High-Level Estimation and Trade-Off Analysis for Adaptive Real-Time Systems

Ingo Sander, Jun Zhu, Axel Jantsch
Royal Institute of Technology
Stockholm, Sweden
{ingo, junz, axel} @kth.se

Abstract

We propose a novel design estimation method for adaptive
streaming applications to be implemented on a partially
reconfigurable FPGA. Based on experimental results we
enable accurate design cost estimates at an early design
stage. Given the size and computation time of a set of
configurations, which can be derived through logic synthesis,
our method gives estimates for configuration parameters,
such as bitstream sizes, computation and reconfiguration
times. To fulfil the system’s throughput requirements, the re-
quired FIFO buffer sizes are then calculated using a hybrid
analysis approach based on integer linear programming and
simulation. Finally, we are able to calculate the total design
cost as the sum of the costs for the FPGA area, the required
configuration memory and the FIFO buffers. We demonstrate
our method by analysing non-obvious trade-offs for a static
and dynamic implementation of adaptivity.

1. Introduction

This paper proposes a novel estimation method to be
able to estimate the design costs for the implementation of
adaptive applications with given throughput constraints on
reconfigurable architectures at an early stage of the design
process. In particular we use our estimation method to
analyse non-obvious trade-offs between a dynamic and a
static implementation of an adaptive streaming application.

1 Synthesis
Configuration (Fossy +
Specification Xilinx XST)

(OSSS+R)

Configuration Parameters
(Size, Computation Time,
Reconfiguration Time, ...)

Design Constraints
(Required throughput,
minimal reconfig. interval)

Analysis of
Buffer Sizes
(Reference [1])

Buffer Sizes

Cost
Calculation
(Section 2, 3)
———————

Architecture
Parameters

[Estimated Costs

Figure 1. Design Estimation Method

Our estimation method, which should be seen as a part of
a larger design exploration flow, is illustrated in Figure 1.

Andreas Herrholz', Philipp A. Hartmann’, Wolfgang Nebel
TOFFIS Institute, fCarl v. Ossietzky University

Oldenburg, Germany
{herrholz,hartmann,nebel } @offis.de

The estimation method assumes that there are several con-
figurations that are never to be executed simultaneously and
thus can share a reconfigurable area on an FPGA. Logic
synthesis yields configuration parameters, which together
with design constraints form the input for an automated
analysis to dimension the buffer requirements for a given
output data rate. Our performance analysis method uses a
hybrid approach based on integer linear programming and
simulation and is elaborated in [1]. The obtained buffer sizes
are then used together with architecture parameters for the
calculation of the design costs. This allows to estimate the
design costs before using explicit back-end tools for partial
reconfiguration, like the Xilinx EAPR flow [2].

Adaptation control stream |
Smyi” > |

I I
\Pin Pout |

| 1
Tin 1 m i 1 Moyt
@ S1 ! IIIII S92 l 83 W
FIFO; FIFO gyt

Adaptitive process

Figure 2. Adaptive streaming application

To dimension the buffer sizes we model our target appli-
cations using the adaptive streaming application model illus-
trated in Figure 2. Nodes denote the computation processes.
Edges associated with FIFOs denote the communication
channels with finite storage, which decouple the input data
streams from output data streams of each communication
channel (e.g. FIFO; decouples s; from s3). Processes read
tokens from the input-side FIFOs, and emit the produced
data tokens to the output-side FIFOs at the end of the
computation. The input/output token numbers are fixed [3]
and denoted as symbols at each side of the communication
channels, e.g. process p; has m; input tokens and n; output
tokens. Meanwhile, the adaptive process p; responds to the
adaptation control stream s,, ;, and can switch between n
different working configurations C; to C,,, as shown in the
dashed box. While the stream source p;, provides a peak
data rate p;,, an average output data rate p,,; needs to
be guaranteed by the application even during the run-time
reconfiguration of process p;. The adaptation control signal
Sm,; might either come from an external controller or be

retrieved from the data streams. Given the reconfiguration
and computation times for each configuration and a worst
case reconfiguration interval, our analysis method is able to
calculate the buffer sizes to guarantee the required average
data rate at the output as elaborated in [1].

Since the description of dynamically reconfigurable sys-
tems is not explicitly supported by traditional hardware
description languages, we have chosen to combine our per-
formance analysis method with OSSS+R [4], a methodology
for modelling, simulation and synthesis of reconfigurable
systems based on SystemC. In combination with the synthe-
sis tool Fossy [5], OSSS+R provides a direct path to an im-
plementation on FPGA-based platforms. Several approaches
to practical modelling of reconfigurable systems are known,
some of which cover synthesis as well, like [6], [7]. They
propose a design flow leading to a real implementation.
However, design efficiency of adaptive real-time embedded
systems has not been addressed. In this work, we do not
consider configuration scheduling [8], since we assume that
the system has to fulfil certain requirements, regardless of
any required reconfigurations. The dynamic approach pre-
sented in [9] may be combined with our approach, to obtain
the required minimal period between two reconfigurations.

2. Abstract Architecture Model

In the following we present two abstract architecture
models that allow to compare the design costs of a dynamic
implementation of adaptivity (just-in-time adaptivity) and a
static implementation (mode adaptivity) at an early design
stage.

Reconfigurable Area

SEma Srm2
Input Configuration | | Output
- ™ Slot

A T Conf?g 11— Scma
Config 2 — Scu 2

Ace Configuration :
Controller Config n |~ Scarn

Adaptation Control f Configuration Memory

Figure 3. Model of just-in-time adaptivity

Figure 3 shows an abstract model of the architecture for
Jjust-in-time adaptivity (JIT). Just-in time adaptivity uses the
capabilities of the reconfigurable FPGA with the objective
to reduce the area requirements by means of a single recon-
figurable slot. Every time a system function is needed, the
function is loaded into this reconfiguration slot. All available
configurations are stored in a configuration memory.

In order to abstract from technology details and to obtain
a simple, but general and sufficiently accurate model, we
make the following assumptions:

o The only unit we use for area cost is the number of logic
elements (LE). The cost for a configuration ¢ stored

in the configuration memory is Aoy i = kemScm i
where k¢ expresses the relative memory cost depend-
ing on the technology, and Scys,; is the size of the
configuration in bytes. The cost for a FIFO buffer ¢
has to be described by a function App(Spas,i). since
it does not only depend on the size Sgys 4, but also on
the implementation of the FIFO buffer.

o The configuration slot A¢ has at least the size of the
largest configuration.

o The reconfiguration time g ; is technology dependent,
which is expressed by the factor kg. It grows linearly
with the size of the bitstream Sc¢ys; of the configura-
tion ¢, thus tr: = kRSCM,i~

Then, the total cost for just-in-time adaptivity is

= Acc+ i komSomi+ Ac+
Apv(Srm) + Arv (Srar,2)

Agrr

(D

A(,‘,l

Configuration 1

=1
©
=1
—
1
—
Demultiplexer

Mode

Figure 4. Model of mode adaptivity

Figure 4 shows a direct implementation of mode adap-
tivity. All system functions are statically available from
start, which means that the system does not require the
reconfiguration infrastructure, like the configuration memory
and controller. Depending on the mode the corresponding
system function is selected.

The total area cost for mode adaptivity is calculated as the
sum of the area of all configurations, the area needed for
multiplexer and demultiplexer, and the costs for the FIFO
buffers.

AMode Z?:l AC’,Z' + Aptuz + Apemuz

+Apm(Srm1) + Arv (SEa2)

We can conclude that each of the presented alternatives
has its strength and weaknesses. Mode adaptivity is very
fast, but may result in a large area. Just-in-time adaptivity
saves area due to the possibility to store configurations in
compressed way in a memory, while they are not executed.
However, additional buffers have to be used, and due to
reconfiguration the maximum throughput may be lower than
in a mode adaptive implementation. As our experiments
show in Section 4 the trade-off between just-in-time and
mode adaptivity is far from obvious and depends on the
concrete application.

2

3. Platform Characterisation

Before our estimation method can be applied to a specific
target architecture, it has to be calibrated, i.e. the parame-
ters of the abstract reconfiguration architecture defined in
Section 2 have to be replaced with specific values. For
this paper, we have chosen OSSS+R [4] and the Xilinx
Virtex-4 architecture for demonstration and validation of
our flow. In OSSS+R reconfigurable areas of an FPGA are
represented by so called reconfigurable objects. Configu-
rations are modelled by means of different classes which
can be mapped to one or more of these objects. Using the
synthesis tool Fossy, an OSSS+R model can be automatically
synthesised to register transfer level. The generated VHDL
can be further processed by third-party gate-level synthesis
tools and platform specific flows for reconfigurable systems.

Virtex-4 oraser | ...
ICAP Process rocess n
1 | —— |
. | . PRC L Crossbar Switch
| Configuration
- Memory | ! =) L.: 1
B configuration1 % Access e
i o Controller } Slot
| Additional
Configuration n instance(s)

Figure 5. Synthesised OSSS+R Architecture

In Figure 5 a block-diagram of the resulting RTL architec-
ture of an OSSS+R model is shown. For each reconfigurable
object a corresponding slot is generated. The configurations
of a slot are generated as a stand-alone module, which
are later implemented as partial bitstream. Each slot is
managed by an Access Controller (AC), controlling access
to the slot and requesting reconfigurations. Reconfiguration
requests are directed to the Platform Reconfiguration Con-
troller (PRC). The PRC arbitrates and controls accesses to
the platform specific reconfiguration port, like the internal
configuration access port (ICAP) for Virtex FPGAs.

To characterise our analysis for OSSS+R and its Fossy
based implementation flow we have implemented the adap-
tive streaming application given in Figure 2 as a parametris-
able OSSS+R design, consisting of one reconfigurable object
and accompanying in- and output FIFOs. We implemented
an adaptive polynomial evaluator with varying order and par-
allelism to obtain configurations with different computation
times and sizes. The type and number of configurations can
be varied to measure changes in costs for reconfiguration
infrastructure and in bitstream sizes. As target architecture
we have used a Xilinx Virtex-4 LX25. One slice of the FPGA
corresponds to one logic element (LE) in our methodology.

As a result of our experiments, we have (1) found out
that the area cost Acc of the controller for just-in-time
adaptivity is almost independent of the number of configu-
rations, (2) determined the cost for Block RAM Ap M(BM)

and Distributed RAM App(pasy for a given FIFO depth,
(3) determined the costs for the multiplexer Aps,, and
demultiplexer A pepqy, for a given number of configurations,
and (4) approximated the size of the configuration bitstream
Sc i, for a given configuration size Acaz,; and a given size
of the configuration slot A¢. These parameters are used in
the experiments in Section 4.

4. Trade-Off Analysis

We have conducted several experiments using the flow of
Figure 1 to be able to analyse the trade-off between just-in-
time and mode adaptivity. For these experiments, we have
used the buffer dimensioning method of [1], the abstract
models of Section 2, and the architecture parameters we
have derived using the results of Section 3.

5000 T T T T

JIT-Distr. RAM (u = 0.50)

4500 - JIT-Distr. RAM (i = 0.05) ---%--- .
JIT-Block RAM (i = 0.50) &

4000 - JIT-Block RAM (i = 0.05) i

B

3500 _—
e /
3000 |- e

2500 |-

2000
1500 /,:/* Hernerennnn eeennnnnnd Ko eenaeennn Heeneennnnd

1000 I I I I I I

Design Costs [LE]

Number of Configurations
Figure 6. Costs for varying number of configurations

Figure 6 illustrates the trade-off between just-in-time and
mode adaptivity for a varying number of configurations
of almost identical size. In this experiment logic synthesis
for six different polynomials of the same order gave a
configuration size Ac; = 504+ 15 LE and a constant com-
putation time tc; = 2.62us. For the following calculation
we assumed Ac; = 519 LE for all configurations and set
Ac¢ = 675 LE as configurable slot area. We then calculated
the bitstream size Scps,; = 75085 bytes and reconfiguration
time tg,; = 75lus. As design constraints, the required
throughput was specified as p,,; = 3.05 Mbit/s for a worst
case reconfiguration interval of ¢inierr,; = 1.57ms. Our
buffer analysis method of [1] returned that the buffer sizes
required to meet the throughput constraints are a minimal
buffer depth of 1 for the input and 72 for the output FIFO,
which is independent of the number of configurations.

It is in practice impossible to give a general relation for
the memory cost factor, since it not only depends on the
cost of the configuration memory, but also on the cost of
the logic elements in an FPGA and the control logic that is
required to connect the memory to the FPGA. An SRAM
with a simpler memory interface can be about 50-100 times
more expensive than a DRAM of the same size. Thus we

assume that kops is specified by the designer who has a
profound knowledge of the architecture. We have conducted
the experiments with different values kcy = nAc, /Scom i
where a factor ¢ = 0.5 means that the cost for storing
a configuration in the memory is 50% of the cost when
implementing the configuration in the logic elements of
the FPGA. We found that the values ko) = 0.5 and
ke = 0.05 were well-suited to illustrate the trade-offs
between different implementation alternatives. For all our
experiments we have further assumed k¢ (pary = 1 as cost
factor for the Block RAM.

The experiment shows that the costs for mode adaptivity
grows quickly with the number of configurations. On the
other hand the increase in costs for just-in-time adaptivity
is much less and depends mostly on the cost for the
configuration memory. Since the required FIFO depth was
much smaller than the minimal size of a Block RAM,
an implementation with Distributed RAM has significantly
lower costs than an implementation using Block RAM.

22000 ‘ ‘ ‘ ‘
Mode —+—
20000 - JIT - Distr. RAM (u = 0.50) i
JIT - Distr. RAM (u = 0.05) -~ %+~
18000 | JIT - Block RAM (p = 0.50) & * -
JIT - Block RAM (u = 0.05)
. 16000
w
—
= 14000
G *
8 12000 =
c a
% 10000 e .
2 8000 T
s
6000 [®
? R4
4000 'ﬁ o
2000 - Il Il Il Il Il
0 50 100 150 200 250 300

Output data rate [Mbit/s]
Figure 7. Costs for varying required output data rate

Figure 7 compares just-in-time and mode adaptivity for
a varying output data rate requirement for five config-
urations of the same size. In this experiment, we have
used a configuration with a much smaller computation time
tc,; = 60 ns and a required output data rate of up to
Pout = 32bit/(2tc;) = 267 Mbit/s for a worst case
reconfiguration interval of ¢;,¢crr,s =750us. The size of the
configuration and thus the reconfiguration time is the same
as in the first experiment.

The required FIFO buffer space increases with the re-
quired throughput. For a throughput of 267 Mbit/s the output
FIFO needs to have a depth of 6400 to be able to sustain
the required throughput during reconfiguration. The size of
the input FIFO buffer does not increase with the required
throughput, since it is assumed that the input process delivers
at least the same peak input rate as the required output rate.

In contrast to the previous experiment, we observe that the
design costs for a high throughput requirement are signifi-
cantly lower in an implementation with a Block RAM than
the corresponding Distributed RAM implementation. This is

caused by the large requirement of FIFO buffers, which are
not implemented efficiently with Distributed RAMs. There
is an almost constant cost for mode adaptivity over the
whole throughput range, since it is dominated by constant
configuration costs, whereas the costs for the FIFO buffers
are minor.

5. Conclusion

We have proposed a novel estimation method for adaptive
applications that shall be implemented on a partially recon-
figurable FPGA. The main benefit of this method is that
it calculates the required buffer sizes for a given required
output data rate and enables accurate cost estimates without
using back-end tools for partially reconfigurable FPGAs. We
have demonstrated our method to experimentally analyse
the non-obvious trade-off between just-in-time and mode
adaptivity and different buffer memory implementations.
Our next step is to extend our method to be able to analyse
multiple adaptive processes in a single system, which re-
quires to analyse the contention that will arise at the single
reconfiguration port of the FPGA.

References

[1] J. Zhu, 1. Sander, and A. Jantsch, “Performance analysis of
reconfiguration in adaptive real-time streaming applications,”
in 6th IEEE Workshop on Embedded Systems for Real-time
Multimedia (ESTIMedia), October 2008.

[2] Early Access Partial Reconfiguration User Guide (UG208),
Xilinx, Inc., 2006. [Online]. Available: http://www.xilinx.com/

[3] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous data flow programs for digital signal processing,”

IEEE Transactions on Computers, vol. C-36, no. 1, January
1987.

[4] A. Schallenberg, F. Oppenheimer, and W. Nebel, “OSSS+R:
Modelling and Simulating Self-Reconfigurable Systems,” in
Field Programmable Logic and Applications, August 2006.

[5] FOssy, Website, http://system-synthesis.org.

[6] L. Robertson, J. Irvine, P. Lysaght, and D. Robinson, “Improved
functional simulation of dynamically reconfigurable logic,”
Lecture Notes in Computer Science, vol. 2438, 2002.

[7] K. Tiensyria, Y. Qu, Y. Zhang, M. Cupak, L. Rynders, G. Van-
meerbeeck, K. Masselos, K. Potamianos, and M. Pettisalo,
“SystemC and OCAPI-x] Based System-Level Design for
Reconfigurable Systems-on-Chip,” Forum on Specification and
Design Languages, vol. 2, 2004.

[8] S. Ghiasi and M. Sarrafzadeh, “An Optimal Algorithm for
Minimizing Runtime Reconfiguration Delay,” ACM Trans. on
Embedded Computing Systems, vol. 3, May 2004.

[9] Y. Qu, J.-P. Soininen, and J. Nurmi, “Improving the Efficiency
of Run Time Reconfigurable Devices by Configuration Lock-
ing,” Design, Automation and Test in Europe (DATE’08), Mar.
2008.

