
Cluster-based Simulated Annealing for
Mapping Cores onto 2D Mesh Networks on Chip

Zhonghai Lu, Lei Xia and Axel Jantsch
Dept. of Electronic, Computer and Software Systems

Royal Institute of Technology (KTH), Stockholm, Sweden
{zhonghai,leix,axel}@kth.se

Abstract—In Network-on-Chip (NoC) application design, core-
to-node mapping is an important but intractable optimization
problem. In the paper, we use simulated annealing to tackle the
mapping problem in 2D mesh NoCs. In particular, we combine
a clustering technique with the simulated annealing to speed up
the convergence to near-optimal solutions. The clustering exploits
the connectivity and distance relation in the network architecture
as well as the locality and bandwidth requirements in the core
communication graph. The annealing is cluster-aware and may be
dynamically constrained within clusters. Our experiments suggest
that simulated annealing can be effectively used to solve the
mapping problem with a scalable size, and the combined strategy
improves over the simulated annealing in execution time by up
to 30% without compromising the quality of solutions.

I. INTRODUCTION

In a top-down design flow, Network-on-Chip (NoC) ap-
plication design is to map a set of IP cores onto a set of
network nodes. The IP cores communicate with each other
and impose timing constraints on delay and bandwidth. It is
the core-to-node mapping, which determines which nodes host
which cores, that fundamentally dominate whether the network
can fulfill the constraints and the cost and power consumption
for the fulfillment. The mapping is therefore a crucial design
decision to make at an early design phase.

The core-to-node mapping problem is a NP-Hard (Nonde-
terministic Polynomial-time Hard) combinatorial optimization
problem, thus inherently intractable [4]. Even for a small
problem size, the entire search space is huge. One simple
example illustrates this. Mapping 16 cores onto 16 nodes has
a search space of 16!, which is about 2.09× 1013. Suppose
that each search takes 0.01 millisecond, to enumerate the
entire search takes about 6.6 years. In general, there are
two broad classes of approximation algorithms to solve the
mapping problem, systematic search and heuristic search. A
systematic approach attempts to constructively enumerate the
solution space while a heuristic does not. A heuristic is a local
search method relying on a neighborhood function to search
near-optimal solutions [1]. Systematic approaches can adopt
branch-and-bound or back-tracking algorithms [12]. In both
methods, cutting branches that may not lead to a solution
is the key to balance run time and the quality of solution.
However, systematic approaches are difficult to scale with the
problem size. The branch-and-bound is memory hungry while
the back tracking is time consuming in general. In contrast to a
systematic search, heuristics such as simulated annealing, tabu

search, genetic algorithms and neural networks [1] are based
on empirical techniques in nature. Simulated annealing (SA)
[7] is a generic probabilistic meta-algorithm for the global
optimization problem, namely locating a good approximation
to the global optimum of a given function in a large search
space. It is inspired by annealing in metallurgy, a technique
involving heating and controlled cooling of a material to
increase the size of its crystals and reduce their defects. The
heat causes the atoms to become unstuck from their initial
positions (a local minimum of the internal energy) and wander
randomly through states of higher energy; the slow cooling
gives them more chances of finding configurations with lower
internal energy than the initial one. SA has been widely used
in a large range of applications.

In the paper, we present a cluster-based simulated annealing
that combines a clustering technique with simulated annealing
to map cores onto 2D mesh NoCs. Such 2D tiled structures
have gained popularity over the last six years of NoC research
due to its modularity and regularity [2]. Clustering is a general
technique to partition nodes into groups according to the node
“distance” property. The distance can have a very different
meaning depending on the problem of interest. Clustering can
greatly simplify the mapping problem because the mapping
can now be conducted cluster wise instead of node wise.
Since a cluster can be much coarser, the mapping complexity
can be greatly reduced. If we partition 16 nodes/cores into 4
clusters with each cluster accommodating 4 nodes/cores, the
entire search space is shrunk to (4!)5, which is approximately
7.96×106. However this is gained by sacrificing cross-cluster
permutations. In our approach, we allow cross-cluster moves
in the annealing stage. Therefore our technique does not limit
search space but make the search more efficient. By clustering,
nodes and cores with a certain property are grouped together.
Thus, a good initial configuration can be achieved and the
annealing process can be conducted more efficiently. Our
experimental results show that this method saves run time
without compromising solution quality and is scalable to larger
problem sizes.

The rest of the paper is organized as follows. We outline
related work in Section II. In Section III, we define the
mapping problem and give an overview of our Cluster-based
Simulated Annealing (CSA) approach. We present the CSA in
detail in Section IV. Experimental results are then reported in
Section V. Finally, we conclude in Section VI.

II. RELATED WORK

In the area of parallel computing, mapping algorithms or
task clusters onto multiple interconnected processors have long
been studied [8], [9]. They aimed to optimize the execution
time under the circumstance that the application traffic knowl-
edge is unknown. Since NoC is a continuation of System-
on-Chip (SoC) and SoC is application specific, solving the
NoC core-to-node mapping problem can take advantage of
knowledge about both the traffic requirements and network
properties. The following works address the NoC mapping
problem.

Hu and Marculescu [6] formulated an IP-to-node mapping
problem in presence of routing diversity to minimize energy.
They used a branch-and-bound algorithm and decoupled the
mapping and path selection phases. The UMARS (Unified
MApping, Routing and Slot allocation) [5] is a single-objective
algorithm unifying the IP-to-node mapping, path selection, and
slot allocation for time-division-multiplexing virtual circuits.
It is a greedy algorithm that iterates over a monotonically
decreasing set of unmapped virtual circuits until all virtual
circuits are allocated or until allocation fails. Lu and Jantsch
[10] addressed the configuration of time-division-multiplexing
virtual circuits using the concepts of logical networks while
mapping IPs to cores.

Murali and De Micheli addressed the mapping problem with
the aim of minimizing communication delay by exploiting the
possibility of splitting traffic among diverse paths [11]. They
used a heuristic (swapping vertexes based on initial mappings)
to explore minimum-path routing and split-traffic routing. In
[13], a genetic algorithm is used to map task graphs onto a
tile-based NoC architecture with the objective of minimizing
execution time.

We address the mapping problem using simulated annealing
with the objective to minimize the delay-weighted bandwidth.
Particularly, we combine the clustering technique with the
simulated annealing, reducing run time without compromising
quality of solution. To our knowledge, our work is the first
to use a cluster-based simulated technique to address the
core-to-node mapping problem for specific applications in the
network-on-chip context.

III. THE MAPPING PROBLEM AND OUR APPROACH

A. The Problem Definition

The core-to-node mapping problem is a specific graph
embedding problem. We assume that

• the network topology is 2D mesh. The mesh has bidirec-
tional links with uniform bandwidth between nodes.

• the number of cores is not greater than the number of
nodes and one core is mapped to exactly one node. If
there are more cores than nodes, two or more cores may
be grouped into one coarser core before mapping.

The mapping problem has been formulated in [6] and [11].
Both formulations are similar but use a different cost function.
Following their formulations, we first give definitions and then
formulate the problem.

Definition 1. A Core Communication Graph (CCG) captures
the communication patterns between IP cores. It is a directed
graph G = M×A, where each vertex mi represents a core, and
each directed arc ai→ j represents the communication from mi

to m j and is associated with a bandwidth requirement bwi, j as
its weight.

Definition 2. A Network Node Graph (NNG) reflects the
connectivity and bandwidth capacity of the underlying imple-
mentation architecture. It is a directed graph G′ = N×V , where
each vertex ni represents a node, and each directed arc vi→ j

represents the link from node ni to node n j and is associated
with an available bandwidth BWi, j as its weight.

Given a CCG and an NNG, size(CCG) ≤ size(NNG), the
mapping task is to find a mapping function: map : M → N
that maps a core mi ∈ M to a node ni ∈ N such that the cost
Cost = ∑∀ai→ j

|R(map(mi),map(m j))| ∗ bwi, j is minimized,
where |R(map(mi),map(m j))| is the number of hops of the
route from map(mi) to map(m j). Routing is governed by a
routing algorithm which ensures minimal path and deadlock-
free. The objective function minimizes delay and overall
communication volume, thereby maximizing performance and
minimizing power consumption in the network.

B. Overview of Cluster-based Simulated Annealing

We combine two techniques, namely, clustering and sim-
ulated annealing, to address the mapping problem. We call
this combined technique Cluster-based Simulated Annealing
(CSA). An overview of the CSA is shown in Figure 1.

Start

End

Annealing

Initial mapping

Stage limit reached?

Network node clustering

Comm. core clustering

Core−to−Node mapping

Select solutions

Set core exchange range

Exchange core mappings

N

Y

Y

N
Stop ?

Fig. 1. The Cluster-based Simulated Annealing (CSA) Flow

The CSA flow is based on a typical SA flow, which consists
of initial mapping and annealing steps. It enhances the SA
flow by grouping network nodes and communication cores

into clusters before the core-to-node mapping. The clustering
exploits the knowledge about the network architecture and
communication demand of applications. Then the core-to-node
mapping is to map core clusters to node clusters and find
a feasible initial mapping, and later the annealing process
is applied on the initial mapping in aware of the clusters.
Therefore, the clustering technique would impact both the
initial mapping and the annealing process of the SA. We
describe the two steps in detail in Section IV.

IV. CLUSTER-BASED SIMULATED ANNEALING (CSA)

A. Cluster-based Initial Mapping

As depicted in Figure 1, the initial mapping consists of
three steps, namely, network node clustering, communication
core clustering, and core-to-node mapping. The first step is
to cluster network nodes in the network topology. The second
step is to cluster cores in the application communication graph.
The second step uses the same number of clusters and the same
number of nodes in each cluster as the first step. The third step
is to make a one-to-one mapping between a core cluster and a
node cluster. As the search is subject to bandwidth and delay
constraints, both constraints will be checked in order to find
a feasible initial mapping.

1) Network node clustering: The node clustering is based
on the physical shortest distance between nodes in the network
topology. We define the distance of node ni as a tuple by ci

and hi,

d(ni) = (ci,hi) (1)

where ci is the number of output links of node ni, and
hi is the overall distance from node ni to all other network
nodes. The parameter ci reflects the node’s local connectivity.
It is important because a node with a larger number of
neighboring nodes has a larger communication capability and
thus should be preferably used by a core with a larger number
of connections. In this way, communication locality can be
better satisfied. hi captures the global connectivity of node ni

and is calculated by

hi =

√√√√ K

∑
j=1

((x j − xi)2 +(y j − yi)2) (2)

where K is the number of network nodes and (x j,y j) is the
coordinates of node n j on the mesh.

Using the distance property of nodes, the node clustering
may be conducted with the following steps:

Step 1.1 Calculate each node’s distance d(ni), and
group nodes with the same distance into the same
set;
Step 1.2 Sort the nodes in a descending order
according to their distance. For the distance com-
parison with a tuple (c,h), the first element c will
be first compared and then the second element h.
(c1,h1) > (c2,h2) if c1 > c2 or c1 = c2 and h1 > h2;

(c1,h1) < (c2,h2) if c1 < c2; (c1,h1) = (c2,h2) if
c1 = c2 and h1 = h2.
Step 1.3 Sequentially partition nodes into clusters.

In Step 1.3, the number of clusters should not be fixed as a
prior. Rather it should be determined according to the distance
distribution of nodes.

10 11 12

13 14 15 16

9

1 2 3 4

5 6 7 8

clustercluster

cluster cluster

cluster cluster
center

clusteredge

clusteredge

edge edge

corner

cornercorner

corner

cluster

Fig. 2. A clustered 4×4 mesh

We exemplify the node clustering with a 4×4 mesh in
Figure 2. By Step 1.1, we obtain three node sets, {6,7,10,11},
{2,3,5,9,8,12,14,15}, and {1,4,13,16}. In each set, nodes
have the same distance. By Step 1.2, we order the three sets.
Set {6,7,10,11} includes nodes in the center. In this set, each
node has four neighbors. Compared with the other two sets,
this set has the highest communication capability. According
to the communication capability, we order the three sets as a
center set {6,7,10,11}, an edge set {2,3,5,9,8,12,14,15},
and a corner set {1,4,13,16}. Naturally, we obtain three
clusters for Step 1.3 as a center cluster, an edge cluster and a
corner cluster.

2) Communication core clustering: In this step, the number
of clusters and the number of cores in each cluster, which are
used to partition the core communication graph, inherit from
network node clustering. The distance of a core depends on
the number of connections and the communication bandwidth
for each connection. To properly reflect these requirements,
we define the distance of core mi as a tuple by ei and wi,

d(mi) = (ei,wi) (3)

where ei is the number of output connections of core mi,
and wi is the weighted sum of the bandwidth requirement of
core mi to its neighbour cores. ei reflects traffic locality. wi

captures the node’s overall communication requirements and
is calculated by

wi =
li

∑
j=1

ki, jbwi, j (4)

where li is the number of connected cores with core mi,
bwi, j is the bandwidth requirement from core mi to m j, and
ki, j is a user-adjustable parameter, thus a user can control the
weight of a particular connection. Therefore the core distance
may be biased toward some connections due to, for example,
more stringent delay constraint on a particular connection.

The core clustering may be conducted as follows:
Step 2.1 Calculate each core’s distance d(mi), and
group cores with the same distance into the same set;
Step 2.2 Sort the cores in a descending order accord-
ing to their distance. The distance comparison with
tuple (e,w) is similar to that with (c,h).
Step 2.3 Sequentially partition the ordered cores into
clusters, matching the number of elements in the
corresponding node cluster.

3) Core-to-Node initial mapping: The initial mapping is to
match core clusters with node clusters according to their dis-
tance property. The idea is to map a cluster of communication
cores with high demand in delay and bandwidth onto a cluster
of network nodes that can provide such high capability in delay
and bandwidth. For example, the network nodes in the center
of the 2D mesh network potentially have lower communication
delay and higher bandwidth. Therefore, a cluster of cores with
lower delay and higher bandwidth requirements should be
mapped onto the center nodes.

In the initial mapping phase, bandwidth and delay con-
straints for each inter-core communication will be checked and
must be satisfied. This implies that, after the cluster mapping
is settled, cores within a cluster may need to adjust their
mappings in order to satisfy the requirements.

B. Cluster-based Annealing

Besides the initial mapping, the annealing will also be
affected by the clusters. We first describe the general annealing
process and then the cluster-aware annealing, which considers
both inside-cluster (within a cluster boundary) annealing and
cross-cluster (outside a cluster boundary) annealing.

1) Annealing: The annealing technique is a cooling pro-
cess, i.e., reducing the temperature, based on an initial con-
figuration. In the mapping problem, the exchange of positions
between two mapped cores reflects the temperature. If two
mapped cores have a higher shortest distance on the topology,
we say that the exchange of positions between the two cores
is a higher temperature move. Otherwise, the exchange leads
to a lower temperature move. Each move results in a new
configuration. For the problem of mapping cores onto 2D
meshes, the number of annealing stages thus corresponds to
the diameter D of the network. For a K1 ×K2 mesh network,
D = K1 + K2 −2.

The annealing uses the initial mapping as the initial configu-
ration. For a K1×K2 mesh, it first sets the number of annealing
stages to diameter D, each stage corresponding to an exchange
of mapped cores within a given distance. For instance, at the
first stage, the mapped cores with distance d ≤ D may be
exchanged. At the last stage, only neighbor cores (d = 1) are
possibly exchanged. At each stage, the pair of mapped cores

to be exchanged are randomly selected. A number of moves
may be conducted at each stage. The resulting solutions will
then be checked against bandwidth and delay requirements in
order to filter out only feasible solutions. Moreover, only part
of the feasible solutions can be accepted and are in turn used in
the next stage annealing. This iterative process continues until
a stop criterion is reached. The stop criterion can be either
a time threshold or a sufficient number of feasible solutions
reached.

The selection of feasible solutions for the next-stage anneal-
ing is a crucial step. On one hand, it should lead to low cost
solutions, called “downhill” moves. On the other hand, it must
be able to escape from local minimum. The way to do this is to
allow also “uphill” moves in the annealing process, implying
that a higher cost solution may be probabilistically accepted to
the next stage annealing. We follow the Metropolis algorithm
[3] for the solution selection. According to this method, the
acceptance probability function is P(∆E) = exp(−∆E/KT).
Here K is the Boltzmann constant, T temperature and E
energy. Both T and E are user defined. E refers to the cost
of a mapping solution. By the equation, a decrease in the
energy (negative ∆E) has an increasing acceptance probability,
and an increase of energy (positive ∆E) has a decreasing
acceptance probability. Our acceptance criterion is to accept
all downhill moves and probabilistically accept uphill moves.
The acceptance of uphill moves helps to escape from local
minimum.

2) Cluster-aware annealing: The cluster-aware annealing
follows the annealing procedure described above. However,
in each stage, annealing must determine whether only inside-
cluster moves are allowed. Let us assume that an annealing
stage allows to swap nodes (thus core mappings) within
distance d0. After randomly choosing a candidate node, the
annealing procedure first checks which cluster it belongs to
and then finds the maximum distance d1 to its cluster-mates
without crossing a cluster boundary. If d0 ≤ d1, only inside-
cluster exchanges are permitted; otherwise, both insider-cluster
and cross-cluster swappings are valid. This implies that, in
the earlier annealing stages, the clusters are virtual and do
not have impact on the annealing. This allows the greatest
possible of optimal solution space. The cross-cluster annealing
breaks the cluster boundaries, enabling to escape from local
minimum and to further optimize cost. In the later annealing
stages, the clusters are visible to make sure that only inside-
cluster annealing is made. This helps to effectively constrain
the search to converged near-optimal solutions by minimizing
random displacements, which are unlikely lead to low cost
solutions.

To show when only inside-cluster moves are allowed, we
give an example. On the 4×4 mesh (Figure 2), at the annealing
stage with a permissible move distance d0 = 2, if node 7 is
chosen, we find that this node belongs to the center cluster, and
its maximum distance of this node to its cluster-mates, d1, is 2,
satisfying d0 = d1. Then only inside-center-cluster exchanges
are valid. This means that the annealing only allows node 7
to swap with nodes 6, 10 and 11.

V. EXPERIMENTS

The purpose of our experiments is to validate the advantages
of our approach in runtime and quality of solution. To this
end, we have also implemented the simulated annealing (SA)
without clustering as the baseline. This enables us to compare
the pure SA with the CSA. The SA and CSA algorithms are
executed on a notebook with a 1.6 GHz processor and 768 MB
memory. We assume the dimension-order XY routing, which
is simple and guarantees deadlock freedom.

A. A Video Application

We use a Video Object Plane (VOP) decoder [11] to test
our algorithms in runtime and quality of solution. As depicted
in Figure 3, the VOP decoder has 16 cores. The bandwidth
requirement is denoted on the connections. This application is
to be mapped onto the 4×4 mesh.

VOP reconstruct

Memory

Var. length
decoder

Arithemetic
decoder

Down sampl &
context calculation

Run length
decoder

Inverse
scan

AC/DC
prediction

iQuanti. IDCT

Strip memory

memory
VOP

Ref memory

70 362 362 362 357

27 49

Demux

Padding

313

Up sampling
30016

16

353

157 16
16

16

313

94
500

16
Up sampling16

Fig. 3. The Video Object Plane decoder with bandwidth demand in MB/s

B. Results of Simulated Annealing (SA)

0 1 2 3 4 5
2000

2500

3000

3500

4000

4500

5000

Annealing stage

A
vg

. c
os

t o
f s

ol
ut

io
ns

3x3 SA
Optimal point

Fig. 4. 3×3 mapping results

We first validate the quality of the pure simulated annealing
(SA). We use a partial of the video application (Figure 3),
9 cores to map onto a 3× 3 mesh. We perform a complete
search of the entire solution space in order to find the optimal
solution. Such an exhaustive search is possible for the 3× 3
case. Then we compare the results of SA with the optimal
solution, as shown in Figure 4.

In Figure 4, the X axis represents the number of annealing
stages, each corresponding to a distance range. “Stage= 0”,
refers to the initial mapping. “Stage= 1,2,3,4” means that
only a move within distance 4, 3, 2, 1 (an exchange of nodes
between which the shortest distance is not greater than 4, 3, 2,
1), respectively, is permissible at the stage. The Y axis shows
the average cost of accepted solutions. From the curve, we can
see that the annealing results in converged low cost solutions.
Interestingly, as indicated by the Optimal point, the minimum
cost solution found in the last stage of annealing achieves the
same optimal solution as the full search does. Note that the
optimal solution is a single point. The SA takes 29 seconds
to finish while the exhaustive search uses 80 seconds.

C. Cluster-based Simulated Annealing (CSA) Results

0 1 2 3 4 5 6 7
2000

3000

4000

5000

6000

7000

Annealing stage

A
vg

. c
os

t o
f s

ol
ut

io
ns

4x4 SA
4x4 CSA

Fig. 5. 4×4 mapping results

In this section, we first compare the results of SA and
CSA mapping the VOP decoder application onto a 4×4 mesh.
As shown in Figure 5, both SA and CSA converge to the
equilibrium state. The CSA achieves lower cost for the initial
mapping and a slightly lower average cost (4189) than the SA
(4255) in the last annealing stage.

To compare our results with NMAP [11], which is a
heuristic mapping algorithm and could be a representative
of the state-of-the-art, we extract approximate results from
the bar diagrams in [11]. For the VOP application, NMAP
achieves the lowest cost of about 4200. The minimum link
bandwidth required to satisfy the bandwidth requirements of
the application is about 450 MB/s. No execution time was
reported in [11]. Our SA and CSA algorithms achieve the
lowest cost of 4231 and 4169, respectively, with the same
minimum required link bandwidth. Furthermore, the SA takes
497 seconds to finish while the CSA consumes 387 seconds,
meaning a reduction of 22% in run time.

In [11], the studied problem sizes are no more than 16 cores.
To show the performance of the cluster-based approach to
a bigger network size, we conduct experiments on an 8×8
mesh. Due to lack of appropriate application, we create an
application by quadruplicating the VOP decoder application

edge
cluster

corner
cluster

corner
cluster

corner
cluster

corner
cluster

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

59 60 63 64626157 58

center
cluster

clusteredge

edge cluster

edge
cluster

Fig. 6. A clustered 8×8 mesh

and placing additional links among the four instances. We
coarsely partition the nodes into three clusters, a center cluster,
an edge cluster and a corner cluster. Each cluster in this case is
four times as big as the corresponding 4×4 cluster, as indicated
in Figure 6. The results are shown in Figure 7. Both algorithms
achieved the same lowest average cost in the last annealing
stage. The SA takes 6785 seconds to finish, and the CSA
completes in 4750 seconds, reducing 30% in run time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2

2.2

2.4

2.6

2.8

3
x 10

4

Annealing stage

A
vg

. c
os

t o
f s

ol
ut

io
ns

8x8 SA
8x8 CSA

Fig. 7. 8×8 mapping results

VI. CONCLUSION AND FUTURE WORK

In the paper, we propose to combine the clustering tech-
nique with the simulated annealing to further leverage the
performance of SA. The clustering is based on the distance
property of elements. In our mapping problem, the distance
reflects the communication supply property in the network
topology and the communication demand property in the core
communication graph. By exploiting the distance knowledge

from both the implementation architecture and application
characteristics, we are able to obtain better initial mappings
and later the annealing may dynamically constrain to inside
clusters to speed up the convergence. The annealing can
thus be more efficient. Our case study shows an up to 30%
reduction in run time without compromising solution quality.
We also show that our algorithms can effectively handle
problems with a larger size.

While confident in the potential of our approach, we realize
that clustering in itself has a rather huge design space to
explore. For example, hierarchical clustering of network nodes
and application cores may be applied when the system size
scales up. Since a mesh has excellent composability, a big size
mesh can be composed with smaller-size meshes by adding
links without changing any existing links. For example, a
32× 32 mesh may be assembled with 4 16× 16 meshes or
16 8×8 meshes. This composability property can be explored
using hierarchical clustering. Accordingly application cores
must also be hierarchically clustered. This provides another
angle of clustering and further impact on how to do annealing
is to be studied in the future.

ACKNOWLEDGMENT

The research is partially supported by the EU project Mosart
in the FP7 framework.

REFERENCES

[1] E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons Ltd., 1997.

[2] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Survey, 38(1):1–54, 2006.

[3] O. Catoni. Metropolis, simulated annealing, and iterated energy trans-
formation algorithms: Theory and experiments. Journal of Complexity,
12(4):595–623, 1996.

[4] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[5] A. Hansson, K. Goossens, and A. Rădulescu. A unified approach
to constrained mapping and routing on network-on-chip architectures.
In Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 2005.

[6] J. Hu and R. Marculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In
Proceedings of the Design Automation and Test in Europe Conference,
2003.

[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[8] N. Koziris, M. Romesis, P. Tsanakas, and G. Papakonstantinou. An
efficient algorithm for the physical mapping of clustered taskgraphs
onto multiprocessor architectures. In Proceedings of the 8th Euromicro
Workshop on Parallel and Distributed Processing, pages 406–413, 2000.

[9] V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed,
B. Nitzberg, J. A. Telle, and X. Zhong. OREGAMI: Tools for mapping
parallel computations to parallel architectures. International Journal of
Parallel Programming, 20(3):237–270, 1991.

[10] Z. Lu and A. Jantsch. Slot allocation using logical networks for TDM
virtual circuit configuration for network-on-chip. In Proceedings of
the International Conference on Computer-Aided Design (ICCAD’07),
November 2007.

[11] S. Murali and G. D. Micheli. Bandwidth-constrained mapping of cores
onto NoC architectures. In Proceedings of Design, Automation and Test
in Europe Conference, pages 896 – 901, 2004.

[12] S. Sahni. Data Structures, Algorithms, and Applications in C++, 2nd
Edition. Silicon Press, 2004.

[13] L. Tang and S. Kumar. A two-step genetic algorithm for mapping task
graphs to a network on chip architecture. In Proceedings of Euromicro
Symposium on Digital System Design, pages 180– 187, Sept. 2003.

