition at the sensors: 10KB at 1000Hz sampling frequency, 
transferred on average in 319279 clock cycles (DMA programming plus actual data 
transfer) on a shared bus with 12 processors. The consumed bus bandwidth is about 
6MBytes/sec, which is negligible for an STBus interconnect, whose maximum 
theoretical bandwidth with 1 wait state memories exceeds 400Mbyte/sec. Then each 
processor performs computation independently, and accesses its own private memory 
for cache line refills.  Different solutions can be explored, such as processing more 
leads onto the same processor, thus impacting the final execution time. Output data, 
amounting to 64 bytes, are written to the on-chip shared memory, but their 
contribution to the consumed bus bandwidth is negligible. In principle, when the 
shared memory is filled beyond a certain level, its content can be swapped by the 
DMA engine to the off-chip SDRAM, where the history of 8 hours of computation 
can be stored. Data can also be remotely transmitted via a telemedicine link. 

 

Fig. 9. Crossbar architecture with STBus interconnect. Low-bandwidth slaves have been 
grouped to the same crossbar branch (partial crossbar concept). 
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7   Experimental Results 

The first analysis was done to profile the execution of the code and to determine the 
best coding solution in terms of energy, execution time, and precision. Furthermore, 
we have explored the design space searching for the best platform configuration for 
the 12-lead ECG data analysis. Alternative system configurations have been devised 
for different levels of residual battery lifetime, trading off power with accuracy. 

7.1   Floating Point vs. Fixed Point Code 

We ran two different code implementations: (a) one using floating point variables and 
(b) one using fixed point integers [22] with an exponent of 22. Fig. 10 shows the 
results for the two different code implementations from time (execution time) and 
energy (relative) points of view. The ST220 processor core runs at 200MHz. We have 
performed the analysis for 3, 6 and 12 leads; furthermore we process each lead on a 
separate core. 

We found that the precision of the results obtained with fixed point code, by using 
64 bit integer data types representation, almost matches the results obtained with 
floating point code for a large number of input data traces. On the contrary, the time 
needed to process data, and also the energy required, decreases up to 5 times. This is 
mainly due to the fact that, like many commercial DSPs, our processor cores do not 
have a dedicated floating point unit. Therefore, floating point computations are 
emulated by means of a C software library linked at compile time. Fig. 10 also shows 
that even with 12 concurrent processors, the bus is not saturated, since we observe 
negligible effects on the stretching of task execution times. In contrast, adding more 
processors determines a linear increase in energy dissipation. 
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Fig. 10. Comparison between different code implementations for the analysis of the 3-lead, 6-
lead and 12-lead ECG. Data analysis for each lead is computed on a separate processor core. 
Sampling frequency of input data was 250Hz. System operating frequency was 200 MHz. 
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7.2   Comparison Between Processor Cores 

We then compared the performance of an ARM7TDMI with the ST220 DSP core, in 
order to assess the relative performance of the chosen VLIW DSP core with respect to 
a reference and popular architecture for general purpose computing, when put at work 
to process the computation kernel of our specific application. In order to have a safe 
comparison, we set similar dimensions of the cache memory (32KB) for the two 
solutions, and we run two simulations for the processing of one ECG-Lead at 250Hz 
sampling frequency. We count execution cycles to make up for the different clock 
frequencies. 

We adopt this single-core solution, since our first aim is to investigate the 
computation efficiency of the two cores for our specific biomedical application, and 
de-emphasize system level interaction effects such as synchronization mismatches or 
contention latency for bus access. In Fig. 11, we can observe that the ST220 DSP 
proves more effective both in execution time and energy consumption, as expected. In 
detail, the ARM core is 9 times slower than the ST220 in terms of execution time, and 
it consumes more than twice the energy incurred by the DSP. These results can be 
explained based on three considerations: 
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Fig. 11. Comparing ARM7TDMI with ST200 DSP performances, when processing 1 Lead at 
250Hz sampling frequency 

• The ST220 has better software development tools, which result in a smaller 
executable code. The size of the executable code for the ARM is 1.7 times larger 
than that of the ST220. 

• The ST220 is a VLIW DSP core, therefore it is able to theoretically achieve the 
maximum performance of 4 instructions per cycle (i.e., 1 bundle). 

• A metric which is related to both previous considerations is the static instructions 
per-cycle, which depends on the compiler efficiency and on the multi-pipeline 
execution path of the ST220. For our application, this metric turns out to be 2.9 
instructions-per-bundle for ST220. 
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7.3   Allocation of Computation Resources 

Based on previous findings (Sect. 7.1 and Sect. 7.2), we will adopt a HW/SW 
architecture consisting of the ST220 DSP core and a fixed point coding 
implementation of the algorithm for the experiments that follow. The ST220 will be 
operated at its typical frequency of 400MHz, while the rest of the system will run at 
200 MHz. We now want to optimally configure the system to satisfy the application 
requirements at the minimum hardware cost. We therefore measure the execution 
time and the energy dissipation for an increasing number of DSP cores in order to find 
the optimal configuration of the system. Since commercially available ECG solutions 
target sampling frequencies ranging from 250 to 1000Hz, we performed the 
exploration for these two extreme cases for the 12-lead ECG signal. We analyze a 
chunk of 4secs of input data, which provides a reasonable margin for safe detection of 
heartbeat disorders. 

Figure 12 shows that if we increase the number of processors, the execution time 
scales almost linearly, at least up to 6 processors. After that, we observe diminishing 
returns in increasing system parallelism. Since the real-time requirement of 4 seconds 
for the overall computation is largely met, we conclude that in the range of interest 
(up to 6 processors) second order effects typical of multi-processor systems (e.g., bus 
contention reducing the offered bandwidth to the processor cores with respect to the 
requested one) are negligible. A single shared bus and even a single processor core 
are well suited for this case.  

However, this does not mean that the amount of data moved across the bus is 
negligible. This data is, however, read by the processor cores throughout the entire 
execution time, thus absorbing only a small portion of the bus bandwidth. In this 
regime, bus performance is still additive, i.e. the bus delivers a bandwidth which 
equals the sum of the bandwidth requirements of the processor cores. 
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Fig. 12. Execution Time and relative energy of the system with an increasing number of DSPs 
and input data sampled at 250Hz sampling frequency. System interconnect is a shared bus. 

Moreover, the good scalability of the application is also due to memory controller 
performance. In fact, at the beginning of the computation each processor loads 
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processing data from the off-chip to the on-chip memory, hence, requiring peak 
memory controller bandwidth. The architecture of the memory controller proves 
capable of providing the required bandwidth in an additive fashion.  

By looking at the 1000Hz plot (Fig. 13), we observe that for the single processor 
case, the time it takes for a DSP to process 12 leads increases by more than 15 times 
with respect to the 250Hz case. Energy has increased as well by 90%. We still have 
about 1 second margin before the deadline (4 seconds), which is enough to perform 
additional analysis of the results of the individual lead-computations and converge to 
a diagnosis based on computed heartbeat parameters. 

In case a larger margin is needed, the increased workload can be effectively tackled 
by activating a larger number of processor cores. This comes at smoother energy 
degradation than the 250 Hz case, as showed in Fig. 13 (for the 1kHz sampling 
frequency). The larger number of energy consuming cores is better amortized by the 
savings on application execution. 

Although even for the 1kHz case, 1 DSP already meets the real-time requirements, 
the inherent parallelism of our architecture is useful in many senses. Firstly, when the 
margin to the deadline is too tight to run a complex diagnosis algorithm, the execution 
time can be reduced by using more processors. Secondly, working with a large 
number of processors allows sustaining higher sampling frequencies than 1kHz and 
more complex algorithms for high accuracy analysis. Thirdly, more processors can 
help save power, since instead of running one processor at full-speed, we may want to 
run more processors at reduced speeds thus cutting down on overall system energy. 
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Fig. 13. Execution Time and relative energy of the system with an increasing number of DSPs 
and input data sampled at 1000Hz sampling frequency. System interconnect is a shared bus. 

An overview of the performance and energy overhead that is incurred when moving 
from 250Hz to 1000kHz sampling frequencies of input data is reported in Fig. 14. 
Interestingly, the performance plot shows a constant 15x increase in computation time 
up to 4 processors. In the 6 processor case, the larger amount of data which needs to 
be transferred on the bus by each processor (due to data over-sampling) determines an 
increase of bus access times and therefore a longer execution time. As we push 
system parallelism to the limit, we observe (see the 12 DSPs case) that the 
computation workload is fully parallelized, and a huge but unique peak bandwidth is 
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requested to the bus. Moving from 1 DSP to 12 DSPs, we move from 12 null 
contention bandwidth peaks to a single, heavy contention peak. This traffic profile 
shapes the execution time ratio curve as showed in Fig. 14. 

The energy-ratios plot confirms that the overhead for introducing more processors 
is worth in the 1000Hz case, while is not fully justified for the 250Hz case due to the 
different computation complexities to be tackled. 
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Fig. 14. Relative Execution Time and Energy Ratios between the 1000Hz and the 250Hz 
sampling frequency experiments 

7.4   HW/SW Optimization for Aggressive Scalability 

We are interested in assessing the achievable upper bound in system performance. 
This paves the way for further improvements of the biomedical algorithm, and it 
supports the use of the high data acquisition capabilities of the state-of-the-art 
biomedical sensors (i.e. higher sampling frequencies). 

In order to push our HW/SW design to suit more accurate analysis while respecting 
the real-time constraint, we look at how we can push both: the specific-application 
algorithm (SW) and the HW architecture while considering the high medical demands 
of correctness and accuracy of results at the service level (medical service). To have 
higher accuracy and be able to diagnose arrhythmias like the R-on-T phenomena [17] 
and other medical cases, we found that the biomedical analyses necessitate higher 
sampling frequencies as input. The need for analysis at higher frequencies delivers the 
reality that: not only do we need to look at HW issues, but we also have to look at the 
algorithm parameters. In previous experiments, we used a 4-second input chunk to 
leave a safety margin for the input signals, and we used the number of Lags (L) 
variable to compensate for the data chunk size. We found that in the case of higher 
frequencies we can change some parameters so that the input data chunk can be 
optimized while still keeping good service (medical) level results. The solution is that 
we restrict the analysis chunk-size of our biomedical algorithm to 3.5 seconds (instead 
of 4 seconds), which also effects the number of multiplications that are needed. From 
the HW viewpoint, we simulated a 12 processor system performing the 12-lead ECG 
analysis with increasing sampling frequencies to determine the threshold value 
beyond which the system does not converge to a solution in real-time. We found that 
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the limit for the input sampling frequency to be 2200Hz (maximum). We verified that 
in this operating condition, system performance is communication-limited, i.e. the 
shared bus architecture is not able to keep up with the increase in communication 
bandwidth requirements any more. Therefore, we face the need to push the hardware 
as the algorithm was pushed to the maximum. By further performing hardware 
optimization, we were able to replace the shared bus with a full crossbar, and 
observed that 12 leads could be processed then in slightly more than 1 second, i.e. 
well below the 3.5 seconds deadline. Such an optimized HW/SW architecture was 
proved to work in real-time up to a sampling frequency of 4000Hz. In this condition, 
the system turns out to be computation-dominated, hence the communication 
architecture is not the bottleneck. 

The flexibility of our system interconnect allows to achieve the same performance 
with less hardware resources. In fact, a partial crossbar design was experimented, 
consisting of grouping low bandwidth cores on the same crossbar branch. We 
observed that performance with the partial crossbar closely matches that of a full-
crossbar (less than 2% average difference) but with almost 3 times less hardware 
resources. We found the optimal crossbar configuration (5x5 instead of 13x13) by 
accurate characterization of shared bus performance. On a shared bus, we increased 
the number of processors and observed when the execution time started deviating as 
an effect of bus contention. With up to 4 cores connected to the same communication 
resource, this latter is still able to work in an additive regime. Hence, it is not 
necessary to use full crossbars, but partial crossbars can be equally effective with less 
hardware resources. 

8   Conclusion and Future Work 

We present an application-specific MPSoC architecture for real-time ECG analysis, 
which paves the way for novel healthcare delivery scenarios (e.g., mobility) and for 
accurate diagnosis of heart-related diseases in real-time. Although a single DSP 
architecture proves capable of meeting the real-time requirements of our biomedical 
applications for lower than the maximum (10kHz) that state-of-the-art biomedical-
sensors can deliver, the inherent parallelism we provide prevents the architecture from 
being the bottleneck for further advances in the field of ECG analysis. Our biochip 
solution can support the increasing sampling frequencies of biomedical sensors and 
the increased computation efficiency of analysis algorithms optimized for accuracy. 
We propose a case of such algorithms, leveraging auto-correlation function as a better 
performing alternative to the traditional and commonly-used Pan-Tompkins 
algorithm. An in-depth comparison of these algorithms goes beyond the scope of this 
paper, and is left for future work. The hardware architecture was built based on 
industrial components, and its performance upper bounds were clearly identified. The 
optimized HW/SW platform proves capable of dealing with up to 4000Hz sampling 
frequencies, when system performance becomes computation-limited. 

Acknowledgments. We would like to thank Mr. Rabih Salibah, Mr. Fadi Bitar, Ms. 
Sandra Al Hattab, and Mohammad AbdelHak from the American University of Beirut 
(AUB), Beirut, Lebanon, for their discussions and work on the filters and validations. 



258 I.Al. Khatib et al. 

References 

1. Fuster V.: Epidemic of Cardiovascular Disease and Stroke: The Three Main Challenges, 
Circulation, Vol. 99, Issue 9, (March 1999) 1132-1137  

2. Heart and Stroke Foundation of Canada: The Changing Face of Heart Disease and Stroke 
in Canada 2000, Annal report (1999) 

3. Chan, C., Han, J., Ramjeet, D.: LabVIEWTM Design of a Vectorcardiograph and 12-Lead 
ECG Monitor: Final Year Project for the Bachelor of Science Degree in the University of 
Manitoba (March 2003) 

4. Ambu, Inc. biomedical devices company: www.ambuusa.com  
5. Harland, C., Clark, T., Prance, R.: Electric Potential Probes– New Directions in the remote 

sensing of the human body, Measurement Science and Technology, Vol. 13, (2002) 163-169 
6. Harland, C., Clark, T., Prance, R.: High resolution ambulatory electrocardiographic 

monitoring using wrist-mounted electric potential sensors, Measurement Science and 
Technology, Vol. 14 (2003)  923-928 

7. Malmivuo, J., Plonsey, R.: Bioelectromagnetism: Principles and Applications of 
Bioelectric and Biomagnetic Fields, Oxford University Press (1995)  

8. Chevrollier, N., Golmie, N.: On the Use of Wireless Network Technologies in Healthcare 
Environments, Proceedings of the fifth IEEE workshop on Applications and Services in 
Wireless Networks, ASWN2005 (June 2005)  147-152 

9. Khatib, I. A., Bertozzi, D., Poletti, F., Benini, L., Jantsch, A., Bechara, M., Khalifeh, H., 
Hajjar, M., Nabiev, R., Jonsson, S.: MPSoC ECG Biochip: A Multiprocessor System-on-
Chip for Real-Time Human Heart Monitoring and Analysis, ACM SIGMICRO 
International Conference on Computing Frontiers (May 2006) 

10. Loghi, M., Poncino, M., Benini, L.: Cycle-Accurate Power Analysis for Multiprocessor 
Systems-on-a-Chip,' GLSVLSI04, Great Lake Symposium on VLSI (April 2004) 401-406 

11. Bona, A., Zaccaria, V., Zafalon, R.: System level power modeling and simulation of high-
end industrial network-on-chip, Design and Test in Europe Conference-DATE  (February 
2004) 318-323 

12. Lo, B., Thiemjarus, S., King, R., Yang, G.: Body Sensor Network–A Wireless Sensor 
Platform for Pervasive Healthcare Monitoring, Adjunct Proceedings of the 3rd 
International Conference on Pervasive Computing-PERVASIVE‘05 (May 2005) 77-80 

13. Association of Cardiac Technology in Victoria-ACTIV:  http://www.activinc.org.au/ 
14. Code Blue- Wireless Sensor Networks for Medical Care:  

http://www.eecs.harvard.edu/~mdw/proj/codeblue/ 
15. BIOPAC Systems Inc.: http://biopac.com/ 
16. Company-Bosch, E., Hartmann, E.: ECG Front-End Design is Simplified with 

MicroConverter, Journal of Analog Dialogue, Vol. 37 (November 2003) 
17. Aaron Segal: EKG tutorial, EMT-P (1997): http://www.drsegal.com/medstud/ecg/ 
18. Pan, J. and Tompkins, W.: A Real-Time QRS Detection Algorithm, IEEE Transactions on 

Biomedical Engineering, Vol. BME-32, No. 3 (March 1985) 
19. PhysioBank, physiologic signal archives, for biomedical research: 

http://www.physionet.org/physiobank/database/ptbdb/ 
20. MIT-BIH arrhythmia database- Tape directory and format specification: Document BMEC 

TR00, Mass. Inst. Tech. Cambridge (1980) 
21. Loghi, M., Angiolini, F., Bertozzi, D., Benini, L., Zafalon, R.: Analyzing On-Chip 

Communication in an {MPSoC} Environment, Design and Test in Europe Conference-
DATE (February 2004) 752-757 

22. ARM DAI 0033A Note 33: Fixed Point Arithmetic on the ARM  (September 1996) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


