
NoCs: A new Contract between Hardware and Software

Axel Jantsch

Royal Institute of Technology, Stockholm, Sweden
E-mail: axel@imit.kth.se

Abstract

Future single chip systems will resemble more tradi-
tional computer networks than traditional central proces-
sors. The main reasons for this trend are the infeasibility
of global synchrony on a single chip, the necessity of reuse
of existing hardware and software components as much
as possible, and the heterogeneity and irregularity of sys-
tem functions and features. The consequences of this trend
are far reaching and imply the shift in concern from com-
putation and sequential algorithms to concurrency, com-
munication and interaction in every aspect of design and
development of hardware and software.

Based on an analsysis of current trends we suggest that
there is an opportunity for defining an interface between
applications and Netork-on-Chip (NoC) platform imple-
mentations with significant benefits for both worlds. We
analyse the desirable properties of such an interface by
means of studying a particular NoC platform, the Nos-
trum. We draw the general conclusion that such an in-
terface, which we also call contract, has to include (1)
description of functionality, (2) description of communica-
tion semantics and performance, and (3) mapping of task
to resources.

1 Introduction

IC manufacturing technology will provide us with a a
few billion transistors on a single chip within a few years.
Assuming that these predictions hold and that the market
will continue to absorb ever higher volumes of ICs, the
key questions are: how will the future chips be organized
and how will future systems, which include these chips, be
designed? One possible answer is that single CPUs will
still occupy entire chips and will exhibit correspondingly
higher performance. The instruction set will essentially re-
main unchanged to provide backwards compatibility and
the systems will still be implemented in C or C++. How-
ever, there are a few factors that make this scenario un-
likely:

1. Physical effects of deep sub-micron technology make
it increasingly difficult to maintain global synchrony

among all parts of the chip. The clock signal will
soon need several clock cycles to travel across the
chip and the clock distribution tree is already today
a major source of power consumption and cost. The
trends of scaling to smaller geometric dimension and
higher clock frequency make these problems more
significant every year.

2. Synthesis and compiler technology development do
not keep pace with IC manufacturing technology de-
velopment. As a consequence, which is called the de-
sign productivity gap, we need either exponentially
growing design teams or design time to design and
implement systems which fit onto a single IC. Since
both alternatives are unrealistic we have in the past
escaped from the problem by using ever more com-
plex components as primitive design units. These
primitive design units have evolved from individual
transistors to logic gates to entire ALUs, multipli-
ers and finite state machines. This trend will likely
continue with CPU and DSP cores and blocks for
compression, encryption and similar functions being
the primitive design units. These design units have
however asynchronous interfaces to the outside and
vastly different internal clocking regimes. As a re-
sult a globally asynchronous and locally synchronous
(GALS) design style emerges already today.

3. Obviously, systems that can be implemented on a sin-
gle chip become increasingly more complex. As a
result different functions and features with vastly dif-
ferent characteristics and history reside on the same
chip. Signal processing algorithms which recover and
generate radio signals will coexist with global con-
trol, maintenance and accounting functions as well as
with natural language comprehension and generation
functions. These functions are developed in differ-
ent contexts, by different teams, with different design
languages and tools. However, they need to be inte-
grated into a single chip.

These factors are not equally important for all applica-
tion areas. Single CPU systems will still dominate appli-
cations where backward compatibility is of primary im-
portance and most problems can reasonably expressed and



implemented as a single, sequential algorithm. However,
the rapidly growing areas of embedded systems and appli-
cation domain specific platforms will explore and eventu-
ally adopt alternatives.

Taking these current trends and facts together it is nat-
ural to contemplate a design paradigm where a set of in-
teracting functions and features are implemented on a set
of asynchronously communicating resources, such as CPU
cores and specialized hardware blocks. In this scenario
the mapping and implementation of system functions onto
resources is covered by traditional design and synthesis
methods. It may even be an integral part of the reuse of
a given system function and a resource. For instance, the
purchasing of a bluetooth protocol stack may include its
implementation on a combination of a custom hardware
block and an ARM processor core. However, providing
a chip level communication infra-structure and mapping
of system level interactions onto the communication infra-
structure is not covered by any traditional design method-
ology and is becoming the focus of research and tool de-
velopment. In fact, in the last three years we have seen
several concrete proposals for on-chip network architec-
tures.

In 2000 Hemani et al. [6] have proposed a packet
switched architecture with switches surrounded by six re-
sources and connected to 6 neighboring switches. The ar-
chitecture is called a Honeycomb due to the hexagon based
pattern of switches and resources. The concept of packet
switching re-appears in other consecutive approaches but
the topology simplifies in most proposals and today two
dimensional meshes, tori and trees are most common. In
2001 Dally and Towles [3] proposed a torus based packet
switched network with very simple switches, which re-
quire less than 10% area overhead. MicroNetworks pro-
posed by Drew Wingard [21] is another packet switched
on-chip interconnection mechanism proposed recently. F.
Karim et al. [9] describe an octagon topology, where each
node is connected to three other nodes. Octagons can be
connected together to form a hierarchical network. The
Spin [5, 1] approach is based on a fat tree topology that
can be slimmed if the locality of traffic does not require
a high bandwidth at the root of the tree. Philips’ Æthe-
real network [16, 4] emphasises the need for guaranteeing
well defined quality of service levels for the communica-
tion infrastructure. Kumar et al. [11] have put forward
a detailed packet switched, mesh based on-chip commu-
nication infra-structure together with a design methodol-
ogy. The proposed concept of a region breaks the strict
mesh-based geometry. A region can cover an arbitrary
number of switches and resources and allows to accom-
modate larger resources such as FPGA areas and memory
banks in a flexible way. This architecture we will also out-
line in the consecutive sections of this paper. Valtonen et
al. [19, 18] propose an on-chip interconnected network of
resources or cells but put the main emphasis on fault tol-
erance and unlimited scalability. Several other approaches
to on-chip packet switched networks have been proposed

recently and a good overview of the state of the art can be
found in [7].

Keutzer et al. [10] and Sgroi et al. [17] provide gen-
eral discussions and motivations for communication cen-
tric on-chip architectures and platforms and for the strict
conceptual separation of computation from communica-
tion. The impact of well designed regular communication
centered platforms on design productivity have been elab-
orated in [8].

There is another trend worth noticing that changes the
balance between customization and standardization. Tsu-
gio Makimoto observed first in 1987 that the electronics
industry experiences cylic changes between customization
and standardization with a cycle time of around 10 years.
These cycles, also known as Makimoto waves [13], started
in 1957 with a standardization phase around discrete stan-
dard devices such as transistors and diodes. According to
these waves the period 1987 to 1997 saw a customization
phase with ASICs being the main instrument for develop-
ing dedicated and optimized components. Today we are in
a standardization phase with FPGAs fully benefiting from
this trend.

Customization Standardization

Supply−demand imbalance

Value addition

DifferentiationQuick to market

Cost effectiveness

Operational efficiency New device

New

Software

architectures

structures

innovation
Design automation

CAD

CAM

Figure 1. Makimoto’s semiconductor pendu-
lum [13]

Figure 1 shows Matimoto’s semiconductor pendulum
and the forces driving it. Consider the forces pushing
it towards standardization. Cost effectiveness is a ma-
jor concern today due to quickly increasing manufacturing
and nonrecurring engineering (NRE) costs [10]. Similarly,
there is a strong demand to increase operational efficiency
and decrease maintenance costs for increasingly complex
electronic equipment. Moreover, the emergance of deep
submicron and nantechnology and new architectures such
as networks on chips, application specific instruction set
processors (ASIP) and new FPGA architectures, coincide
with forces pushing towards standardization (new device
structures, new architectures). The current trend towards
platforms [2, 20] is a natural reaction to these forces and it
indicates that the pendulum has not yet reached the culmi-
nation of the standardization wave.



Adding the apparent insufficiency of traditional CPUs
and the desire for standardization together, it is not re-
mote to expect the emergence of standardized platforms
that provide a stable base for the quick and efficient de-
velopment of new applications and products. It is likely
that different application areas require different platforms.
For instance mobile terminals will need a different plat-
form than infrastructure applications due to their vastly
different requirements on performance, cost and power
consumption. Thus, it is open how many specialized plat-
forms will appear on the scene but a small number below
ten could possibly dominate most major application areas
such as consumer electronics, communication, computing,
robotics and automotive.

If this analysis is correct we will see new interfaces be-
tween the platforms and the application developers. The
interface between processors and software, the instruction
set, has been very successful and can serve as a model
to understand the major components of the interfaces be-
tween next generation platforms and software. The ma-
jor difference between them and traditional instruction sets
stems from concurrency and communication, which is of
prime importance in the former but absent from the lat-
ter. In order to discuss this interface in concrete terms,
we introduce a concrete architecture in the next section.
Most details of this architecture are less important for our
discussion and will be different in future platforms. How-
ever, the strong emphasis on the communication between
independent resources is significant and will lead us to im-
portant implications.

2 Network on Chip Architecture

The Nostrum architecture [11], as outlined in figure
2, provides the communication infrastructure for the re-
sources. In this way it is possible to develop the hardware
of resources independently as stand-alone blocks and cre-
ate the NOC by connecting the blocks as elements in the
network. Moreover, the scalable and configurable network
is a flexible platform that can be adapted to the needs of
different workloads, while maintaining the generality of
application development methods and practices.

2.1 Physical and link layer

A mesh interconnection topology is simplest from a
layout perspective and the local interconnections between
resources and switches are independent of the size of the
network. Moreover, routing in a two-dimensional mesh
is easy resulting in potentially small switches, high band-
width, short clock cycle, and overall scalability. A NoC
consists of resources and switches that are connected us-
ing channels as a mesh (Manhattan- like structure) so that
they are able to communicate with each other by send-
ing messages. A resource is a computation or storage
unit. Switches route and buffer messages between re-

Figure 2. Each node in the mesh contains
a switch (small rectangles) and a resource
(large rectangles).

sources. Each switch is connected to four other neighbor-
ing switches through input and output channels. A chan-
nel consists of two one-directional point-to-point buses be-
tween two switches or a resource and a switch. Switches
may have internal queues to handle congestion. The pre-
cise layout and geometry depends on the technology gen-
eration. We expect that the area of a resource is the
maximal synchronous region in a given technology. It
is expected to shrink with every new technology gener-
ation. Consequently the number of resources will grow,
the switch-to-switch and the switch-to-resource bandwidth
will grow, but the network wide communication protocols
will be unaffected. Figure 3 illustrates the principles of
the physical floor plan within the NOC. Consider a 60nm
CMOS technology expected in 2008, a 22mm � 22mm chip
size, a resource size of 2mm � 2mm and a minimum wire
pitch of 300nm. A NoC would accommodate 10 � 10 re-
sources, each switch would occupy 30µm � 30µm and the
channels would use 3 metal layers, hence we have space
for 300 wires. Since we need control, handshaking and
signaling, this scenario would yield an effective data bus
width of 256 wires.

Thus, there is a bandwidth of 128 bits per cycle in each
direction between two switches. 128 bits is the unit of the
data link layer and is called a packet in the rest of this
paper.

2.2 Network layer

The network layer is responsible for communicating
messages from a resource to any other resource in the net-
work.



Resource

256Switch

Figure 3. The expected footprints of re-
source (2mm � 2mm), switch (30µm � 30µm)
and channels (2mm � 30µm) in 60nm CMOS
technology.

Nostrum offers best effort (BE) and guaranteed la-
tency (GL) communication services. BE communication
is based on individual packets that are communicated and
routed independently. Hence, each of these packets con-
tain a relatively long header with the full address informa-
tion. Since BE packets can deviate from the shortest path
between source and destination when traffic load is high
[14, 15], no maximum delay can be guaranteed. How-
ever, packets that have been longer in the network increase
their priority and thus their chance to reach the destina-
tion. In contrast, GL communication is based on a virtual
circuit that is a direct stable connection between a source
and a destination. A virtual circuit has to be opened and
closed. A virtual circuit is opened by reserving particu-
lar time slots in every switch from source to destination.
These time slots cannot be used by other packets. Conse-
quently, packets traversing an open virtual circuit cannot
be disturbed by other BE or GL packets, thus they expe-
rience a deterministic latency from source to destination.
The GL packets have a much shorter header without ad-
dress information, because the switches know where GL
packets are to be sent.

2.3 Session layer

The session layer manages task level communication.
Tasks are concurrent processes that reside in resources.
When two communicating tasks are located in the same re-
source, local communication mechanisms can be used, as
for instance provided by the operating system. When they
are in different resources network communication services
have to be employed.

In Nostrum shared memory and message passing com-

munication is defined and both variants can be parame-
terized with respect to connectivity, sycnhronization, per-
formance and reliability considerations [12]. For in-
stance a meassage passing channel can be configured with
paramters describing the direction, burstiness, latency,
bandwidth, quality class and reliability level.

Without going into more details it becomes obvious
that applications have a wide range of choices. Indeed,
we need to provide all these choices because different ap-
plications have different needs and legacy code requires
communication primitives popular in the past even if they
are less than optimal for future NoC platforms.

While the network layer communication facilities are
specific for a particular NoC, is the session layer commu-
nication a medium for inter-task communication and NoC
independent. Consequently, if we want to be independent
of a particular NoC we need to focus on the session layer
communication primitives. In fact, they become part of the
NoC Assembler Language that forms the interface, or con-
tract, between application and NoC platform implementa-
tion, as we will see in the following sections.

3 NoC Design Flow

NoC ArchitectureApplication task graph

Partitioning & Mapping

NoC−AL program

NoC Assembler

Libraries

HW Code SW Code

Synthesis tools

Silicon masks Executables

Compiler, Linker

Configuration
files

ASIC FPGA

Figure 4. A NoC Platform based design flow
[12].

Figure 4 sketches an example design flow for a NoC
platform. The primary inputs are the application task
graph and a description of the NoC configuration. The task
graph captures the functionality of the application in terms
of communicating tasks. The NoC architecture defines the



NoC Architecture
{ Topology: mesh 1 x 2

Resource List: Row1: R1=SHARC DSP,
R2=ARM CPU}

NoC Application
{ R1: {#include <NoC-AL-SHARC.h>

#include <f1.h>
#include <f2.h>
double in1,in2,out,x,y;
int ch1=0, ch2=0, ach2=0;

Process P11
{ while (1)

{ x=f1(in1,in2);
while (ch1<=0) {ch1=channel(P11,P21);} //Open channel ch1 until success
while (send(ch1,x)!=1) {continue;}} //Wait for send to ch1 success

while (close(ch1)!=1) {continue;}} //Close channel ch1
Process P12
{ while (1)

{ while (ach2<=0) {ach2=accept(&ch2);} //Wait for channel ch2 accepted
while (receive(ch2,y)!=1) {continue;} //Wait for receive from ch2 success
out=f2(y);}}}

R2: {#include <NoC-AL-ARM.h>
#include <f3.h>
double a,b;
int ch1=0, ch2=0, ach1=0;

Process P21
{ while (1)

{ while (ach1<=0) {ach1=accept(&ch1);} //Wait for channel ch1 accepted
while (receive(ch1,a)!=1) {continue;} //Wait for receive from ch1 success
b=f3(a);
while (ch2<=0) {ch2=channel(P21,P12);} //Open channel ch2 until success
while (send(ch2,b)!=1) {continue;}} //Wait for send to ch2 success
while (close(ch2)!=1) {continue;}}}} //Close channel ch2

Figure 5. An example NoC-AL program [12].

size of the network, number, type and location of resources
and other global configuration options. The first step maps
all tasks onto resources and allocates bandwidth for the
communication between the tasks. Apparently this is a
most demanding and important step resulting in many key
design decisions. After this step we know which tasks re-
side in which resources and how the communication chan-
nels between the resources are configured to provide the
required bandwidth and reliability for the inter task com-
munication. The result of this step is described in a NoC
Assembler Language (NoC-AL) program. The name has
been chosen due to the analogy to traditional assembler
languages, which also form an architecture specific in-
terface between the higher level compilation process and
processor architecture. In the NoC-AL program all ma-
jor decisions about the NoC size, configuration, resources
and mapping has been taken. A NoC-AL program can be
implemented on a NoC with a relatively simple and me-
chanical mapping step as far as the network is concerned.
The implementation of the individual resources may still
be very complex and require important design decisions
because they are implemented with traditional flows and
tools. For a processor resource a traditional compilation
process has to be performed and perhaps a resource spe-
cific operating system has to be intergated. For an FPGA
or a custom block a corresponding synthesis flow has to
be executed. On the other hand the resource implementa-

tion may also be very simple in case a resource is reused
together with the functionality in question. For instance, a
filter algorithm that has been implemented and optimized
for a DSP, can be reused together with the DSP to form a
ready-made resource.

Figure 5 shows an example NoC-AL program to illus-
trate the different parts. First, the topology and the kind
of resources are described. In this example we have only
two resources, a Sharc DSP and an ARM processor. Then
for each resource all the tasks, that are mapped to this re-
source, are described. Resource R1, the Sharc, contains
two processes, P11 and P12. Resource R2, the ARM, con-
tains only one process, P21. The individual processes are
ordinary C programs. Note, that no scheduling policy for
resource R1 is described here. It is up to the consecutive
resource implementation phase to provide a static or dy-
namic scheduling mechanism.

For other kinds of resources, the processes have to be
described in other formalisms. For example custom HW or
FPGA resources must be described in VHDL or Verilog.
In principle, NoC-AL does not define which languages to
use for the individual resources, as long as there exists an
implementation flow.

The processes can communicate with each other via
predefined communication primitives. For instance pro-
cess P11 opens a channel to process P21 with the library
function channel(). All communication between resources



must be expressed with predefined library functions. The
same is true for any other language, such as VHDL or
Verilog, used for resource description. These libraries im-
plement a well defined communication semantics, which
itself is language independent. This allows processes to
communicate with each other in a well defined way even
if they reside in different resources.

4 HW-SW Interface

NoC-AL is one example of a possible interface between
applications and NoC based platforms. It can be used to
study the desirable properties of such an interface.

First, it configures the NoC and allocates resources. In
NoC-AL the sysntax of this part is specific for Nostrum but
it can easily be generalized to any other topology such as
tori or trees. There is nothing in later parts of the NoC-AL
program which is dependent on precisely how the NoC is
configured. Thus, when porting an application to another
kind of NoC, e.g. from mesh based Nostrum to tree based
SPIN, only this NoC configuration part needs to be rewrit-
ten. It may or may not be necessary to change the binding
of processes to resources.

Second, the communication between resources is de-
fined in an implementation independent way. Thus, an
application can use the communication primitives such as
channel(), send(), close(), etc. in any of a number of design
languages such as C or VHDL, without committing to a
specific NoC. In fact, the communication primitives can be
implemented also in bus based communication networks.
The implementation of these communication primitives is
provided in libraries. These libraries are both NoC and re-
source specific. Consequently, when a process is mapped
to a pariticular processor, say ARM, in a particular NoC,
say Nostrum, it will need a library specific for ARM and
Nostrum.

Third, NoC-AL and the communication libraries
cleanly separate the higher level design tasks from the
back-end implementation steps. High level optimizations
such as resource allocation and mapping can be performed
disconnected from the tedious compilation steps. Since
the communication primitives, as described in [12], de-
fine also performance and reliability levels, the applica-
tion can express its non-functional requirements. During
implementation (by the NoC Assembler in figure 4) these
requirements have to be met. If this is not possible, for
instance because the bandwidth requirements of the appli-
cation are too high for a particular NoC instance, no im-
plementation can be generated and the designer has to re-
consider earlier design decisions. For this reason we have
the dotted lines in figure 4, which indicate iterations in
the flow. Since performance requirements are also placed
on the implementation of individual resources, we have to
backtrack if these requirements cannot be met.

To put it in a nutshell: a future interface between appli-
cations and NoC based platforms must specify

1. the way the functionality of processes is described;

2. the functionality and performance of communcation
primitives;

3. how a NoC platform is configured and how process
are mapped onto resources.

Item 1 is already provided today by means of standard
design languages (C, C++, VHDL, Verilog, SystemC, etc.)
and associated design flows. As soon as we also have
items 2 and 3, we have a new contract between the ap-
plication and the implementation world. This would open
tremendous potential to quickly map applications onto a
NoC platform and even retarget them to other NoC plat-
forms similarly to the way we compile a C program to
different CPUs and operating systems today. In the imple-
mentation world continuous optimization of platform im-
plementations would be of immediate benefit for a large
number of applications.

Figure 6 draws the analogy between a traditional in-
struction set and NoC-AL with the main difference being
that we now have to fully integrate communication and
task-resource mapping into the contract.

5 Conclusion

The instruction set has been a powerful contract be-
tween processor hardware implementations and software
applications that has decoupled these two worlds allow-
ing for independent development and optimizations while
making very simple but sufficient assumptions about the
other world.

The emergance of NoC platforms provides an opportu-
nity to develop and establish a similarly fruitful and long
term contract provided we include communication and
task-resource mapping into the agreement.

References

[1] A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez,
and C. A. Zeferino. SPIN: a scalable packet switched on-
chip micronetwork. In Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems - Designer’s Fo-
rum, pages 70–79, March 2003.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly,
and L. Todd. Surviving the SOC Revolution - A Guide
to Platform-Based Design. Kluwer Academic Publishers,
1999.

[3] W. J. Dally and B. Towles. Route packets, not wires: On-
chip interconnection networks. In Proceedings of the 38th
Design Automation Conference, June 2001.

[4] K. Goossens, J. van Meerbergen, A. Peeters, and
P. Wielage. Networks on silicon: Combining best-effort
and guaranteed services. In Proceedings of the Design Au-
tomation and Test Conference, March 2002.

[5] P. Guerrier and A. Greiner. A generic architecture for on-
chip packet-switched interconnections. In Proceedings of
Design, Automation and test in Europe, pages 250–256,
2000.



Instruction set

SW Programs

NoC−AL

Applications

Multi−resource heterogeneous implementationsSequential executables

(a) (b)

Figure 6. A NoC Assembler Language as interface between application and implementation (b) is
similar to an instruction set serving as interface between SW programs and executables (a).

[6] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Öberg,
M. Millberg, and D. Lindqvist. Network on chip: An ar-
chitecture for billion transistor era. In Proceeding of the
IEEE NorChip Conference, November 2000.

[7] A. Jantsch and H. Tenhunen, editors. Networks on Chip.
Kluwer Academic Publishers, February 2003.

[8] A. Jantsch and H. Tenhunen. Will networks on chip close
the productivity gap? In A. Jantsch and H. Tenhunen, ed-
itors, Networks on Chip, chapter 1, pages 3–18. Kluwer
Academic Publishers, February 2003.

[9] F. Karim, A. Nguyen, and S. Dey. An interconnect ar-
chitecture for networking systems on chip. IEEE Micro,
22(5):36–45, September/October 2002.

[10] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Orthog-
onalization of concerns and platform-based design. IEEE
Trasnactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(12):1523–1543, Decmber 2000.

[11] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Mill-
berg, J. Öberg, K. Tiensyrjä, and A. Hemani. A network on
chip architecture and design methodology. In Proceedings
of IEEE Computer Society Annual Symposium on VLSI,
April 2002.

[12] Z. Lu and A. Jantsch. Network-on-chip assembler lan-
guage. Technical Report TRITA-IMIT-LECS R 03:02,
version 1.0, Institute of Microelectronics and Information
Technology, Royal Institute of Technology (KTH), Stock-
holm, Sweden, June 2003.

[13] T. Makimoto. The rising wave of field programmability.
In R. W. Hartenstein and H. Grnbacher, editors, Field-
Programmable Logic and Applications, 10th International
Workshop, FPL 2000, volume 1896 of Lecture Notes in
Computer Science, Villach, Austria, August 2000.

[14] E. Nilsson. Design and implementation of a hot-potato
switch in a network on chip. Master’s thesis, Department
of Microelectronics and Information Technology, Royal

Institute of Technology, IMIT/LECS 2002-11, Stockholm,
Sweden, June 2002.

[15] E. Nilsson, M. Millberg, J. Öberg, and A. Jantsch. Load
distribution with the proximity congestion awareness in a
network on chip. In Proceedings of the Design Automation
and Test Europe (DATE), pages 1126–1127, March 2003.

[16] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen,
J. van Meerbergen, P. Wielage, and E. Waterlander. Trade
offs in the design of a router with both guaranteed and best
effort services for networks on chip. In Proceedings of the
Design Automation and Test Conference, pages 350–355,
March 2003.

[17] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Ma-
lik, J. Rabaey, and A. Sangiovanni-Vincentelli. Ad-
dressing the system-on-a-chip interconnect woes through
communication-based design. In Proceedings of the 38th
Design Automation Conference, June 2001.

[18] T. Valtonen, J. Isoaho, and H. Tenhunen. An atonomous
error-tolerant cell for scalable network-on-chip architec-
tures. In Proceedings of the 19th IEEE NorChip Confer-
ence, Kista, Sweden, November 2001.

[19] T. Valtonen, T. Nurmi, J. Isoaho, and H. Tenhunen. In-
terconnection of autonomous error-tolerant cells. In Pro-
ceedings of the International Symposium on Circuits and
Systems, Scottsdale, AZ, USA, 2002.

[20] A. S. Vincentelli. Defining platform-based design.
EEDesign of EETimes, February 2002.

[21] D. Wingard. MicroNetwork-based integration of SOCs. In
Proceedings of the 38th Design Automation Conference,
June 2001.


