
Models of Computation for Networks on Chip

Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

Abstract

Networks on chip platforms offer the opportunity to in-
troduce a new abstraction level that defines a set of plat-
form services with performance and power characteristics.
By making the implementation of these services entirely ir-
relevant for system design, an effective separation of system
design from component design can be achieved.

We discuss the principles to formulate network-on-chip
services to establish an abstract computational model that
exposes all relevant properties of the platform’s functional-
ity, performance and power consumption while hiding all
irrelevant implementation details. As in many other suc-
cessful abstractions, these principles are based on separat-
ing functionality from time and power aspects to allow for
reasoning about these properties at the system level.

As a concrete example we formulate a MoC for the Nos-
trum NoC. It is based on guaranteed bandwidth (GB) and
best effort (BE) traffic. The MoC characterizes both GB
and BE traffic in terms of closed formulas and allows for
efficient composition of traffic.

1. Introduction

With the growing number of hardware and software in-
tellectual property (IP) blocks on a single chip, system anal-
ysis, verification and integration has emerged as a main
challenge due to the enormous amount of details that have
to be handled. Abstraction can dramatically reduce the de-
tailed data and allow for focusing on important properties of
the system. However, an abstraction is not as good as any
other and good abstractions are hard to devise. A good ab-
straction efficiently eliminates all irrelevant details, is still
sufficiently accurate and gives rise to effective design and
verification techniques.

The search for better design methodologies, methods
and tools has always also been a quest for new and bet-
ter abstraction levels to represent designs. The phenome-
nal growth of complexity has necessitated new and efficient
ways to represent design aspects and design properties of
concern while suppressing irrelevant but confusing details.

Hierarchy and abstraction have been the two main tools to
expose to the designer a limited view of a given design. In
contrast to hierarchy, which selectively exhibits or hides de-
sign details, abstraction provides a new semantic model that
is distinct from the lower level model but should be compat-
ible with it and significantly simpler. Gates, register trans-
fers, buses, instruction sets, procedures and objects are all
successful examples of abstractions in hardware and soft-
ware design that provide to tool developers and designers a
semantically well defined layer, which hides lower level im-
plementation details and which allows for building complex
systems on top of it.

This quest continues and on today’s agenda is the de-
velopment of new and efficient abstractions for complex,
multi core systems on chip (SoC) with diverse hardware
components, sophisticated services and a layered and ir-
regular software architecture. Figures 1- 4 show examples
of complex state of the art SoCs covering various applica-
tions such as multi media, network processors and emula-
tors. They all exhibit significant complexity and consist of
various and diverse HW and SW components. The number
of HW blocks range from around ten to several hundred and
it is predicted to grow steadily over the next ten years. All
these examples constitute sophisticated platforms that can
be configured and programmed by application designers.
However, this is a formidable task since the platforms offer
not only a huge number of possibilities to map and imple-
ment a given functionality on the numerous and heteroge-
neous resources, they also offer software controlled caches,
scratchpads and other memory structures, a variety of com-
munication features, dynamic voltage and frequency scaling
of components, and other features to tune delay, throughput
and power consumption.

These kind of platforms need to be represented at a high
level for two kind of users. (a) Platform developers design
and extend a platform with a specific application domain
in mind. In order to find a good architecture that provides
the required performance at minimum cost and power con-
sumption, the platform functionality and key non-functional
figures of merit such as delay, bandwidth, power consump-
tion have to be modeled and analyzed thoroughly. (b) Ap-
plication developers map a given application onto the plat-



Figure 1. The Nexperia Platform from Philips
Semiconductors.

Figure 2. An IBM emulator ASIC with 768 pro-
cessors for the Palladium II emulation system
from Cadence.

form. Again, to validate the functionality and all relevant
performance and cost figures of the complete system the
platform together with the application has to be modeled
in a way that exposes the right information. Note, that in
both situations the detailed implementation of the platform,
e.g. which technology and which memory components, are
probably not known. The models and the analysis should be
valid for an entire class of possible implementations. What
is known is an abstract definition of the platform.

An abstraction is not as good as any other and the main
question is which properties of the implementations should
be exposed to system designers. These properties should be

• abstract in that many different implementations shall
be able to provide them;

• relevant and meaningfulto the system designer to fa-

Figure 3. The Octeon network processor from
Caveon with up to 16 processor cores.

Figure 4. A symmetric multi-processor from
ARM.

cilitate the systematic exploration of the design space;

• stable and reliableeven if significant functional and
implementation changes are introduced later. We will
elaborate on this in section 3 under the term compos-
ability.

We suggest that the key concept behind the Models of
Computation (MOC) point to a promising direction. To
substantiate this idea section 2 elaborates the main concepts
and the history of models of computation. Section 3 intro-
duces the concept of composability, that is a key property
for any durable system level abstraction. Then we suggest
that Network on Chip (NoC) is a useful concept to capture
the essence of future highly complex, heterogeneous multi-
core SOC platforms. We introduce Nostrum as a specific
example of a Network on Chip, to serve as a vehicle for
demonstrating how a MoC can be formulated for our pur-
pose.



2. Models of Computation

A Model of Computation (MoC) is an abstraction of a
computing device. From the early days of computing re-
searchers have devised various MoCs for different purposes.
One of the early questions raised in the 1920s and 1930s
was “What is computable?” The Turing machine and the
lambda calculus are two prominent examples of MoCs that
were devised to answer this question [16]. They are won-
derful examples of what a MoC can be in that they are ab-
stractions of all conceivable implementations of a comput-
ing device entirely independent of the implementation tech-
nology or architecture, which may have a mechanical, an
electronic or a biological basis. At the same time they repre-
sent relevant properties of all these possible computing de-
vices in a concise and analyzable form. These MoCs have
successfully answered above question and defined what is
computable by any realization of a computing device.1

Later on researchers paid more attention to the efficiency
of computations and asked, “How much time and space
does a computation require?” The theory of algorithmic
complexity answers this question in a very general and ab-
stract manner. Based on an abstract notion of an algorithm,
which is again independent of any specific implementa-
tion, different complexity classes of algorithms are iden-
tified. Each class is characterized by the type of function
that describes the run time of the algorithm on any com-
puting device. The runtime of an algorithm with polyno-
mial complexity grows according to a polynomial function
with the size of the input. Complexity theory states that
an algorithm with polynomial complexity requires at least
polynomial runtime on any sequential computing device.
Other complexity classes characterize algorithms with con-
stant runtime or exponential runtime. The MoC employed
by complexity theory is simple and abstract and assigns an
abstract time unit to each basic operation of an algorithm.
The power of this idea stems from the fact that the perfor-
mance of an algorithm can be described entirely indepen-
dent of the implementation. Indeed, the performance fig-
ure, i.e. the algorithmic complexity, is valid for all con-
ceivable implementations. Moreover, not only algorithms
can be classified into complexity classes but even problems.
Complexity theory states that, for a given problem in the
complexity class with exponential runtime there exists no
algorithm that can solve this problem in polynomial time
[7].

An implication of the generality of this theory is that
any computing device can simulate any other with at most
a polynomial overhead in runtime [18]. Parallel architec-
tures are included in this theory by relating time to space
resources. This relation is captured by the parallel computa-

1The term “Model of Computation” has only be used in the 1970s but
the main ideas and concepts can certainly be traced back to the 1920s.

tion thesis that states that whatever can be solved in polyno-
mially bounded space on a reasonable sequential machine
model, can be solved in polynomially bounded time on a
reasonable parallel machine, and vice versa [18].

While complexity theory is powerful and offers gen-
eral results, it is not very accurate. It cannot tell us how
long, in terms of seconds, a given algorithm will run on
a given computer. To be more accurate we need more
specific MoCs. For sequential computers theRandom Ac-
cess Machine(RAM) [4] has been for a long time a gen-
eral and fairly accurate MoC that has allowed to analyze
performance properties of algorithms in an implementation
independent way. It has captured well all interesting non-
functional properties of most sequential computers. Over
the years however, processor architectures and memory hi-
erarchies have accumulated more sophisticated features and
have consequently deviated more and more from the ideal
RAM model. Thus, today the RAM model is not very help-
ful in analyzing the performance of a modern processor.

The parallel computer community has from the start
faced the same challenges. The dependence of system level
performance figures on architectural details of the parallel
computer has prohibited the formulation of a MoC that is ar-
chitecture and implementation independent and still allows
to accurately analyze system performance [11]. The most
widely used model is theParallel Random Access Machine
(PRAM) [6]. A number of processors execute in a lock-step
way, that is, synchronized after each cycle governed by a
global clock, and access global, shared memory simultane-
ously within one cycle. The PRAM model’s main virtue
is its simplicity but it poorly captures the costs associated
with computing. Thus, the developer of parallel algorithms
does not have sufficient information from the PRAM model
alone to develop efficient algorithms. He or she has to con-
sult the specific cost models of the target machine.

Many PRAM variants have been developed to more re-
alistically reflect real cost [6, 2, 8, 17, 1, 3]. Some modeled
the memory hierarchy and the memory access time more
accurately while others reflect the communication and syn-
chronization costs better. However, from all these attempts
we can clearly observe the trade off between generality and
accuracy. General models are not very accurate and accu-
rate models are very specific and narrow in their scope.

For more detailed and elaborate treatment of the subject
the reader is referred to [11, 9, 16, 15, 20], but from this
very rough survey of MoCs we can observe the following
points.

• As computing devices become more complex, diverse
and heterogeneous the discord between generality and
accuracy deepens, which renders very general models
less and less useful.

• As MoCs get more specialized they have to be tailored



for a specific architectural platformand for a specific
purpose. It is unlikely that the same abstract MoC will
be equally helpful in analyzing delay, power consump-
tion, schedulability and functional correctness.

• The potential utility of a well designed MoC is sub-
stantial. The examples given above and many others
demonstrate that MoCs can give significant insight into
a class of architectures and problemsand can form a
sold basis for valuable techniques and tools.

Before we become practical by formulating a concrete
MoC for a specific platform we highlight a crucial property
that deserves special attention.

3. Composability

When we say a design paltform isscalablewe imply that
essential properties such as system performance and com-
munication delay are not directly affected by the size of the
design. For instance if the communication delay between a
processor and memory slows down when we add new pe-
ripheral components, new memory or new processors, we
conclude that the scalability is limited and designs beyond
a certain size are infeasible. To capture this idea more pre-
cises thearbitrary composability propertyhas been intro-
duced [10] as follows.

Arbitrary composability property: Given is a set of
components and a set of combinators which allow to
connect and integrate the components into larger com-
ponent assemblages. Components and combinators
together are arbitrarily composable if, when a given
component assemblageA can be extended with a com-
ponent by using a combinator, the relevant behavior of
A is never changed.

Please note, that this is an engineering heuristics, not a
formal mathematical property. As such it is and ideal and
can be achieved to a higher or lower degree.

Note further, that this property is defined with respect to
arelevant behavior. Thus depending on the given objectives
and definition of behavior, the same components and com-
binators may or may not have the arbitrary composability
property.

A prominent example of an arbitrarily composable sys-
tem is a standard library of logic gates accompanied by ap-
propriate design and layout tools. Adding a new NAND
gate to an existing netlist will not change the behavior of
the existing netlist. Merging two netlists is fine because the
behavior of the two original netlists will not be affected. On
the other hand a set of IP cores connected to a bus does not
have this property. Adding a new core to the bus probably
has an impact on the communication among the other cores

A(reused)

B
(new)

Figure 5. Adding a new component B does
not change the relevant behavior of the
reused subsystem A under the arbitrary com-
posability property.

on the bus and may increase the communication delay. In
turn this can lead to missed deadlines and even to deadlocks
which did not exist before. Thus, the entire system has to
be reanalyzed, possibly redesigned and reverified even if the
new core was a relatively small and insignificant addition.

The main benefit of the arbitrary composability property
comes from its implications on design effort and the poten-
tial of reuse. This consequence can be formulated as follows
[10].

Linear Effort Property: Given is a set of components
and a set of combinators that allow to connect and in-
tegrate the components into larger component assem-
blages. A design process which builds a system from
the components and combinators has the linear effort
property if a given set ofn assemblagesA1, . . . , An

can be integrated into a systemS by means of the com-
binators with an effort dependent onn but not on the
size of the assemblages:Ieffort(n). Thus the total
design effort forS is

Deffort(S) = Deffort(A1) + · · ·
+Deffort(An) + Ieffort(n)

This means that the integration effort only depends on
the number of components and subsystems but not on their
size. Thus, to reuse large components takes as much time
as to reuse small components. This means that we can build
more and more complex systems by reuse and integration
without limit.

Both properties are essentially equivalent. If the arbi-
trary composability property holds, the integration effort is
independent of the size and complexity of the individual
components; it only depends on the number of components
to be integrated. On the other hand if the system is not arbi-
trary composable, the design effort will depend on the size



and complexity of individual components because they have
to be reanalyzed and possibly redesigned.

We argue that arbitrary composability is a central prop-
erty of a computational model for complex SoC platforms.
Even though it incurs some overhead and prohibits the most
optimal solutions, we am convinced that the overhead costs
are rather limited and the potential gains in terms of pre-
dictable composition, ease of reuse, analysis and verifica-
tion is tremendous. In the next section we introduce the
important features of the Nostrum NoC which we use as an
example for formulating a MoC with the arbitrary compos-
ability property.

4. Nostrum

The Nostrum NoC deploys a regular mesh topology. Fig-
ure 6 shows a4 × 4 network. Switches are connected to
each other and form the network. A network interface (NI)
forms the interface between a switch and a resource. A re-
source is connected to exactly one switch in its north-east
direction. A resource can be anything between a simple,

NI

NI

NI

NI

S

NI

NI

S

NI

NI

S

NI

S

NINI

NI

NI

NI

NINI

S

S

S

S

S S

S

S

S

S S

S

Figure 6. A 4x4 Nostrum NoC.

dedicated hardware block to a local bus-based cluster with
a processor, local memory and peripherals. A switch is
up to five input and output links; peripheral switches have
less. Each link contains 128 wires and a few control lines.

Switches use an adaptive routing strategy called deflection
routing. A switch tries to send a packet to the direction of
its destination. If the corresponding output link is blocked
by another packet, the packet is deflected into another direc-
tion and effectively moved away from its destination. This
means, switches do not temporarily store packets and there-
fore they have no internal buffers. They only have an input
and an output buffer for each link. Each packet is 128 bit
wide, contains its target address and is independent of its
predecessor and successor packet. This scheme allows for
relatively simple, buffer-less switches because it uses the
network itself as packet buffer.

The network interface (NI) constitutes the bridge to the
resource. It provides more sophisticated services to the re-
source such as end-to-end flow control and in-order packet
delivery.2 More important for our discussion it offers two
different communication quality classes: best effort (BE)
and guaranteed bandwidth (GB).

Figure 7. The Nostrum switch and network in-
terface (NI).

Best Effort (BE) packets are buffered in the NI until it is
possible to inject them into the network. The NI im-
plements an admission policy that determines when a

2In fact, these services are provided by two blocks, called network in-
terface (NI) and resource network interface (RNI). But for the sake of a
simple presentation in this article we subsume both into the NI.



new BE packet can be injected. When the concerned
switch is fully occupied, i.e. when it receives four
packets from the neighboring switches and none of
them is targeting the local resource, then obviously no
new packet can be injected. But the admission policy
is typically stricter than that to keep the load in the net-
work below an acceptable level.

Once the BE packet is in the network, it may be de-
flected into an unfavorable direction if it competes with
another packet for a link. When two packets compete
the older packet (higher hop count) wins. If both have
the same age, the one which is closer to its destina-
tion wins. If both have the same distance to the tar-
get resource, the decision is taken randomly. This pri-
ority policy ensures that packets are not trapped and
all packets eventually leave the network and an upper
bound on the packet delay can be established.

Guaranteed Bandwidth (GB) connections are realized
with virtual circuits (VC) [12]. A VC between two
resourcesA and B is established by allocating time
slots in each switch on the path betweenA andB. VC
packets always have priority over BE packets. Hence,
they can only compete with other VC packets. How-
ever, VCs have to be set up in a way that no contention
between them can occur. Consequently, a VC packet
that has entered the network will never be deflected and
will therefore reach the destination in the time defined
by the VC.

To make sure a VC packet is able to enter the network,
an empty VC container is traveling the VC in a loop
(figure 8). When the container passes by the source
node, it loads the packet and transports it to the desti-
nation along the VC path. In that way it is guaranteed
that the VC packet can enter the network at least when
the VC container arrives. The VC (which is defined by
the switch configurations) and the VC container pro-
vide together the GB service.

These services are provided by the network and can be
used by the application. It is obvious that the application
can overload the network if it is not restricted. The goal
is to utilize the network as fully as possible without com-
promising the quality of the communication services while
realizing the arbitrary composability property. This is our
objective when designing the MoC for Nostrum.

5. A Nostrum MoC

Assuming we have an existing design based, calledA
on a Nostrum communication network with an application
running. The resources use the network to communicate

Figure 8. A container loops in a closed virtual
circuit (VC) to provide GB traffic.

with each other. We have verified the functionality and we
are content with the performance.

We consider two types of composition.
(a) We add one or more resources to the network, which

communicate among themselves and with “old” resources.
Adding new resources implies adding new switches and
communication bandwidth. Before adding these new sub-
network, calledB to our existing designA, we are obliged to
verify functionality and performance ofB including its in-
ternal communication before merging it withA. Hence, we
have only to consider the communication betweenA andB
and its impact on the network behavior.3

(b) We add new tasks or new communication demands
in the existing application without adding a new resource.

Assuming that the existing sub-systems have been design
and verified properly, both types of composition are reduced
to the problem to add new communication demands to an
existing and working system.

5.1 GB Composition

The GB traffic based on virtual circuits (VC) is indepen-
dent of the BE traffic, because whatever the amount of BE
traffic in the network, the VC packets will always exhibit
the same delay. The BE traffic is completely transparent to
the GB traffic. Hence, we can treat the VCs as if there were
no BE traffic in the network.

In a given network we haveL links, where a link is a
unidirectional connection between two switches. In Nos-
trum two neighboring switches are connected by two links.
Hence, in an × n network we haveL = 4n2 − 4n links.
We denote the load on a link withli with 0 ≤ i < L.

3In fact, we also have to consider the impact of the new addition to the
resources inA. But we suggest this is an independent and orthogonal prob-
lem that also has to be addressed by relying on a composability property.



Nostrum is a pseudo-synchronous network [14, 13]
which, for our purpose can be treated as a synchronous net-
work. A VC essentially allocates a number of links on its
path during specific time slots. To simplify explanations
and arguments we use a time window as a global reference
frame. All time slots are numbered within this window. All
VC allocations are repeated in each time window. Let the
length of the window beW . A typical value ofW would
be2D whereD is the diameter of the network measured in
clock cycles. E.g. In Nostrum with only output registers in
all switches the diameter of an×n network isD = 2n−1.
Thus, a reasonable value ofW in a4× 4 Nostrum network
is 14.

VCs are defined by the time slots for which they allocate
links during the time windowW . The load on linki by VC
k is given byvi,k. If a VC uses only a single container we
havevi,k = 1 for all the links on the path of the VC. By
definition the load on a link must bevi,k ≤ W . The load of
a VC on the entire network isVk =

∑
i vi,k.

The Nostrum MoC must constrain the load that VCs can
put on individual links and the network as a whole, which
is formulated as follows.

∑
k

Vk ≤ CGVC (1)∑
k

vi,k ≤ CLVC for all links i (2)

If we do not need to reserve bandwidth for BE traffic, we
haveCLVC = W andCGVC = WL. However, in all cases
where the network is shared by BE and GB traffic, each link
must reserve some bandwidth for BE traffic. How much the
BE share should be depends on the expected amount of BE
and VC traffic and on its spatial and temporal distribution.
For non-uniform traffic it may be sensible to setCLVC dif-
ferently for each link.

Based on the constraints (1) and (2 ) of the Nostrum MoC
the composition rule for adding new VCs to an existing net-
work simply states that all old and new VCs together have
to comply with the constraints (1) and (2). This will guar-
antee that all “old” VCs will not be affected and that BE
traffic still has the amount of bandwidth available it expects
(see next section). An obvious consequence of this rule is,
that it may not be possible to allocate a desired new VC.
However, this is expected for any limited resource system.
The advantage of formulating the MoC in this way is that a
feasibility check can be performed statically at design time.

5.2 BE Composition

Composing BE traffic is by definition more difficult be-
cause it is less predictable. If resources are not restricted
with respect to the amount of BE traffic they release into

the network, then both predictability and the possibility of
static analysis will vanish.

We model all BE traffic aschannelbased. When re-
sourceA sends data to resourceB we say there is a channel
betweenA andB. Channelh loads the network with

Eh = nhdhδ

wherenh is the number of packetsA injects into the net-
work in the windowW, dh is the shortest distance between
A andB, andδ is theaverage deflection factor, or simply
deflection factor. δ denotes the average amount of deflec-
tion a packet experiences. It is defined as

δ =
sum of traveling time of all packets
sum of shortest path of all packets

Obviously,δ depends on the load in the network.
The load of channelh on the links of all shortest paths

betweenA andB is

eh,i = nhph,iδ

whereph,i is the probability that linki is used by a packet of
channelh on the shortest path betweenA andB. An exam-

B

A

0.75

0.5
0.25

0.5
0.5

0.25
0.25

Figure 9. There are three different shortest
paths between A and B. The probabilities of
packet taking a particular link is depicted in
the figure.

ple of the possible shortest paths between two resources and
the corresponding link probabilities is shown in figure 9.

Note, that we are not accurate here. When a packet is
deflected, it probably gets deflected off the shortest path and
would therefore load another link not on any of the shortest
paths in the channel. This is not reflected in the formula for
eh,i. To some extend this is compensated by other channels
that load our links even though they are not on their shortest
paths, but we have to observe the effects of this inaccuracy
and verify that it does not jeopardize our conclusions about
the composability of traffic.

Just as for VCs we have to constrain the amount of BE
traffic as follows.



∑
h

Eh ≤ CGBE ≤ LW − CGVC (3)∑
h

ei,h ≤ CLBE ≤ W − CLVC for all links i (4)

where (3) gives the global constraint and (4) constrains the
load on each link.

For the GB traffic equations (1) and (2) are sufficient to
design the traffic if we assume that we plan the traffic stati-
cally at design time, or if we go for dynamic VC set-up and
tear-down, there is a central agent that can perform a global
analysis and make decisions. This assumption may or may
not be too limiting for GB traffic, but it is certainly unrea-
sonable for BE traffic, which is more dynamic and can be
less well planned. Therefore, we need a decentralized pro-
cedure to determine if new BE traffic is allowed to enter the
network.

We allocatetraffic budgetsto each resource which define
how much traffic may enter the network. These budgets
have to be calculated statically at design time and may be
recalculated dynamically. Once a resource obtains a traf-
fic budget, it can make an autonomous decision about the
network access of a packet. In fact the budget has to be
enforced by the network interface.

Let Ho
r be the channels that start at resourcer and letHi

r

be the channels that end at resourcer. Each resourcer in
the network is assigned an outgoing traffic budgetBo

r and
an incoming traffic budgetBi

r,

∑
h∈Ho

r

Eh ≤ Bo
r∑

h∈Hi
r

Eh ≤ Bi
r (5)

∑
r

Bo
r =

∑
r

Bi
r ≤ CGBE

This is essentially the same constraint as in equation (3) but
formulated from a resource perspective rather than from a
channel perspective. However it allows us to distribute the
network capacity over the resources and implement local
admission policies in each network interface that enforce
the traffic budget constraints.

Both (3) and (5) arenecessaryconstraints but they may
not besufficientfor the proper working of the network be-
cause they are global constraints that do not consider local
loads on links. There are two alternatives to derive more
accurate constraints. One is to follow up on equation (4)
and distribute budgets for loads on individual links to the
resources. This would lead to an accurate and conservative,
hence reliable, boundary on the admitted traffic. However,
this strategy is most suitable for deterministic routing where

the channel’s source and destination addresses unambigu-
ously define all the links on the way. However, for adaptive
routing this approach leads to a very involved analysis with
a complicated admission to be implemented in the network
interface. Therefore we explore here another option.

In equation (3) we noted thatCGBE ≤ LW − CGVC.
If we would set them equal it means we attempt to utilize
all the available bandwidth for BE traffic. This is not very
realistic because it tends to drive the network in a saturated
mode with poor performance characteristics. We accept this
observation and rewrite the inequality as

CGBE = κ(LW − CGVC) with 0 ≤ κ ≤ 1 (6)

κ gives the margin that we have to account for local over-
loading of the network; we call it theglobal, average, traffic
ceilingor simplytraffic ceiling.

5.3 MoC Properties

Assuming for a second that we have a way to determine
effective and conservative values for the two constants that
we used, the deflection factorδ and the traffic ceilingκ, we
have obtained a composable traffic model that is our desired
MoC. It is defined by equations (1) and (2) with constants
CGVC andCLVC for GB traffic and equations (5) with con-
stantCGBE for BE traffic. It states that new traffic can be
added to the existing network and traffic constellation if it
meets these constraints.

5.3.1 GB Traffic

For the GB traffic latency and bandwidth are precisely de-
fined. A VCk provides the following bandwidth

BWk =
nk

W
(7)

wherenk is the number of packets admitted into the net-
work in each window periodW . The maximum latency of
packets guaranteed by the VCk is

maxLatk = maxInitk + lenk (8)

wheremaxInitk is the maximum time between two allo-
cated time slots. If there is only one slot allocated we have
maxInitk = W − 1. lenk is the length of the VC measured
in cycles. The average latency is given as

avgLatk '
maxInitk

2
+ lenk (9)

This is only an approximation since it depends on the distri-
bution of the allocated slots within the window period but it
can be made precise if necessary.



5.3.2 BE Traffic

BE traffic latency and bandwidth cannot be predicted as ac-
curately, because they depend on the run-time situation in
the network that varies dynamically. Both the avergare la-
tency and the bandwidth depend critically on the deflection
factor δ which in turn depends on the traffic load which is
bounded by the traffic ceilingκ. However, there is a maxi-
mum latency, which can be found as follows.

Since BE packets have different priorities based on their
age, there must be a packet with the highest priority in the
network. In a network withN = n × n nodes, the worst
case situation is that there areN packets with the highest
priority. There cannot be more because at mostN pack-
ets can be emitted simultaneously. Let the time instance of
consideration bet1 when we haveN packets with highest
priority in the network. Let’s call this oldest generation the
setP .

How long does it take for them to leave the network?
These packets only compete against each other and when
two of them compete for a link, one will win and decrease
its distance to the destination, which means that packet has
a higher priority. Hence, there will be at least one of these
packets that comes closer to its destination in each and ev-
ery switching cycle. The worst case is that this packet needs
D cycles to the destination aftert1; recall thatD is the di-
ameter, i.e. the longest shortest path in the network. Thus,
D cycles aftert1 there will be at mostN−1 highest priority
packets in the network. We repeat the argument for each of
these packets and find that at mostND cycles aftert1 all N
packets of the setP have left the network.

What is the worst possible value fort1 for our N pack-
ets? Assume packetsP enter the network at timet0. At that
time all packets in the network must be older and there can
be at mostL packets in the network becauseL, the number
of links, is the maximum capacity. At most afterDN cy-
cles the oldest of these packets have left the network as we
found above. This means,DN cycles aftert0 there are at
mostL − N packets in the network older than the packets
in P . After at most anotherDN cyclesN more packets
will have left the network and this repeats until there are no
older packets in the network than those inP , which means
we have arrived att1. The time betweent0 andt1 is thus
mDN with

L−mN = 0

We findm as follows.

m =
L

N
=

4n2 − 4n

n2
= 4− 4

n
< 4

Thus, a bound fort1 − t0 is 4DN and a bound for max-
imum latency of a packet on any BE channelh is

maxLath = 5DN (10)

This is a rather high and conservative upper bound. The
average latency is always far below it. On a BE channelh
it is

avgLath = dhδ (11)

wheredh is the shortest distance on the channel.
The BE bandwidth available to a resourcer is limited

by the outgoing traffic budget of that resource and by the
incoming traffic budget of its communicating partner.

BWr =
∑

h∈Ho
r

nh

W
(12)

under the budget constraints (5). This means a resource is
allowed to set-up new channels if it complies with its own
outgoing traffic budget and its communication partner’s in-
coming traffic budget. It also means that the available band-
width depends on the communication distance; if all part-
ners are close by, the resource has more bandwidth than for
long distance communication.

5.4 Deflection factor δ and traffic ceiling κ

We have formulated a MoC for Nostrum that allows us to
statically reason about communication performance, traffic,
and traffic composition. However, the empirical factors traf-
fic ceilingκ and deflection factorδ have to be determined.δ
is used for describing the average latency for BE traffic (11)
andκ is part of the budget constraints (5) for describing the
available bandwidth to a resource (12).

First we note thatδ andκ depend on each other. Exactly
how they are related depends on the routing, switching and
buffering policies of the network. For deterministic routing
the dependency is weak becauseκ is a network-global pa-
rameter whileδ is a channel-local parameter. For a given
κ it is easy to overload a specific channel with a sharply
increasingδ for that channel without violationκ. For an
adaptive, non-minimal routing policy the relation is much
stronger because the load on an individual BE channel is
not confined to a sequence of a few links but spreads over
the entire network. Consequently, we have the hope to set
a global traffic ceilingκ and derive an average deflection
factorδ valid for all BE channels.

Table 1 shows the measured deflection factors for a range
of network sizes and emission budgets per cycleBo

r/W for
uniformly distributed traffic. No VC traffic has been con-
sidered, henceCGVC = 0. The global traffic budgetκLW
has been uniformly distributed to the individual nodes and
relates toBo

r according to (5) and (6) as follows.

Bo
r

W
=

κL

N



Table 1. Deflection factors δ for various network sizes N and emission budgets per cycle Bo
r/W .

Bo
r/W 16 20 30 40 50 60 70 80 90 100
0.05 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
0.10 1.04 1.05 1.04 1.06 1.06 1.05 1.05 1.06 1.05 1.05
0.15 1.07 1.08 1.08 1.11 1.10 1.09 1.09 1.10 1.09 1.09
0.20 1.10 1.12 1.11 1.17 1.15 1.15 1.14 1.16 1.14 1.14
0.25 1.14 1.17 1.15 1.26 1.24 1.23 1.22 1.24 1.22 sat .
0.30 1.18 1.22 1.20 1.46 1.41 1.36 1.33 1.33 1.29 sat .
0.35 1.23 1.28 1.27 1.78 1.65 sat . sat . sat . sat . sat .
0.40 1.28 1.36 1.40 1.98 1.84 sat . sat . sat . sat . sat .
0.45 1.35 1.54 1.75 1.99 1.85 sat . sat . sat . sat . sat .
0.50 1.57 1.98 1.82 1.99 sat . sat . sat . sat . sat . sat .

Entries marked withsat. in table 1 denote cases when the
network is saturated andδ ≥ 10. We observe thatδ is rela-
tively stable and can be predicted based on the network size
and the traffic budget. As a conservative upper bound forδ
we proposeD1 values.Di is a family of normalized delay
values defined as follows.

1− 10−i of all packetsp:
delay(p)

mindelay(p)
≤ Di (13)

Thus, 90% of all packets have a delay less or equalD1.
Table 2 gives theD1 values for the same scenarios as those
of table 1. We can see thatD1 is an upper bound forδ
and follows it fairly closely as long as the network does not
approach its saturation point. UsingD1 as approximation
for δ will encourage to set the traffic budgetsBo

r such that
the network is operated well below its saturation point.

We believe that we can empirically findD1 values for
a particular network and traffic budgets which provide ex-
cellent bounds for the deflection factorδ and consequently
also for average latency and available bandwidth assuming
we know the traffic pattern sufficiently well. However, this
is a strong assumption because in practice it may be very
difficult or even impossible to predict the traffic patterns of
real applications. Thus, we need to understand how sensi-
ble the measurement ofD1 values depend on variations of
the traffic scenarios. Table 3 shows deflection factors for
an4 × 4 network and various traffic scenarios. The second
column gives the uniform traffic and equals column two in
table 1. Columns three through seven (BitComplement -
BitTranspose) represent scenarios where the target address
is a bit permutation of the source address as suggested by
Dally and Towles [5]. The last column, denoted by BUni-
form, represents a bursty traffic scenario following the traf-
fic generators proposed by Wang et al. [19] with a factor
b = 0.2. Somewhat surprisingly the deflection factor of
that column is lower than the one with the Uniform traffic.

The reason is that the bursts emerging from different re-
sources rarely appear simultaneously and therefore the dif-
ferent traffic streams interfere less with each other than in
the Uniform traffic scenario. Our most important observa-
tion is however, that theD1 values of column two in table 2
are bounds with sufficient margins for allδ values in table 3.
However, we have to be careful to understand that this is a
preliminary finding and there is no guarantee that a traffic
scenario of a real application will not behave worse and ex-
hibit deflection factors higher than theD1 bounds derived
from simulations with other traffic models.

6 Discussion

We have described a Model of Computation for Nostrum
that is based on two types of traffic, Guaranteed Bandwidth
(GB) and Best Effort (BE) traffic. For the GB traffic we
have proposed a central planning and resource allocation of
all GB channels. This central planning can be done either
at design time or dynamically at run-time by a central agent
in the network. The properties of the GB traffic is described
in section 5.3.1 by equations (7), (8) and (9).

For the BE traffic we suggest to assign traffic budgets to
each resource. The assignment of budgets can again be per-
formed at design time or at run-time by a central agent in the
network. The network interface ensures that each resource
complies with the allocated budget. As long as each re-
source stays within its traffic budgets the performance prop-
erties of the BE traffic are characterized in section 5.3.2 by
equations (10), (11) and (12).

The benefit of this approach is that both GB and BE traf-
fic performance is concisely characterized by formulas, can
be predictably planned, analyzed, and composed. The dis-
advantage is that network resources are allocated that may
not be fully utilized. If a GB virtual circuit is not fully
used, its bandwidth cannot be used by other traffic and it
is wasted. If a resource does not fully use its allocated bud-



Table 2. D1 values for various network sizes N and emission budgets per cycle Bo
r/W .

Bo
r/W 16 20 30 40 50 60 70 80 90 100
0.05 1.12 1.12 1.12 1.15 1.15 1.15 1.16 1.16 1.11 1.11
0.10 1.12 1.12 1.15 1.25 1.23 1.23 1.23 1.27 1.23 1.23
0.15 1.12 1.28 1.30 1.41 1.41 1.36 1.35 1.41 1.35 1.35
0.20 1.36 1.44 1.40 1.46 1.46 1.46 1.46 1.46 1.47 1.55
0.25 1.44 1.44 1.45 1.65 1.64 1.71 1.80 2.35 3.46 sat .
0.30 1.44 1.60 1.61 4.65 sat . sat . sat . sat . sat . sat .
0.35 1.60 1.61 1.72 sat . sat . sat . sat . sat . sat . sat .
0.40 1.60 1.81 6.10 sat . sat . sat . sat . sat . sat . sat .
0.45 1.80 3.44 sat . sat . sat . sat . sat . sat . sat . sat .
0.50 6.17 sat . sat . sat . sat . sat . sat . sat . sat . sat .

Table 3. Deflection factors δ for an 4 × 4 network and various traffic patterns and emission budgets
Bo

r .

Bo
r/W Uniform BitComplement BitReverse BitRotation BitShuffle BitTranspose BUniform
0.05 1.02 1.01 1.01 1.00 1.01 1.00 1.00
0.10 1.04 1.02 1.02 1.00 1.02 1.01 1.02
0.15 1.07 1.05 1.03 1.00 1.03 1.02 1.03
0.20 1.10 1.07 1.04 1.01 1.05 1.02 1.05
0.25 1.14 1.11 1.04 1.01 1.06 1.02 1.05
0.30 1.18 1.17 1.06 1.02 1.09 1.02 1.07
0.35 1.23 1.24 1.07 1.02 1.11 1.03 1.08
0.40 1.28 1.34 1.09 1.03 1.15 1.03 1.09
0.45 1.35 1.62 1.11 1.04 1.18 1.04 1.11
0.50 1.57 1.62 1.14 1.04 1.21 1.05 1.12

get, other resources are not able to utilize it.

Several variations and optimizations of this approach are
conceivable. Traffic planning for both GB and BE traf-
fic can be done purely statically at design time. Alterna-
tively, traffic reallocation can be performed dynamically at
run time by a central network agent, e.g. a network operat-
ing system. When this is beneficial depends on the dynam-
ics of the application and the overhead involved.

GB traffic could also be planned based on resource bud-
gets just like the way we described for BE traffic. This
would mean that virtual circuits (VCs) have to be opened
and closed dynamically constrained by the GB budgets of
the communicating resources. Similarly, BE traffic could
be allocated on a channel by channel basis, just as we did
for GB traffic. Which of the four combinations, i.e. (GB
resource budget, BE resource budget), (GB channel alloca-
tion, BE resource budget), (GB resource budget, BE chan-
nel allocation) or (GB channel allocation, BE channel allo-
cation) exhibits the best trade-off depends on the application

traffic characteristics and the involved run-time overheads.

Our proposed characterization of BE traffic is based on
two empirical parameters, the deflection factorδ and the
traffic ceilingκ. Since this option requires that traffic load
adaptively spreads out over the entire network it seems to
be viable for the adaptive, non-minimal routing strategy of
Nostrum. A deterministic routing mechanism probably re-
quires a different approach based on the utilization of indi-
vidual links. We believe this is possible with comparable
results but leave it for the future. However, we expect some
differences making one kind of network more suitable for
one type of application. Deterministic routing based net-
works probably allow for MoCs with more accurate per-
formance characterizations of well defined traffic patterns.
Adaptive networks are probably superior for applications
with less well known or more dynamic traffic patterns.

As a result of this study we believe a MoCs can be de-
veloped that allow accurate characterization of communi-
cation performance in NoCs. A MoC has to allow for ef-



fective planning of traffic. We assign particular significance
to MoCs that allow for efficient traffic composition and the
analysis of the resulting system performance. We believe
this is possible for a wide array of routing, switching and
buffering policies but it is mandatory to design the networks
communication services such that efficient MoCs can be
formulated. Not every arbitrary NoC will lead to a useful
MoC abstraction.

Acknowledgment Many ideas of this article have been
influenced by numerous debates with members of the Sys-
tem Architecture and Methodology Group at KTH. In par-
ticular I found discussions with Zhonghai Lu, Mikael Mill-
berg, Ingo Sander and JohnnyÖberg highly inspiring.

References

[1] A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model
for hierarchical memory. In19-th Annual ACM Symposium
on Theory of Computing, pages 305–314, May 1987.

[2] A. Aggarwal, A. K. Chandra, and M. Snir. Communica-
tion complexity of PRAMs.Theoretical Computer Science,
71(1):3–28, March 1990.

[3] B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform
memory hierarchy model of computation.Algorithmica,
12(2/3):72–109, 1994.

[4] S. Cook and R. Reckhow. Time bounded random access ma-
chines. Journal of Computer and System Sciences, 7:354–
375, 1973.

[5] W. J. Dally and B. Towels.Principles and Practices of Inter-
connection Networks. Morgan Kaufman Publishers, 2004.

[6] S. Fortune and J. Wyllie. Parallelism in random access ma-
chines. InProceedings of the 10th Annual Symposium on
Theory of Computing, San Diego, CA, 1978.

[7] M. R. Garey and D. S. Johnson.Computers and Intractabil-
ity. W.H.Freeman and Company, 1979.

[8] P. B. Gibbons, Y. Matias, and V. Ramachandran. The
QRQW PRAM: Accounting for contention in parallel algo-
rithms. InProceedings of the 5th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 638–648, Arlington,
VA, January 1994.

[9] A. Jantsch. Models of embedded computation. In R. Zu-
rawski, editor,Embedded Systems Handbook. CRC Press,
2005. Invited contribution.

[10] A. Jantsch and H. Tenhunen. Will networks on chip close the
productivity gap? In A. Jantsch and H. Tenhunen, editors,
Networks on Chip, chapter 1, pages 3–18. Kluwer Academic
Publishers, February 2003.

[11] B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models of
parallel computation: a survey and synthesis. InProceed-
ings of the 28th Hawaii International Conference on System
Sciences (HICSS), volume 2, pages 61–70, 1995.

[12] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaran-
teed bandwidth using looped containers in temporally dis-
joint networks within the Nostrum network on chip. InPro-
ceedings of the Design Automation and Test Europe Confer-
ence (DATE), February 2004.

[13] E. Nilsson and J.Öberg. Reducing peak power and la-
tency in 2-D mesh NoCs using globally pseudochronous lo-
cally synchronous clocking. InProceedings of the Inter-
national Conference on Hardware/Software Codesign and
System Synthesis, September 2004.

[14] E. Nilsson and J.̈Oberg. Trading off power versus latency
using GPLS clocking in 2D-mesh NoCs. InProceedings of
the International Symposium on Signals, Circuits and Sys-
tems (ISSCS), July 2005.

[15] J. E. Savage.Models of Computation, Exploring the Power
of Computing. Addison Wesley, 1998.

[16] R. G. Taylor. Models of computation and formal language.
Oxford University Press, New York, 1998.

[17] E. Upfal. Efficient schemes for parallel communication.
Journal of the ACM, 31:507–517, 1984.

[18] P. van Embde Boas. Machine models and simulation. In
J. van Leeuwen, editor,Handbook of Theoretical Computer
Science, volume A: Algorithms and Complexity, chapter 1,
pages 1–66. Elsevier Science Publishers B.V., 1990.

[19] M. Wang, T. M. Madhyastha, N. H. Chan, S. Papadimitriou,
and C. Faloutsos. Data mining meets performance evalua-
tion: Fast algorithms for modeling bursty traffic. InICDE,
2002.

[20] T. Williams. A General-Purpose Model for Heterogeneous
Computation. PhD thesis, University of Central Florida, Or-
lando, Florida, USA, December 2000.


