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Abstract—Monitoring is an important aspect of operation
and maintenance in virtually every industrial system. However,
the extent and methods of monitoring vastly vary in different
systems, from fully automated to fully manual. One of the
challenges of automated monitoring is the tediousness of, and
the extent of engineering time and effort required to develop
necessary models or machine learning algorithms for the units to
be monitored. Model-free monitoring, on the other hand, can save
resources and efforts substantially. However, more often than not
they have a very limited scope and application. Such a system
is needed, for example, to monitor entire Heating, Ventilation
and Air Conditioning (HVAC) systems, consisting of different
types of sensors such as temperature, pressure, humidity or
flow sensors. Recently, we proposed the Context-Aware Health
Monitoring (CAH) system for model-free monitoring of any
injective-function black-box, and it was tested successfully on
an AC motor. In this paper, we evaluate the CAH system for
an entirely different industrial use-case, that is, a hydraulic
circuit. The results show the potential for considerable benefits
in monitoring HVAC systems. Moreover, in the light of applying
CAH to different use-cases which may potentially need a different
setup of parameters, we performed a sensitivity analysis on the
values of different parameters in the system. The results show the
robustness of CAH with regard to the values of these parameters.

Index Terms—Monitoring, Hydraulic Circuits, Context-
Awareness, Model-Free, Injective Function

I. INTRODUCTION

The worldwide energy consumption is still increasing and,

according to the Organization for Economic Cooperation and

Development (OECD), industrial and residential sectors are

two main consumers of electric energy [1]. It is possible to

save energy significantly by improving the Heating, Ventilation

and Air Conditioning (HVAC) systems [2]. In Europe, the

energy efficiency directive of the European Union (EU) is

one action of several efforts to improve the consumption of

energy in Europe [3]. One possible measure put forward there

is to improve the efficiency of HVAC systems as they are

among the major energy consumers. For instance, in Austria

HVAC systems were responsible for 27% to 30% of the total

energy use within the years 2006 and 2016 [4]. It is possible

to reduce 5 to 15 percent of the energy consumption of HVAC

systems by fixing faults or with optimizing the building control

system [5]. Based on that, we estimate a potential saving

of 15-45 petajoules per year for Austria alone. However,

that requires continuous monitoring and better maintenance

of these systems, which in turn imposes certain challenges.

Manual maintenance promotes long durability, but it is

costly. The goal is to perform maintenance operations as sel-

dom as possible but as often as necessary. However, automated

monitoring of a device increases the engineering effort because

the rules and patterns for normal behavior and anomalies have

to be derived and built into the system as trigger conditions

for maintenance actions. In order to reduce design time effort

and cost, generic methods are desirable that can be applied

to monitor a wide variety of devices. Various methods exist

for black-box monitoring; however, these methods require

significant resources and computational power and are thus

only applicable to large-scale systems.

Therefore, a lightweight black-box health monitoring sys-

tem for inexpensive devices with limited resources would

facilitate the automated monitoring of many cyber-physical

and IoT devices. In an earlier work [6], we proposed the

Context-Aware Health Monitoring (CAH) system, a novel

method, for monitoring a black-box without prior knowledge

about it. In other words, the monitoring system has no model

of the monitored system which is called Device under Moni-

toring (DuM) in the further course of this work. CAH utilizes

context-awareness for monitoring the DuM. That is, looking

at the contexts under which sensory data and their changes
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Fig. 1. Block diagram of the Context-Aware Health Monitoring (CAH) system
[6].



are observed, it discovers system states, state changes, normal

behavior, and abnormalities of the DuM.

Two assumptions are made: (1) the DuM is in steady state,

meaning that CAH ignores transient states; (2) the implying

that one unique input dataset corresponds to exactly one output

dataset and vice versa. Consequently, if only the input or the

output data is changing, the DuM shows per definition an

abnormal behavior. Furthermore, CAH does not only detect

anomalies that signify a broken device but also slight de-

viations such as a drift. Drifts can happen during a wear-

out, and identifying them enables maintenance of the DuM

before the device condition deteriorates further. This model-

free approach based on context-awareness has the advantage

that no retraining, recalibration or other design modifications

are required when the system structure changes or sensors are

replaced.

While we demonstrated the applicability of CAH to AC

motors earlier [6]; in this paper, we extend its scope to the

monitoring of a hydraulic system, as it is common in HVAC

facilities. We show that CAH detects normal operations,

state changes, drifts as well as abnormal functions. As the

characteristics of these two applications are clearly distinct,

the presented cases study significantly extends the scope of

CAH, importantly with no modifications of the underlying

algorithms. Furthermore, we conducted a sensitivity analysis

of the parameters regarding their set values. These analyses

show that CAH benefits from a high degree of robustness

against the exact value of these parameters and their changes.

The rest of this paper is organized as follows: In Section II,

we review the literature on the HVAC systems, analyze their

requirements and specification. These facts explain why the

usage of CAH is beneficial for this application. We briefly

present the architecture of CAH in Section III, and show and

discuss the experiment results in Section IV. Finally, Section V

concludes the paper.

II. BACKGROUND AND RELATED WORK

During the last few years, research on Automated Fault

Detection and Diagnostic (AFDD) methods for building sys-

tems have been increasing steadily [7]. AFDD methods are

subdivided into three different approaches based on qualitative

models, quantitative models, and models based on process his-

tory [8]. 62% of the implemented AFDD methods are process

history based models [7]. This kind of models are further sub-

divided into black-box and gray box approaches, and within

the black-box approaches, there are three different methods

possible: statistical, Artificial Neural Networks (ANNs) based,

and other pattern recognition techniques [8]. In the following,

we describe only the advantages and disadvantages of ANN

and Fuzzy logic, and two approaches are discussed in more

details as they are most relevant for this work.

Among the advantages of ANN [9] is that they can model

non-linear systems without detailed knowledge of the DuM.

Disadvantages are that vast amounts of training data is required

to model complex systems, it is challenging to gain any

physical insight from the ANN, and if some relevant input is

not part of the training data, the ANN may produce erroneous

output. The advantages of Fuzzy logic are [9] that it can

model non-linear behavior, the commission of Fuzzy Fault

Detection and Diagnostic (FDD) schemes is easier, expert

knowledge and knowledge learned from measured data are

easy to combine, and the software implementation is not

computationally intensive. Disadvantages are that the results

are less precise compared to other approaches, and the used

rule-based descriptions are fairly long. Several researchers

have used ANN-based approaches [10]–[13], and pattern

recognition techniques [14]–[17] as black-box methods. Fuzzy

logic has also been used by FDD [18]. In the following, given

their relevance, the approaches by Fan et al. [12] and Dexter

et al. [18] are discussed in more details.

Fan et al. [12] combine Back-propagation Neural Network

(BPNN) models with wavelet analysis and Elman neural

networks. Their approach consists of two parts. In the first part,

BPNN fault detection models are generated based on historical

data under normal operating conditions. One model is based

on variable correlation in the control loop and the other of

sensitivity analysis. In the second part, the fault diagnosis

model is created by a combination of wavelet analysis and an

Elman neural network. The task of the fault diagnosis model

is to determine the reason for the fault in the control loop.

The diagnosis flow consists of the following five steps:

1) Both BPNN models are created.

2) New input data is analyzed by the BPNN fault detection

model. If a fault is detected, step 3 is executed otherwise

the FDD finishes.

3) Approximation coefficients from the historical data (in-

cluding faulty and normal data) are extracted with the

wavelet analysis. These coefficients are used for the

Elman neural network to diagnose the sensor fault.

4) New data is entered, and if the BPNN fault detection

model detects a new fault, the approximation coefficients

are extracted and clustered.

5) If the input data is already known as fault data, then the

Elman neural network tries to identify the fault type. If

it is unknown, return to step 3 and add this data to the

historical data to train the Elman neural network with it.

With his hybrid FDD strategy Fan et al. were able to detect

new unknown faults in HVAC systems.

Dexter et al. [18] use a multi-step, Fuzzy model-based

approach. They divide the process into two phases, the fault

elimination and fault classification phase. The fault elimination

phase is shown in Figure 2 and the other phase in Figure 3.

Within the fault elimination phase confidence, similarity, and

ambiguity of the similarities, and the strength of evidence of

the possible state are calculated. Then the current evidence is

combined with the evidence from previous operating points,

and the values for belief in fault-free operation as well as

faulty behavior are recalculated. The result of this step is:

• unambiguous belief in fault-free operation, or

• unambiguous belief in the presence of a fault, or

• it is not clear if a fault is present.



Only if two or more faults are present, the fault classification

phase will be executed. The particular fault is isolated with the

re-evaluated test data, but only the faults with unambiguous

belief from the fault elimination phase are used. The result

of this phase could be the unambiguous belief in one fault

or a list of all possible faults. This approach was able to

recognize a fault-free operation and detect faults in HVAC

systems, such as sensor bias, a leaky valve, a fouled coil, and

when the valve stuck at fully closed, midway or fully open

position.Drawbacks of this solutions were that it was not able

to detect drift, and Fuzzy reference models were created from

the design specifications. Our proposed solution overcomes

these drawbacks.

Fig. 2. The fault elimination phase. Adapted [reprinted] from [18].

III. CONTEXT-AWARE HEALTH MONITOR

The CAH system consists of three function blocks (Fig. 4).

Since CAH assumes that the DuM is in steady state, only

stable signals are of interest. Periods in that signals are

unstable (e.g., the transition during a state change), are not

considered and have to be ignored. The first two functional

blocks accomplish this task.

A. Pre-Processing

The Pre-processing block (shown in the red frame of Fig. 4)

contains two different tasks which are case-specific: abstrac-

tion and filtering. Because datasets used in this study, namely

water flow measurement data, do not need any abstraction,

this unit is not used here. The second task of the pre-

processing block is to filter all signals to reduce noise as well

as oscillations during and shortly after a state change. For

filtering, we used a MATLAB® Equiripple filter1

1The MATLAB® function fdesign.lowpass was used with following param-
eters: Fp = 0.005, Fst = 0.1, Ap = 0.15 and Ast = 0.999. We note that
a low-pass filter implementation is outside the scope of this work for which
there are several light-weight methods of implementation on hardware and
software.

Fig. 3. The fault classification phase. Adapted [reprinted] from [18].

B. Stability Controller

Since CAH only considers steady states of the DuM,

a Stability Controller (SC) is needed (shown in the green

frame of Fig. 4). Whether the signals are filtered or not, this

functional block is essential to discard the samples during a

transition. Filtered signals may be more stable, but filtering

does not replace the SC. The DuM is stable if all signals

are stable. Therefore, SC provides a sliding history window

for each signal. The SC saves the last samples of a signal in

the history assigned to this signal, and a signal is stable if

the value of the new sample is in the proximity to a certain

number of the saved signal samples. In this regard, the new

sample (snew) is in proximity to a saved sample (ss) when the

relative distance between both samples is lower than a certain

threshold (called Threshold to be Different to Samples in the

History). In this regard, the relative distance d is given by

d =
|snew − ss|

|snew|
. (1)

We note that the size of the sliding window of this history,

the number of samples which have to be similar (which are not

different), and the threshold are adjustable. An adjustment may

be necessary if the data collection sampling rate is changed.
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Fig. 4. Flowchart of the Context-Aware Health Monitoring system.

C. State Observation

The State Handler (SH) is the centerpiece of the CAH. It

detects states, state changes, malfunctions, and drifting signals

of the DuM.

1) Discovering a State: When the SH detects a state of

the DuM (a DuM state), it records the data in a C++ object.

For the sake of convenience, these objects are called states,

and all of these states are saved in the state vector of the

SH. The information in such a state is saved as an average

value, in particular, an average value for each signal of the

DuM. Saving this information in an average value constitutes

a very abstracted form of a history. When a new sample that

belongs to the same state appears, it gets inserted in the state

and influences the average value. A new sample belongs to a

state if its value is in proximity to the average value. In this

regard, the new sample (snew) is in proximity to the average

value (vavg) when the relative distance between them is lower

than a certain threshold (called Different-to-State Threshold).

In this regard, the relative distance d is given by

d =
|vavg − snew|

|vavg|
. (2)

In further consequence, a new sample set belongs to a state

if all samples are similar (not different) to their respective

average values.

2) Discovering a State Change: In the SH, the equivalent

of the actual state of the DuM is called active state. If a new

sample set matches the active state, the sample values are

inserted into it, and it remains active. When the sample set,

meaning, in particular, one or more samples of this set, are

different to the active state, a state change is indicated. Such a

change can be either normal or can constitute a malfunction of



the DuM. If both, input and output subsets are different from

the active state, a normal DuM state chance is happening. In

this case, the SH compares the actual sample set with each

state saved in the state vector. If one of them matches, that

state is activated, and the SH inserts the new sample set into

it. If no saved state matches the actual dataset, a new active

state is created, and the new sample set is inserted into it.

A state is saved to the state vector if it is valid. A high

number of inserted samples characterizes a valid state. If

only a few samples were inserted in the active state before

a state change happens, the SH discards the active state. This

procedure is necessary because in some cases, a particular

combination of the sampling rate and the signal curves can

make the SC consider the DuM as stable even though it is

not.

In contrast to a regular DuM state change, a malfunction

is identified when only one subset (input or output sample

set) is different from the active state. In this case, the DuM

is classified as broken, but only if the active state is valid.

Otherwise, the change of only one subset has been observed

most likely because the DuM was not steady.

3) Discovering a Drift: A drift of a signal is another

misbehavior of the DuM. Because a drift is a very slow change

in a signal, it also changes the signal’s average value bit by bit.

Thus, a drift cannot be discovered by comparing a new sample

value with the average value. Therefore, the task of updating

the active state with a new sample set (shaded in peach in

Fig. 4) is a bit more complicated than just calculate a new

average. The SH also saves so-called Discrete Average Blocks

(DABs). A DAB is an average value of a certain number of

samples. In other words, it is not a sliding window calculation

over all samples inserted into a state but only over a certain

number of samples. After this specific number of samples is

inserted in a DAB, the average is calculated, and a new DAB is

created. A drift can be detected when comparing the average

values of two different DABs. If a new DAB (DABnew)is

different to the very first DAB (DAB1) calculated for a state,

it is clear that the signal has shifted over time, even if the signal

has drifted only slightly. A signal is considered as drifting if

the difference between these two DABs is higher than a certain

threshold (called Drift Threshold). In this regard, the relative

distance d is given by

d =
|DAB1 −DABnew|

|DAB1|
. (3)

IV. EVALUATION

A. Experimental Setup

The entire setup is illustrated in Fig. 5. It consists of a

copper pipe system with four ultrasonic flow sensors (two

Sharkey FS, one Dynasonics TFX Ultra and one RIELS

RIF600P), two temperature sensors (Pt100), two water pumps

(of which only one was used for the actual experiments) and an

electric heater. A Raspberry Pi in combination with an Arduino

Uno controls the entire system while logging the data of each

Fig. 5. Experimental setup.

sensor and actuator, realized via a Python software program.

The water pump operates in a range between 3.0 to 10.0V,

which corresponds to the normalized values of 0.3 to 1.0 in

the gathered data. The input signal is the voltage applied to the

Pump 1, and the output values are temperature and flow. The

sampling frequency was 30.5Hz in average, and the gathered

data are stored in CSV-files for post-processing purpose.

Table I lists the various scenarios applied to the HVAC system

to validate the correctness of CAH. In the “normal” state

scenarios only the voltage of the water pump was changed.

The scenarios “anomaly” and “drift” were simulated through

manual changes of the degree of the opening of some of

the valves. For anomaly, Scenario 5, the valve before sensor

SharkyB was opened completely, and the valve before SharkyS

was closed at the beginning. Afterward, the SharkyB valve

was closed, and the SharkyS valve was abruptly opened. This

action simulated a burst of the pipe containing SharkyB. Drift,

Scenario 6, was simulated with SharkyB valve half-opened

initially and then it was slightly opened further every 15

seconds. This procedure reduces the flow in SharkyS which

simulates the increase in sediment and gradual clogging of

SharkyS.

B. Results

The output of the CAH system shows that it recognizes

normal and abnormal behavior when monitoring a hydraulic

system. CAH reads in the data with a down-sampling factor

of 50 and classifies all of the scenarios correctly. During the

experiments, it turned out that the CAH can also classify the

hydraulic system correctly when its input and output signals

are unfiltered. Skipping this task saves computational power

and shows that CAH is robust enough to distinguish between



TABLE I
DIFFERENT TESTED SCENARIOS AND EVENTS DURING EACH OF THEM.

# Condition of the
HVAC system

Events in the scenario

1 OK No state change during the experiment.

2 OK One state change, resulting in two different states
during the experiment.

3 OK Two state changes, resulting in three different
states during the experiment.

4 OK Two state changes, whereas the second change
leads again to state one.

5 Broken No change in the input, but a change in the output
in the middle of the experiment.

6 Drift No state change, but a drifting signal staring in
the middle of the experiment.

noise and real signal changes correctly. Some results are

discussed in more detail in the following.

1) Normal Mode: All other normal operation scenarios

(Table I) were tested, which led to a correct identification of

the normal operation states and their changes.

As an example, Fig. 6 shows Scenario 4. Here, the pump

starts operating at the beginning of the experiment, and all

signals have settled approximately 40s later. At this time, the

SC decides that all signals are stable, showed by the green

graph raising. Further, the SH finds the first state (blue graph)

and decides that the DuM is working correctly (red graph).

This circumstance lasts until 210s, when a changed input

voltage leads to a state change. After a ~35s long unstable

period, the SC recognizes that all signals have settled again,

and the SH discovers the second state. Since input and output

datasets have both changed, the DuM is still considered as

working normally. At ~425s the DuM changes back to its

previous (initial) state. This change is again accompanied by a

~35s long unstable period. After that, CAH concludes, that the

DuM is again in state 1 and working correctly. This condition

continues until the end of the experiment.

2) Anomaly: Fig. 7 shows experimental results for Sce-

nario 5, where significant changes in the output signals are

observed. However, as the input voltage stays unchanged, the

DuM is per definition broken. The records start with the start-

up of the pump, which leads to a settled DuM at ~35s when

the SC notifies the SH that it is now in a steady state, at

which point the latter recognizes the first state. At 310s, the

DuM suddenly changes its outputs, which is not triggered by

an input change. After this change has started, it takes around

40s until the SC verifies the DuM as stable. In this 40s, the SH

is just waiting to be triggered, and after that time, it recognizes

that the DuM is still in the same state but shows symptoms

of malfunctioning. Therefore, considering the context of these

changes, the DuM is classified as broken.

3) Drift: Fig. 8 shows the results for a drifting system

(Scenario 6). Once more, the pump is starting up at the

beginning. After ~40s the SH recognizes the first state and

the CAH concludes that the DuM works correctly. However,

this changes at around 400s, when the SH recognizes a drift.

After ~45s, the output signal value has drifted far enough from
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Fig. 6. Input and output of the DuM during two state changes, as well as the
output of the CAH system.
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Fig. 7. Input and output of the DuM during an abnormal change leading the
CAH system to classify it as broken.

the original state to signify a state change of the output signal.

Since the input remains unchanged, the SH classifies the DuM

as broken and replaces the drift alarm with a broken one. In

the case of a slower drift, the drift alarm would last longer.

C. Sensitivity Analysis

The robustness of CAH was investigated with a sensitivity

analysis in which the CAH system processed all datasets

with several parameter combinations. Table II lists the ranges

of the values of the parameters analyzed. After running the

algorithm with these values, all CAH outputs were analyzed

to see whether the health condition of the DuM is accurately

classified and its states are correctly detected.

Fig. 9 shows for which set of parameters CAH classifies

all scenarios correctly. In other words, those combinations of
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Fig. 8. The outputs of the CAH system while the DuM is drifting.

TABLE II
TEST RANGES OF THE PARAMETERS OF CAH.

Parameter Functional
Block

Difference
Calculation

Test
Range

Test
Steps

Sliding History Window Size Stability
Controller

NA 3-10 1

Number of Similar Samples
in the History

Stability
Controller

NA 0-10 1

Threshold to be Different to
Samples in the History

Stability
Controller

Eq. 1 1%-8% 1%

Number of Samples inserted
into a State to be Valid

State
Handler

NA 10 NA

Different-To-State Threshold State
Handler

Eq. 2 1%-40% 1%

Drift Threshold State
Handler

Eq. 3 1%-40% 1%

Downsampling Rate NA 50 NA

parameter values which led to an incorrect classification are

not drawn in the figure.

A few points should be noted:

1) The window size has to be higher than the number of

similar samples required for classification, Number of

Similar Samples in History ≤ Sliding History Window

Size.

2) The history window should contain at least 3 samples,

Sliding History Window Size ≥ 3.

3) It is advisable to set Number of Similar Samples in

History ≥ 3, as the classification is then more robust

for a broader range of other parameter values.

4) The two parameters Number of Similar Samples in His-

tory and Threshold to be Different to Samples in the

History should grow in tandem; if one is set higher, the

other is to be set higher as well. E.g., if Number of

Similar Samples in the History ≥ 7, then the Threshold

to be Different to Samples in the History ≥ 3. This

rule comes most likely from the fact that with a high

threshold, the SC can classify the DuM in some cases as

stable although it is not yet. A higher number of Similar

Samples in the History counteracts this phenomenon

because more time elapses until this number is reached.

5) For the tested datasets, we can infer that the Drift

Threshold and the Different-to-State Threshold have to

be between 11% and 19%.

The fact that there are no gaps between the points shows

that CAH is quite robust when the parameters are in these

ranges.

Fig. 10, focuses on a point in the middle of the scatter

diagram of Fig. 9 (specifically, Sliding Window History Size

of 5, # of Similar Samples in History of 5, and Threshold to be

Different of 4%) and analyzes with which threshold parameters

the SH classifies the states of the DuM correctly. Each point

marks a correct working classification for a set of two given

threshold parameters. The points missing from the figure

(mostly in the upper left half) represent the combinations

which did not lead to a correct classification. Therefore, for

the given datasets, we can infer from Fig. 10 that in this

instance, choosing larger “Different-to-State Threshold” and

lower “Drift Threshold” values leads to a higher probability

of correct classification.

V. CONCLUSION

CAH is a model-free, context-aware monitoring system

that identifies states, normal behavior, and various anomalies,

based on the context under which the Device under Monitoring

(DuM) operates. Its main assumptions are (1) that the DuM

resembles an injective function where input and output signals

can only change together, and (2) that the DuM, as it operates,

evolves from one stable state to the next. CAH has been

introduced earlier with an AC industrial motor as guiding

application case [6]. In this paper, we have extended the

scope of CAH to the HVAC applications with good results.

Considering that these two applications are clearly distinct

concerning reaction times, the periodicity and regularity of

signals, it is significant that the CAH setup had to be adapted

only slightly. While the CAH algorithm was unchanged, the

only necessary adaption concerned some thresholds due to

different amplitudes of signals. Moreover, AC motors react

to input changes an order of magnitude faster than hydraulic

circuits. Because of these differences, at the discretion of

experts conducting the measurements, the sampling rate of

the measurements was also different whereas the sampling

rate inside the algorithm remained the same. Apart from this

adaption, CAH has shown remarkable robustness in identify-

ing correct behavior, anomalies and drift when monitoring so

diverse applications as AC motors and hydraulic circuits. We

support this claim with a sensitivity analysis, which shows

the wide range of values which the parameters can be set to,

and have the CAH system classify every scenario correctly

nevertheless. Thus, we expect that CAH is applicable to

an even larger class of applications. That possibly includes

medical and environmental monitoring devices, among others,

which will be subject to future studies.
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(c) View from the top.

Fig. 9. The 3D scatter plot shown from three different angels represents the sensitivity analysis for the three different parameters of the SC. Each point on
the chart represents a combination which led to a correct classification of the DuM state.
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