
Flit Admission in On-chip Wormhole-switched Networks with Virtual Channels

Zhonghai Lu and Axel Jantsch
Laboratory of Electronics and Computer Systems

Royal Institute of Technology, Sweden
fzhonghai,axelg@imit.kth.se

Abstract

Flit-admission solutions for wormhole switches must
minimize the complexity of the switches in order to
achieve cheap implementations. We propose to couple flit-
admission buffers with physical channels so that flits from
a flit-admission buffer are dedicated to a physical channel.
By the coupling strategy, for input-queuing wormhole lane
switches, the complexity of the crossbars can be simplified
from2p� p to (p+ 1)� p, wherep is the number of phys-
ical channels; for output-queuing wormhole lane switches,
the additional complexity is also minimal. We evaluate the
flit-admission solutions derived from the coupling with uni-
formly distributed random traffic in a 2D mesh network. Ex-
perimental results show that these solutions exhibit good
performance in terms of latency and throughput.

1 Introduction

Wormhole switching is being proposed for Networks on
Chips (NoCs) due to its better performance and smaller
buffering requirement [1, 2]. To make efficient use of the
Physical Channels (PCs), wormhole switching uses virtual
channels (lanes) to gain higher throughput [3]. Several
parallel lanes, each of which is a flit buffer queue, share
a PC. For on chip wormhole switches, these lane buffers
can be customized as dedicated hardware FIFOs instead of
register-based or RAM-based FIFOs to reduce the area and
thus achieve reasonable buffering cost [2]. To reduce the
control complexity of the switches, deterministic routing is
favored against adaptive routing. This may also be justified
by exploiting the traffic predictability of specific applica-
tions [1]. Moreover, regular low-dimension topologies are
considered for NoCs to further simplify the control [4, 5].

Figure 1 shows a 2D mesh NoC architecture [1, 4, 5].
Each resource is connected to a switch via a Network Inter-
face (NI). The wormhole switch with bidirectional links has
four PCs and several lanes per PC (not shown). Resources
feed the network with packets, which are queued in the

Resource

NI

Resource

NI

Resource

NI

S

Resource

NI

Resource

NI

S

S

Resource

NI

Resource

NI

S

S

S

credit

credit

flit

flit

flit

credit

credit

flit

flit credit flit credit

flit credit creditflit

Resource

NI

Resource

NI

NI

Resource

packets

North

South

EastWest Wormhole

Switch

S

S S

Figure 1. A 2D mesh

packet buffers of the switches. With wormhole switching,
a packet is decomposed into a head flit, zero or more mid-
dle flit(s), and a tail flit. A single-flit packet is also possible.
These flits are stored in flit-uploading buffers calledupload-
ing/admission buffersbefore being admitted to the network.
There are various ways of organizing the packet buffer and
the uploading buffers. In Figure 2.(a), flit-uploading buffers
are organized as a FIFO. In Figure 2.(b) and 2.(c), they are
arranged asp parallel FIFO queues (p is the number of PCs).
Figure 2.(a) and 2.(b) allow at maximum one flit to be ad-
mitted to the network at a time while Figure 2.(c) allows up
to p flits to be admitted simultaneously.

(b)

flits
packet

(1 ... p)

(c)

Flit−uploading bufferPacket buffer

packet flit

(a)

flitpacket

(1 ... p)

Figure 2. Packet and flit-uploading buffers

In the paper we investigateflit admissionapproaches
in wormhole lane switches. We shall see that different
solutions largely impact the complexity of the switches.
Throughout the paper, we adopt the organization of flit-
uploading buffers in Figure 2.(c) since it allows potentially
higher performance. In the sequel, Section 2 discusses re-
lated work. In Section 3 we present our flit admission solu-
tions for both input-queuing and output-queuing wormhole
switches. Section 4 describes experimental results. Finally,
we conclude the paper in Section 5.



2 Related Work

Wormhole switching with virtual channels was proposed
in [3]. The performance model of a wormhole switch that
considers implementation complexity was first noted by
Chien [6]. Recently a more efficient canonical wormhole
switch architecture for virtual-channel flow control and its
performance model was presented in [7].

Admission control is commonly employed for real-time
traffic to determine if admitting new real-time traffic can
satisfy its timing bounds without jeopardizing the perfor-
mance guarantees of real-time traffic already in the net-
work. It has been a rich research area in packet-switched
computer networks. In cluster computing, based on QoS-
capable wormhole switches and network interfaces, an ad-
mission control algorithm in conjunction with a congestion
control algorithm was designed for the admission of real-
time traffic in the networks [8].

Our study on flit admission is different from the admis-
sion control for real-time traffic. By effectively sharing
physical channels, our flit admission approaches are de-
signed to minimize the complexity of wormhole switches
without sacrificing performance.

3 Flit Admission Approaches

3.1 Flit admission in input-queuing switches

states

Routing

Routing

(1...p)

Flits in
(1...p)

Credits out (1...p)

Crossbar
2p−by−p

mux

mux

mux

states

states
(1...v)

(1...v)

(1...v)

states

Lane allocator
(p,v)

Forward
Lane status

(p,v)

(p,v)
Switch allocator

(1...p)
Flits out

Packet buffer

(1...p)

Credits in (1...p)

Flit buffers

Lanes (1...v)

Flit−uploading buffers

Figure 3. A canonical wormhole lane switch

Figure 3 shows a canonical wormhole switch architec-
ture with virtual channels at inputs [2, 3, 7]. It hasp phys-
ical channels (PCs) andv lanes per PC. A packet passes
the switch through four states:routing, lane allocation, flit
scheduling, andswitch arbitration. In the routing state, the

routing logic determines the routing path a packet advances.
In the state of lane allocation, the lane allocatorassociates
the lane the packet occupies with an available lane on its
routing path in the next hop. If the lane allocation suc-
ceeds, the packet enters into the scheduling state. If there
is a buffer available in the associated lane, the lane enters
into the switch arbitration. The first level of arbitration is
performed on the lanes sharing the same physical channel.
The second level of arbitration is for the crossbar traversal.
If the lane wins the two levels of arbitration, the flit situ-
ated at the head of the lane is switched out. Otherwise, the
lane returns back to the scheduling state. The lane associa-
tion is released after the tail flit is switched out. Credits are
passed between adjacent switches in order to keep track of
the status of lanes. Note that a lane is allocated at the packet
level, i.e., packet-by-packet. Also, flits from different lanes
can not be interleaved in a lane since flits other than head
flits do not contain routing information. To guarantee this,
a lane-to-lane association must be unique at a time.

In Figure 3, if an uploading buffer is available, a packet
is split into flits which are then put into the uploading buffer.
An uploading buffer takes the same four states as a lane in
order to inject flits into the network. Flits from an uploading
buffer can be switched to all thep output PCs. Since the
uploading buffers are decoupled from the PCs, the crossbar
must be fully connected, resulting in a port size of2p� p.

To alleviate the complexity of the switch, we propose to
couple an uploading buffer with a PC in aone-to-oneman-
ner. In this way, flits from an uploading buffer are dedicated
to a PC. Applying the coupling scheme to the switch in Fig-
ure 3, an uploading buffer only needs to be connected to
one multiplexor instead ofp multiplexors. The size of the
crossbar is sharply decreased from2p � p to (p + 1) � p,
as shown in Figure 4. The number of control signals per
multiplexor is reduced fromdlog(2p)e to dlog(p + 1)e for
anyp > 1 1. Alternatively, an uploading buffer can directly

Routing

Routing

mux

mux

muxpacket buffer
(1...p)

Flit−uploading buffers

(1...p)
Flits in

Flits out
(1...p)

(p+1)−by−p Crossbar

Flit buffers

Lanes (1...v)

Figure 4. Sharing a (p+1)-by-p crossbar

share an output PC, as depicted in Figure 5.(a). This solu-

1dxe is the ceiling function which returns the least integer that is not
less thanx.

2



tion can also be regarded as having a crossbar complexity
of (p+1)� p since the combination of ap� 1 multiplexor
and a2�1multiplexor may be viewed as a(p+1)�1 mul-
tiplexor. The number of control signals per PC is reduced
from dlog(2p)e to dlogpe+ 1 for anyp > 1.

p−by−p

(p+1)−by−1

(1...p)

Packet buffer

Flits in
(1...p)

(1...p)

Lanes (1...v)

(a) (b)Flit−uploading buffers Flit−uploading buffers

Crossbar

Crossbar

p−by−2p

(1...p)
Flits out Flits in

(1...p)

Packet buffer

Mux

Lanes (1...p)

Routing

Routing 2−by−1

Routing

Routing
Flits outMux

(1...p) Flit buffers

Figure 5. Sharing output physical channels

In order to support the coupling scheme, the routing must
be performed before segmenting a packet and storing its flits
in an uploading buffer instead. With a routing algorithm, the
PC the packet requests can be determined. Hence, the corre-
sponding uploading buffer is identified. One drawback due
to the coupling is possible blocking propagation. Specif-
ically, if the head packet in the packet buffer is blocked
due to the bounded size of the uploading buffer it aims at,
the packets behind the head packet are all unconditionally
blocked during the head packet’s blocking time.

3.2 Flit admission in output-queuing switches

In addition to sharing the crossbar or output PCs, flit ad-
mission may share input PCs of the switch. However, there
is acritical sectionproblem. Figure 6 illustrates the prob-
lem with a simplified graph of two connected wormhole
switches,A andB. Suppose that lanej in switchB is avail-
able at a certain clock cycle, the uploading buffer sees lane
j available and then associates itself to lanej locally. At the
same cycle, lanei in switchA also detects lanej available
and remotely makes an association with lanej. This is pos-
sible since both switches maintain a consistent view of the
lane status. As a result, two associations with a single lane
are established in the same cycle. Consequently, lanej will
receive flits from lanei and the uploading buffer, resulting
in their flits possibly interleaved in lanej.

Mux
Lane i

Lane j

Uploading buffer

Switch BSwitch A

local association

remote association

Figure 6. Problem with sharing input PCs

To avoid such a situation and thus achieve a mutual-
excluded lane association needs both architectural support
and a control protocol. This complicates the switch design

and negatively impacts the network performance. There-
fore, sharing input PCs isnot favored as a flit admission so-
lution. This observation illuminates flit admission in output-
queuing wormhole switches. If sharing input PCs and cross-
bars in output-queuing wormhole switches, we encounter
exactly the critical section problem, which is costly to re-
solve. This leads to only one low cost flit-admission path
for output-queuing wormhole switches, i.e., sharing output
PCs, as drawn in Figure 5.(b), where the multiplexors for
admitting flits have a port size of2 � 1. If the coupling
strategy is not used, the multiplexors must be(p+ 1)� 1.

4 Experiments

We developed a simulator in SystemC comprising the
input-queuing wormhole switch model and other supporting
objects. The switch is a single-cycle, flit-level model. We
construct a 2DK �K (K=4) network without end-around
connections (Figure 1). The network does dimension-order
X-Y routing, which is deadlock-free and deterministic. The
aim of our experiments is two-fold. First, we examine
the performance of the two flit-admission solutions derived
from the coupling scheme, i.e., sharing simplified crossbars
(Figure 4) and sharing output PCs (Figure 5.(a)). The base-
line architecture is the one admitting flits via full crossbars
(Figure 3). Second, with admitting flits via output PCs, we
investigate the impact of multiplexor arbitration.

The simulations were run with uniformly distributed
traffic. Resources injected fixed-size packets to random des-
tinations except for themselves at a constant rate. A flit is
ejected from the network once it reaches a lane of its des-
tination and the lane passes the routing state. Except oth-
erwise noted, contentions for lanes and channel bandwidth
were resolved randomly. Each simulation was run until the
network reached steady state, i.e., increasing simulated net-
work cycles did not change the results appreciably. We in-
vestigated the average latency of packets and the network
throughput. Latency of a packet is calculated from the in-
stant the packet’s flits are created to that the last flit of the
packet is accepted at the destination, including source queu-
ing time. Throughput� is defined as the number of flits
received per cycle per node.

Numberv of lanes per physical channel 3
Size of a lane 2 flits

Size of an uploading buffer 4 flits
One packet 4 flits

Table 1. Simulation parameters

Simulation parameters are listed in Table 1. The size of a
lane was chosen to be two, which is the minimal amount of
buffer requirement for a lane in order to pipeline flits since
sending and receiving credits take two cycles.

3



0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Channel utilization ρ

Av
er

ag
e l

ate
nc

y [
cy

cle
s]

Via full_crossbar
Via simplified_crossbar
Sharing output PCs

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Channel utilization ρ

Th
ro

ug
pu

t λ

←A

Via full_crossbar
Via simplified_crossbar
Sharing output PCs

Figure 7. Performance comparison

Figure 7 compares the flit-admission approaches. Ad-
mitting flits via simplified crossbars and via output PCs
achieve similar performance since they are equivalent for
the input-queuing switch. Compared with admitting flits via
full crossbars, the three solutions agree well when channel
utilization� is below 0.5. When� is higher than 0.5, the av-
erage latency with admitting flits via full crossbars is worse.
This suggests that faster uploading of flits results in higher
congestion thus higher latency when the network is nearly
saturated. It is interesting to note that the three approaches
achieve the same channel utilization and throughput (point
A in the Utilization-Throughput figure) given the same traf-
fic patterns. Above this point, the packet buffers (refer to
Figure 3) start to overflow, given a bounded packet buffer
size. The Utilization-Throughput figure can serve as a val-
idation of the network operations. The slope of the three
lines is 9

8
, because� = C�=(MDavg), whereC, M , Davg

are the network capacity, the number of nodes, the average
distance traveled by all received flits, respectively. For the
2D mesh,C = 4K(K � 1), M = K2, Davg =

2

3
K for the

random traffic. WhenK = 4, � = 9

8
�.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

Channel utilization ρ

Av
er

ag
e l

ate
nc

y [
cy

cle
s]

Random
Priority_uploading
Priority_advancing

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Channel utilization ρ

Th
ro

ug
pu

t λ

Random
Priority_uploading
Priority_advancing

Figure 8. Arbitration impact

Figure 8 shows the performance of admitting flits via
output PCs with three different arbitration criteria:ran-
dom, priority uploading meaning that flits to be admitted

win contentions against network flits,priority advancing
meaning that network flits win contentions against flits to
be uploaded. We can see that the three arbitration policies
do not make significant difference. This is because, if the
arbitration gives priority to uploading flits, uploading flits is
faster, but the uploaded flits (network flits) lose arbitration
along their routes; if the arbitration favors network flits, they
win arbitration along their routes but are difficult to be ad-
mitted in the beginning. This sort of balance makes both
cases close to the effect of the random arbitration.

5 Conclusions

We have discussed flit admission approaches for worm-
hole virtual-channel switches. By coupling flit-admission
buffers with physical channels, the complexity of the cross-
bar can be reduced from2p� p to (p+1)� p for an input-
queuing switch; the additional complexity for admitting flits
is also minimal for an output-queuing switch. Simulation
results show that these solutions derived from the coupling
scheme do not compromise the performance. Although
our discussions are equally applicable to macro wormhole-
switched networks in parallel computing, the experiments
were designed for a NoC that employs a low-dimension
topology, deterministic routing, and smaller buffering cost.

Future work will consider flit admission together with
packet admission. A higher-level admission control strat-
egy can be devised to track network load so that packets
are admitted with reasonable rates. Another direction is to
combine flit admission with flit ejection. Practically cost-
effective flit ejection models must be taken into account
while evaluating the performance of the on-chip network.

References

[1] J. Hu and R. Marculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In
DATE, 2003.

[2] E. Rijpkema, K. Goossens, et al. Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip. In
DATE, 2003.

[3] W. J. Dally. Virtual-channel flow control.IEEE Transactions on Par-
allel and Distributed Systems, 3(2):194–204, March 1992.

[4] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-
connection networks. InDAC, 2001.

[5] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch.
Guaranteed bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip. InDATE, 2004.

[6] A. A. Chien. A cost and speed model for k-ary n-cube wormhole
routers. IEEE Transactions on Parallel and Distributed Systems,
9(2):150–162, Feb. 1998.

[7] L. S. Peh and W. J. Dally. A delay model for router microarchitectures.
IEEE Micro, pages 26–34, Jan.-Feb. 2001.

[8] K. H. Yum et al. Integrated admission and congestion control for QoS
support in clusters. InProceedings of IEEE International Conference
on Cluster Computing, pages 325–332, Sept. 2002.

4


