
Heterogeneous System-Level Cosimulation with SDL
and Matlab

Per Bjuréus*
Axel Jantsch**
*CelsiusTech Electronics, Sweden
**Royal Institute of Technology, Sweden

Key words: Cosimulation, SDL, Matlab, System-Level Design, Heterogeneity

Abstract: Many systems consist of a signal processing and a control dominated part. The
interaction of the data processing functions and a large variety of system-level
control functions are often complex and with far reaching consequences. Thus,
an early analysis and assessment of this interaction in a system level model is
desirable. We propose a heterogeneous cosimulation environment with Matlab
for the signal processing parts and SDL for the control-dominated parts. We
describe a communication and synchronisation technique that allows the natu-
ral usage of Matlab vectors which often represent data samples over time peri-
ods, rather than single events at time instances. This makes the technique both
natural to use and efficient in the simulation. We describe two modes of syn-
chronisation, head synchronisation and tail synchronisation, and the conditions
under which they can be used together.

1. INTRODUCTION

In the specification and design of dedicated digital signal processing
(DSP) systems, the data processing and the system level control parts have
traditionally been separated. This was justified because the main problems
were in the functional complexity and the tight timing constraints of the data
processing, while system level control were comparably simple and were
typically added later during the implementation phase. Tools like Matlab,
SPW, and COSSAP aid the designer in developing the signal processing al-

gorithms and refining them to bit true models. From there C or VHDL code
is generated or written for a custom hardware or a DSP based software solu-
tion. At this level, the system control is added to the design.

Today the situation is changing, and requires a system level integration of
control and data processing parts due to the following reasons:
1. While specification and implementation of DSP functions are still an im-

portant research area, it is a mature field. The integration of these func-
tions in various configurations and with other complex control dominated
functions becomes increasingly a major challenge.

2. Many products and product areas develop very fast, and it is difficult to
predict the required standards and interfaces for a product when it is in
the market one year after the development started. Therefore, products
need a high level of flexibility and reconfigurability to adapt to many
potential future situations in which the product will be used. The conse-
quence is a complex control accommodating all different standards and
variants.

3. Today technology allows us to integrate much more than the essential
core functionality in a product. Many functions to enhance the user’s
convenience, the flexibility of usage, maintainability and online testabil-
ity, etc. are included. These functions contribute considerably to system
level complexity and can constitute up to 90% of the system specification
documents.

4. A system level model, which includes both the data processing and the
system control, is desirable to assess the interaction of these two parts in
an early design phase.

D
et

ec
to

r

User Interface

Control Logic

Image Processing

D
is

pl
ay

Supervision

Figure 1. Image Processing System

Consider the image processing system for an infrared camera outlined in
Figure 1. The system consists of an infrared detector, an image-processing
unit, a user interface, a system supervision unit, control logic, and a display.
The user interface allows the user to interact with the system and manually
adjust the appearance of the image displayed. The supervision unit interfaces

to external systems. It monitors detector temperature and external error con-
ditions, controls lenses, and carries out self-tests. The control logic co-
ordinates the system components. It reads and writes parameters to and from
the image processing unit and handles user and supervision interaction. The
detector scans the field of view, the image-processing unit transforms the
image, and the display presents the image to the user. The image is updated
several times per second (typically 25-50), which yields a data rate of several
million pixels per second. The image processing is carried out in real-time
and the throughput latency must be kept within certain limits, which implies
strict real-time constraints. Meanwhile, the control logic is non-trivial, and
may operate in several different modes, controlled by the user interface, the
supervision unit, and feedback from the image processing system. It is cru-
cial that the control logic behaves in a predictable way, and that it does not
hang or enter undefined states that would impair the image processing.

When a system this complex is specified it is convenient to use different
models of computation for the image processing part and the control logic.
The image processing is effectively modelled using a dataflow paradigm
whereas a finite state-machine model is better suited for the control logic.
Since the control logic and image processing units are intimately connected
to each other, the behaviour of the system is the combined behaviour of both
units and their mutual interaction. The system modelling is often carried out
by different design teams, each team specialised to work with one model of
computation, e.g. dataflow or finite state-machines. It is therefore beneficial
to provide heterogeneous system cosimulation that allows different design
teams to simulate their contribution in an environment that considers the
whole system. Simulation at an early design phase has several advantages.
Errors are found quickly, and are easier and cheaper to correct. Feasibility
and performance of different design solutions are easily explored, which re-
sults in a cheaper and more optimal design and shorter time to market.

We propose to use languages and tools, which are well established in
their domains, namely Matlab [14] for the data processing parts and SDL
[13] for the control dominated part. A major challenge is to integrate the
timing and synchronisation concepts in a way that is intuitive to use. This is
further complicated by our objective to take advantage of one of the essential
ingredients of Matlab models, i.e. the usage of vectors and their transforma-
tions. Since vectors often represent data samples of a time period, their syn-
chronisation with specific time instances and events in the SDL part has a
subtle effect. We propose two synchronisation techniques, called head syn-
chronisation and tail synchronisation, and show under which conditions they
can be used together.

2. RELATED WORK

Current approaches to system modelling can be divided into two groups,
homogeneous and heterogeneous models. Homogeneous models are based
on a single formalism or language such as VHDL, C++, CSP, SpecChart,
etc. These languages are considerably rich and can typically be used far be-
yond their original scope. VHDL has been proposed as system-specification
language [1], sometimes by extending it with advanced features such as
communication facilities [15] or object-oriented concepts [4]. Similar at-
tempts have been put forward for popular software languages such as C [3],
C++ [2], Java [5][6], or SDL [7][8]. However, such homogeneous solutions
come at a price. A language, which is well established in one community, is
not always well received in another community. There are both accidental
and essential reasons for this. The investment in a given language in terms of
tools, competence, and existing designs is often so enormous, that an abrupt
switch to another language cannot be justified. Also, the modelling concepts
of general-purpose languages such as VHDL and C++ are not always a per-
fect match to the concepts of a given application problem.

For the two domains of control-dominated systems and signal processing,
it is difficult to find a language that naturally accommodates both worlds.
For these reasons heterogeneous frameworks have been proposed, those
build on existing models and languages and devise techniques to integrate
them. A very general and most influential framework is Ptolemy [9].
Ptolemy defines several models of computation such as discrete event or
data flow domains. It provides a general mechanism for communication
between different domains. A mechanism for communication and synchroni-
sation between data flow and discrete event models has been implemented in
Ptolemy, which transforms each single event on the border between the two
domains. If we adopt this approach for the integration of SDL and Matlab,
we would essentially lose the powerful vector handling in Matlab, which is
both a user convenience and key to simulation efficiency. Hence, we chose
to develop an alternative technique that avoids this disadvantage. Note, that
our technique could be implemented in Ptolemy also, but for our particular
purpose of integrating SDL and Matlab models, a more specific and less
general solution is easier to realise.

Similarly, in CoWare [10] no mechanism is provided to communicate
vectors in a synchronised way between different domains, which are de-
scribed in C++, VHDL, and DFL (Data flow language). The communication
is based on remote procedure calls, which can communicate any type of
data, but the time attributes of this data have to be dealt with explicitly in the
models by the designer.

VCI [11] is a cosimulation back plane system, which allows running sev-
eral simulation engines concurrently. Marrec et al. [12] use it to provide an
environment for VHDL and Matlab cosimulation in an untimed and a timed
mode. The untimed mode does not utilise any timing information and is for
functional validation only. The timed mode operates on a cycle-true timing
model with concrete architectural components such as microprocessors. Our
approach also allows an untimed functional simulation between SDL and
Matlab. However, the timing model is more abstract than the timed mode in
[12] because it is based on the timing behaviour of the input data, not on im-
plementation components. Thus, it allows including the timing information
of the input signals in the functional simulation, and based on this, facilitates
the derivation of timing constraints for implementation components.

As a summary we can conclude that our proposal, in contrast to other ap-
proaches, addresses the problem of integrating the timing behaviour of input
signals into a functional cosimulation of control dominated and data trans-
formation parts modelled in SDL and Matlab, respectively.

3. HETEROGENEOUS SYSTEM MODELING

Our target applications are typically embedded systems with a known
interface towards their environment. The system is divided into a set of sub-
systems to make the system manageable with respect to size and complexity.
A subsystem is modelled as a set of processes that operate concurrently and
interact with each other. We consider two types of processes, control proc-
esses and dataflow processes. A control process interacts with its environ-
ment by exchange of control signals. Such a process has a state that changes
over time as the process reacts to incoming control signals. A dataflow proc-
ess is dominated by transformations of streams of data. A dataflow process
consumes and produces data streams at a fixed rate. Streams flow from one
dataflow process to another. The control processes and dataflow processes
are allowed to interact with each other by exchange of control signals.

SDL employs an extended finite state-machine (EFSM) model of com-
putation and is suitable for control systems modelling. The heterogeneous
system specification is written using SDL at the top-level and to describe the
structural hierarchy. SDL processes communicate with each other asynchro-
nously through infinite FIFOs. The communication may or may not have a
delay. In Matlab, data is transformed continuously from input stream to out-
put stream. Streams are modelled as vectors or matrices, and transformations
are modelled as functions with input and output parameters. All information

exchange between the environment and the function must be passed as pa-
rameters.

3.1 Event Model

Processes communicate with each other by passing messages; this applies
both to control and dataflow processes. A message may contain data or it
may be empty. A message is associated with an event. An event consists of a
message, the source and destination address of the message and a time stamp
when the event occurs. The events are globally ordered in the system by the
time stamp. An event that contains an empty message is referred to as a noti-
fication event. A dataflow message is referred to as a frame and the associ-
ated event is referred to as a continuous event. A control message is referred
to as a signal and the associated event is referred to as a discrete event.
Frames are used to represent streams and thus a frame always contains data
and has duration. The frame data consists of a number of samples, which are
the atomic elements of the stream. A stream is characterised by its sampling
frequency, which specifies number of samples per time unit. Parameters can
be passed to the dataflow model as control signals from the SDL model, and
parameters can be passed back to the SDL model as status signals.

Matlab

SDL SDL

Matlab

Discrete Events

Continuous Events

Discrete Events

Figure 2. Event Model Outline

b

a b c d e f g h i j

b hAccess

Bucket Event Punch Event

Pin Event Encode Pin Event Decode

a b

a b

baaaaaa b b
a b

baaaaaa b b

Time

Time

Time

Time

Time

Time

Time

Time

Stream

Discrete domain

Discrete domain

Figure 3. Event Types

Figure 2 shows the relation between process models and event types. The
dataflow processes, specified in Matlab, communicate with other dataflow
processes using continuous events whereas the control processes, written in
SDL communicate both with control processes and dataflow processes using
discrete events.

Discrete events are instantaneous and have no duration. The message of a
discrete event is a signal that is allowed to carry a value. Discrete events are
generated externally by the environment of the system and internally by the
processes in the system. In SDL, timers are available that can be set for a

timeout that causes a discrete event. Simulation time can be accessed during
simulation and is used for synchronisation of the control and dataflow proc-
esses.

A stream often has an analogue source that can be measured by an elec-
tronic device. Examples of continuous streams are audio, video, microwaves,
temperature etc. The system cosimulation targets embedded digital systems,
and therefore only sampled streams are dealt with. A sampled stream is con-
tinuous since the samples in a stream are associated with a time and dura-
tion. At any time instant a unique sample is valid, i.e. the time and duration
of the samples in a stream cover all time without overlapping. The continu-
ously sampled stream is associated with a sample frequency, which specifies
the duration of the samples in the stream. Different streams may have differ-
ent sampling frequencies, but the sampling frequency of any one stream is
constant.

An efficient way to represent streams is by using vectors whose elements
correspond to samples. Using vectors allows large amounts of data to be
processed efficiently. An individual sample is very similar to the discrete
event presented earlier. However, an essential difference is that the sample
has duration whereas the discrete event is instantaneous.

The Matlab models are assumed to operate on frames with fixed duration.
A frame is provided to the Matlab model as a vector, where the order of the
elements, i.e. the vector index, decides the time during which each sample is
valid. A key concept when streams are converted to frames is stream split-
ting. When a stream is split, it becomes an ordered set of frames, where each
frame is associated with a continuous event. Continuous events represent
streams in the specification, but outside the Matlab environment they are
modelled as SDL signals using discrete events.

When parameters are passed from the control model to the dataflow
model and back as control and status signals, there are different ways to treat
the signal depending on simulation timing.

Figure 3 depicts three different event types used to synchronise the mes-
sage passing. The event types are referred to as bucket, pin, and punch
events.

Bucket events are events that are collected into a “bucket” . Each signal
has its own slot and only the latest signal is stored, without a time stamp.
When the bucket is accessed, the signal value is read and associated with an
event that occurs at the time of the access. If the bucket is accessed and no
event has occurred since the previous access, a default value is read.

Pin events are collected in a list. All events are recorded and marked with
a time stamp. When the pin event list is accessed, it is translated between
signals and a continuous stream vector with a predefined sampling rate. To
encode a vector, signal values are “pinned” to elements in the vector and

elements between “pins” are set to the value of the previous signal. To de-
code a stream vector with a known sampling rate, pin events are extracted
and collected in an event list.

Finally, there is the punch event, which is used solely to “punch” out a
value from a stream. The punch event immediately triggers a new discrete
event containing the value of the stream at that particular time instant.

3.2 Synchronisation

A stream event is treated as a signal in the SDL simulator. The event is
used to notify the dataflow models that data is available. The problem is to
decide when the stream event should occur. First and maybe most naturally,
one may cause the event when the first sample in the frame begins to occur.
This will be referred to as head synchronisation, and can be viewed as in-
formation about the future. One may also do the opposite, and let the stream
event occur when the last sample in the frame ceases to occur (which equals
the time that the first element in the next frame begins to occur). This is re-
ferred to as tail synchronisation, and can be viewed as information about the
past. “Begin to occur” and “cease to occur” , relates to the fact that a sample
has duration.

SDL

MatlabStream A Stream B

a1 a2

b1 b2

Stream A

Stream B

Control X Control Y

Control X

a1a2 b2 b1

Control Y

y y y y--------

y

x
Time

Time

Bucket

Pin

Transformation

x

y

Figure 4. Head Synchronisation

SDL

MatlabStream A Stream B

a1 a2

b1 b2

Stream A

Stream B

Control X Control Y

Control X

a1a2 b2 b1

Control Y

x--

y

x
Time

Time

Pin

Transformation

x x x x x x x x x

Bucket

y

x

Figure 5. Tail Synchronisation

Figure 4 and Figure 5 illustrate the head and tail synchronisation con-
cept, which will be described in detail throughout the remainder of this sec-
tion.

Head Synchronisation: When data is fed to a dataflow model, i.e. a
Matlab function, the frame represents future data, and we expect the function
to calculate new future data as its output, which propagates in the system.
This means that signals that occur during the duration of the frame cannot be

taken into account, since they have not yet occurred. This can be resolved by
using the bucket event. During the duration of the frame, all input events are
collected in a bucket, which is accessed with the next function call. The out-
put from the dataflow model consists of frame and parameter vectors. The
parameter vectors are translated to pin event lists, and the events can be
transmitted to the rest of the system at the time they occur. Figure 4 illus-
trates the head synchronisation technique. Filled squares represent the time
of the events and a line connected to a stream event represents the duration
of the frame. In the figure time extends from left to right. The first thing that
happens is that the Matlab model receives frame a1, and immediately trans-
forms a1 into b1. The next thing that happens is that a control signal x is
transmitted from the SDL model to the Matlab model. This signal cannot
influence the transformation of a1 to b1 although it appears within the dura-
tion of a1. Therefore, it is stored as a bucket event. Next, frame a2 reaches
the Matlab model, and the signal x can be accessed from the bucket and
taken into account when transforming a2 into b2. The transformation of a2

into b2 yields a status signal y, which is returned in a vector that can be
translated into a pin event list. The pin event list is used to transmit signal y
from the Matlab model to the SDL model at the time it occurred.

Although head synchronisation does not allow input parameters to influ-
ence the calculation immediately, the stream samples can be accessed in-
stantaneously with a punch event. The stream that is punched must be the
input stream or the output stream of the dataflow model. Since the output
stream already has been calculated, the punch event cannot alter the data.

Head synchronisation is most useful for dataflow models that lack input
parameters and produces output parameters. A good example of such a proc-
ess is data stream sources.

Tail Synchronisation: Tail synchronisation passes continuous events
when they cease to occur. This means that input parameters can be collected
in a pin event list, which can be translated to a vector and passed to the
Matlab function. Output parameters cannot be sent when they occur, because
when the function is called and the output parameter is calculated, that time
has already passed. Thus, the output parameters are collected as bucket
events. All output parameters are sent simultaneously after the function call.

Figure 5 shows the tail synchronisation technique. Filled squares still
represent events, and lines connected to stream events represents frame du-
ration, note however that the frame duration extends to the left of the event
as opposed to head synchronisation. The first thing that happens is that sig-
nal x is transmitted from the SDL model to the Matlab model. The signal is
collected in a pin event list. Next, frame a1 reaches the Matlab model, the pin
event list is translated to a vector that accompanies a1 in the transformation,
and the transformation of a1 into b1 is carried out. Finally, frame a2 reaches

the Matlab model and a2 is transformed into b2, which yields a status signal y
that is collected in a bucket. The signal appears as a signal transmitted from
the Matlab model to the SDL model at the time the transformation is carried
out.

Since the input frames are passed to the dataflow model when they have
ceased to occur, punch events are not allowed in tail synchronisation.

Tail synchronisation is most useful for dataflow models with input pa-
rameters that influence the data stream instantly. It is less useful for models
that produce parameters.

Delay Requirements: It is possible to mix head and tail synchronisation
in a system model, but certain rules must be obeyed when converting a
stream from head to tail synchronisation and vice versa. The duration, or
frame size, used by a dataflow process is denoted

�
 seconds. The computa-

tion delay, i.e. latency, of a dataflow process is denoted � seconds. This
means that a process collects data during � seconds, and the delay from data
input to output, or latency, is � seconds.

Figure 6 shows two communicating dataflow processes where data flows
from P1 to P2 via a signal route in SDL. P1 has duration � 1, and P2 has du-
ration � 2. The computation delay of P2 is � 2. Note that although the dura-
tion of a process requires that the input and output frame duration is equal,
the duration of different processes operating on the same stream may differ.
This situation is resolved using a buffer on each input port of dataflow proc-
esses, which provide means to concatenate or split incoming frames to match
the process duration.

Table 1. Delay Requirements
Relation P1 P2 Delay Req.

λt1=λt2 Head Head None
Head Tail None
Tail Head δt2 ≥ λt1

Tail Tail None

λt1<λt2, Head Head δt2 ≥ (n-1) λt1

nλt1=λt2 Head Tail None
Tail Head δt2 ≥ nλt1

Tail Tail None
λt1>λt2, Head Head None
λt1=nλt2 Head Tail None

Tail Head δt2 ≥ nλt2

Tail Tail δt2 ≥ (n-1) λt2

P1 P2
δt2

λt1 λt2
δt1

Figure 6. Process Communication

Table 1 shows the computation delay requirements depending on frame
size for all combinations of synchronisation between two dataflow proc-
esses. If several streams are connected to the same dataflow process, all re-
quirements for all combinations of input and output streams must be met.

4. IMPLEMENTATION

Wrappers are used to wrap up the dataflow components in the SDL speci-
fication in order to provide the synchronisation and data exchange during
simulation.

Figure 7 depicts the relation between environments and wrappers used in
simulation. The SDL model contains dataflow processes, each of which has
a customised SDL wrapper. The SDL wrapper has access to a C-wrapper
implemented as a set of C functions, which ultimately calls the Matlab en-
gine through a set of C-library functions.

SDL Environment

SDL Wrapper

Matlab Environment

Dataflow Process Dataflow
Functions

C Wrapper C Library

Figure 7. Wrappers and Environment

Initialization

Timeout

Function Call

Wait

Send Output

Collect Input

Figure 8. Wrapper Overview

Figure 8 shows a schematic overview of the SDL wrapper, which is im-
plemented as a state-machine that handles input and output of streams and
signals. The SDL wrapper declares a number of variables that are used
throughout the signal processing. Two timers are declared: one that controls
the dataflow function call, and one for output event synchronisation. Two
variables are declared for each input stream signal, one holding the duration
of the input frame, t, and one holding the ratio, r between the input stream
frame duration and the duration of the process. The ratio is used to verify
that all data is available before the function is called.

There is only one active Matlab engine, which executes all the dataflow
processes. Vectors and variables, which are used only by Matlab functions,
are never passed to SDL processes, which in turn allows for efficient simu-
lation. Thus, typically only identifiers denoting the frames but not the frames
themselves are passed between the SDL and Matlab models.

During initialisation, the Matlab engine is started, the duration D of the
process and the sample rate of every stream, connected to the process, is de-
termined. Those configuration parameters are defined in the Matlab envi-
ronment. The frame ratio for each stream is derived from the sample rate of
the stream and the duration of the model. After initialisation, the process
enters the “Wait” state. Finally, the timer has to be set to give a timeout
when the process is supposed to call the dataflow function for the first time.

This timeout should occur at time now for a process with head synchronisa-
tion, and at time D+now for a process with tail synchronisation.

In the SDL wrapper there is a branch from all states for every input
stream signal. When an input stream event occurs, a stream event counter is
increased by the ratio between the input stream frame size and the duration
of the process. This implies that a frame larger than the duration of the da-
taflow model is split into several frames, and frames smaller than the dura-
tion of the dataflow model are concatenated into larger ones. After the da-
taflow function has been called, the output streams are made available for
receiving dataflow functions within the Matlab environment and a notifica-
tion signal is issued for each output signal in the SDL environment.

For all input discrete event signals, there is a branch from all states in the
SDL wrapper. When an input signal arrives, the time it arrives is recorded
and stored along with the signal value in a signal list. The list structure is
part of the C wrapper, which allows adding a signal to the end of the list and
removing a signal from the beginning of the list. In addition to these func-
tions, the list can be encoded to or decoded from a Matlab vector according
to the pin event-handling scheme.

5. CONCLUSION

Assuming that a heterogeneous modelling style is beneficial for todays
and tomorrows heterogeneous systems, we have proposed a cosimulation
technique, which accommodates data flow and control intensive parts in a
system, based on Matlab and SDL. The technique allows the natural and in-
tuitive usage of Matlab vectors. The challenge of synchronisation between
these two worlds has been addressed with two different synchronisation
modes, head and tail synchronisation, which can be combined under certain
conditions. Our model only considers timing imposed by environment con-
straints on streams and events, but not delays of implementation compo-
nents. Thus, it is used for architecture independent modelling and facilitates
the derivation of timing constraints for the implementation. An experiment
that demonstrates the technique has been performed, the results were re-
ported in [16]. It has been omitted here due to lack of space.

Future work will apply the technique to larger applications. Furthermore,
a link to the implementation will be established by deriving timing con-
straints and estimating performance properties of implementation variants.

Acknowledgements: The Telelogic Tau tool suite was used for SDL en-
try and simulation, courtesy of Telelogic AB, Sweden.

6. REFERENCES

[1] W. Ecker, "Using VHDL for HW/SW Co-Specification", pp. 500 - 505, European Design
Automation Conference, September 1993.

[2] Bill Lin, "A System Design Methodology for Software/Hardware Co-Development of
Telecommunication Network Applications", Proceedings of the Design Automation Con-
ference, 1996.

[3] R. Ernst and J. Henkel, "Hardware-Software Codesign of Embedded Controllers Based
on Hardware extraction", Proceedings of the International Workshop on Hardware-
Software Co-Design, September 1992.

[4] Peter J. Ashenden, Philip A. Wilsey, and Dale E. Martin, "SUAVE: Extending VHDL to
Improve Data Modeling Support", IEEE Design & Test of Computers, pp. 34-44, April-
June 1998.

[5] Rachid Helaihel and Kunle Olukotum, "Java as a Specification for Hardware-Software
Systems", Proceedings of the International Conference on Computer-Aided Design,
1997.

[6] James Shin Young, Josh MacDonald, Michael Shilamn, Abdallah Tabbara, Paul Hilflin-
ger, and Richard Newton, "Design and Specification of Embedded Systems in Java Using
Successive, Formal Refinement", Proceedings of the 35th Design Automation Confer-
ence, 1998.

[7] Jean-Marc Daveau, Gilberto Fernandes Marchioro, Carlos Alberto Valderrama, and Ah-
med Amine Jerraya, "VHDL generation from SDL specifications", Proceedings of Com-
puter Hardware Description Languages, April 1997.

[8] Bengt Svantesson, Shashi Kumar, Ahmed Hemani, "A Methodology and Algorithms for
efficient interprocess communication synthesis from system description in SDL", Pro-
ceedings of the IEEE International Conference on VLSI Design, 1998.

[9] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simu-
lating and Prototyping Heterogeneous Systems", International Journal of Computer
Simulation, 1992.

[10] Ivo Bolsens, Hugo de Man, Bill Lin, Karl van Rompaey, Steven Vercauteren, and
Diederik Verkest, "Hardware/Software Codesign of Digital Telecommunication Sys-
tems", Proceedings of the IEEE, vol. 85, no. 3, pp. 391 - 418, March 1997.

[11] C. Valderrama, A. Changuel, P. Raghavan, M. Abid, T. Ismail, and A. Jerraya, "A Uni-
fied Model for Cosimulation and Cosynthesis of Mixed Hardware/Software Systems",
Proceedings of the European Design and Test Conference (ED&TC95), 1995.

[12] P. Le Marrec, C. A. Valderrama, F. Hessel, A. A. Jerraya, M. Attia, and O. Cayrol,
"Hardware, Software and Mechanical Cosimulation for Automotive Applications", Pro-
ceedings of the Ninth International Workshop on Rapid System Prototyping, pp. 202 -
206, 1998.

[13] Jan Ellsberger, Dieter Hogrefe, and Amardeo Sarma, SDL - Formal Object Oriented
Language for Communicating Systems, Prentice Hall Europe, 1997.

[14] MATLAB: High-performance Numeric Computation and Visualization Software. User’s
Guide, 1992.

[15] Petru Eles, K. Kuchcinski, Zebo Peng, and A. Doboli, "Hardware/software partitioning
of VHDL system specifications", European Design Automation Conference (Euro-DAC),
1996.

[16] Per Bjuréus, Axel Jantsch, “Heterogeneous System-Level Cosimulation with SDL and
Matlab” , Proceedings of Forum on Design Languages (FDL), 1999

