
 1

SDF to Synchronous Cross Domain
Analysis in ForSyDe Stream Processing Framework

Jun Zhu, Axel Jantsch, and Ingo Sander

ECS/ICT, Royal Institute of Technology, Stockholm, Sweden
{junz, axel, ingo}@kth.se

Abstract
Stream processing has been a very active field in parallel programming for its suitability to express
the concurrent architecture in embedded systems. Caused by its concurrent reasoning features,
stream programming frameworks are built on some abstract models of computation (MoCs) to
handle the complexity and unpredictability. To allow us focus on the essential issues of time,
communication and synchronisation of the parallel tasks, the support from a sound heterogeneous
MoCs framework to stream application system is still in need. ForSyDe is our high level
executable design framework to express multi-computational-models, based on stream processing
concept. It is a heterogeneous diagram to describe intricate application behaviors, and offers cross
domain analysis features to support multi-domains integration and optimization. A case study in
ForSyDe framework shows that the communication structure of a stream application in SDF
domain could be migrated to the synchronous domain without any extra work on its computation
functions. To integrate it with our work on a communication based NoC simulator, we believe
some more interesting design exploration work could be done on the analysis of communication
and computation efforts, besides power issues.

1. Introduction

 With the prosperous emergence of multi-core processors and multi-processor systems-on-chip
(SoCs), the ‘free performance lunch era’ [1] for conventional sequential programming in
embedded system design has come to the end. To be able to design the incoming heterogeneous
parallel systems with high reliability, predictability, low cost, high performance, besides extreme
power efficiency, the theory and foundations of traditional design need to be advanced
significantly. This underscores the pressing demand for improvements in programming models
which could not only efficiently map to the complex parallel structure, but also be able to
implement the applications with disciplined methods to achieve guaranteed real-time properties.
 Stream programming, with exposed communication structure, are an extremely promising
paradigm to allow parallel processing. To define how the series of computation kernel functions
interact and how time is represented, stream languages are always based on particular MoCs.

2. Related work

 StreamIt [2-3] is a high level streaming computation language, with a good matching with the
communication dominated NoC-based RAW architecture. It is based on synchronous dataflow
(SDF) model, in which data rates of the applications are compile-time static. Although SDF model
is suitable to model signal processing system, and efficient in buffer analysis, it ignores the
computation or communication time, and could not be used handle the interaction with
asynchronous events. To express time dependent system behaviors, N-synchronous programming

 2

language [4] builds on synchronous model, which helps to gain increased control on buffer
management in reactive and safe-critical real-time systems.
 Instead of using a single given MoC basis in programming model to address the heterogeneity at
the implementation level (full custom HW, FPGA, DSP and embedded SW), a sound MoCs
framework need to model the heterogeneity at the system level. Ptolemy [5] has been pioneered
with the development of the integration of different MoCs to simulate the heterogeneous streaming
processing system. However, to model, analyze, and design complex, heterogeneous embedded
systems and SoCs, we propose ForSyDe [6-7] framework for heterogeneous MoCs (timed models,
synchronous models and untimed models).

Another very active field in parallel programming is skeletal parallel programming [8], which is
a framework with functional style primitive skeletons, and aims to facilitate the traditional
language programmers to build parallel skeleton programs in a sequential way. In commercial uses,
MapReduce [9] model in Google has been very successful, which uses the similar functional style
framework to parallelize programs, with the general concepts “map” and “reduce” borrowed from
functional languages. It has achieved great performance improvement on clusters of commodity
machines, with the support of the scalable Google File System.

3. Heterogeneous ForSyDe framework

ForSyDe is a denotational framework, which classifies different MoCs based on the abstract
denotation of timing in the model. It is developed with the objective to move system design to a
higher level of abstraction and to bridge the abstraction gap by transformational design refinement.
Furthermore, it suites very well to model stream processing applications in different MoCs
domains without any extension itself. In this paper, we consider ForSyDe streaming programming
in SDF and synchronous domains.

3.1 Streams in MoCs

Stream in ForSyDe is a list of events. We distinguish the MoC by using different kinds of
events in streams. Given a set of value V, which represents the data communicated over the
streams. SDF events are just values without further information, VE =

.

. Synchronous events
include an extra pseudo value ⊥ to model absent value, in addition to the normal values, to

represent physical time slot; hence { }⊥∪= VE
_

. In this way, ForSyDe use the similar
representation of streams in different domains to maintain the global time in an abstract way. The
execution rule is strictly data driven and based on the availability of data.

3.2 Generic process and composition operators

 In heterogeneous MoCs, to handle the streams of normal values together with possible timing
information, we extend the traditional kernel function in stream processing to generic process (Fig
1). The generic process is a 3-layer structure (only the blocks in shadow are compulsory), which
integrates the communication and computation functions. Based on the timing information in the
input stream and the corresponding settings in the constructor wrapper, this model could be used to
instantiate specified types of processes with different functionalities in multi-domain of MoCs.
Now, ForSyDe framework is written in function language Haskell, and with the support of Haskell

 3

foreign function interface (FFI), it could invoke the conventional sequential language, such as C
[10].

 We define only a few basic types of process constructors that could be used to compose more
complex processes and process networks. Process instantiated with map constructor operates on
the input stream in sequence to generate the output stream, and has no internal state. Constructor
mealy create process resemble Mealy state machines in that they have a next state function and an
output encoding function that depends on both the input and the current state. Furthermore, to
handle arbitrary input and output processes, we introduce zip and unzip processes that merge two
input streams into one and split one compound input stream into two output streams.
 With the hierarchical composition abilities, only three basic composition operators are
considered, namely sequential composition (o), parallel composition (||), and feedback (µ).

3.3 Generic MoC

 One of our objectives is to capture the different computational models in a uniform way. From
the structure of the generic process, we could see that the processes in ForSyDe are more
independent of the MoC, that allows cross domain analysis and optimization become easier.
 Thus, we define the generic MoC.
Definition A generic MoC is a 2-tuple MoC=(C, O), where C is a set of process constructors
instantiated by generic process, each of which, when given constructor specific MoC domain and
parameters, instantiates a process. O is a set of process composition operators, each of which,
when given processes as arguments, instantiates a new process.

{ }
{ }.,||,

,,,

µo=
=

O

unzipzipmealymapC
 (1)

 Using this definition and the composition operators, we construct some basic structures with
denotable directed graph, where nodes represent communication and computation compound of
processes and edges represent data streams, shown in Figure 2.

stream in stream out

constructor wrapper

state

local kernel
function

foreign kernel
function (in C, etc)

()

FFI

process function

Sequential
computation layer

Process
constructor layer

Communication
skeleton layer

Fig. 1. The 3-layer structure of the generic process

 4

 Especially, the mealy process in the loopback branch is modeled to provide the initial firing
token needed by the feedback structure.

3.4 Cross domain analysis

 Given the interface process Ip between two different domains of MoCs, the definition of

moving map based process mapSDFp from SDF domain to a function equivalent process ,p in

synchronous domain is given as:

,,,,

,

packmapSyncserialize

ImapSDFI

ppppwhere

pppp

oo

oo

=

=
 (2)

in which, mapSDFp and ,
mapSyncp are the same type of map processes. They could share the same

kernel function, but are instantiated from the generic process model in a different synchronous
domain; As mapSDFp consumes n ()1≥n events during each execution cycle, while ,

mapSyncp

consumes only one,,packp and ,
serializep , as the names specified, are the processes for packing proper

input stream data format for ,mapp and serializing the output stream from ,
mapp separately. ,

packp and
,
serializep could both be modelled as mealy processes, and are only needed when the corresponding

consuming or outputting events are more than one; otherwise, they could be omitted as dummy
processes.
 In this way, the process cross domain analysis from SDF to synchronous domain could be
formalized, but we do not need to modify the behavior of the kernel function, which nicely
preserve the separation of parallel communication skeletons from computation functions.

3.5 Process merge

 Merging and splitting of processes, without changing the system behavior, could form a well-
structured design to map onto the implementation architecture. In addition, it could achieve a
significant influence on non-functional properties such as performance, cost, and power
consumption. Processes that form a perfect or rational match can be easily merged [6].

map

map

 unzip

map map

zip

zip

map

 mealy

 a) sequential b) parallel c) feedback loop
Fig. 2. Basic structures in ForSyDe stream processing framework

 5

,
21

,
11

,
11

,
21

mealymealymealy

mealymapmealy

mealymealymap

mapmapmap

=

=

=

=

o

o

o

o

 (3)

 Thus, the synchronous domain ,p in (2) could be seen as a merged mealy process:

,
1

,,

,,,
1

,,

mealySyncserializemealySync

packmapSyncmealySyn

mealySync

ppp

pppwhere

pp

o

o

=
=

=

 (4)

4. Application study

 We use the FM software radio application as in [2]. The parallel communication structure is
sketched out using ForSyDe SDF library, with its denotable graph shown in Fig. 3. The numbers
besides each edge stand for the amount of consume/output events of the end side node. The kernel
functions are written in ANSI C, which exchange data with the process skeleton through Haskell
FFI.

Using the ForSyDe cross domain migration semantics, we could get one alternative of the FM
radio designs in synchronous domain, shown in Fig. 4. When the map process in SDF domain
consumes and outputs only 1 event per evaluation cycle, we will get the same type map process in
synchronous domain; otherwise, we get a functional equivalent mealy process, in which the state
function and output function are based on a semantic preserved transformation from the kernel
function of the map process in SDF domain and the pack/serialize function in ForSyDe library.

stream in

 map map

 zip

 map

 map

 map map

 zip

 map

 map

Bandpass 1 Bandpass 10

 map

 map

…

 zipx

 map

FM Demodulator

LowPassFilter

.

.

.

.

.

.

Adder

stream out

Fig. 3. SDF FM Radio design in ForSyDe

64/1

2/1

64/1 64/1

1/1

1/1 1/1

1/1

1/1

1/1

64/1 64/1

1/1 1/1

1/1

1/1

1/1
1/1 1/1

stream in

mealy mealy

 zip

 map

 map

mealy mealy

 zip

 map

 map

Bandpass 1 Bandpass 10

…

 zipx

 map

FM Demodulator

LowPassFilter

.

.

.

.

.

.

Adder

stream out

Fig. 4. Synchronous FM Radio design in ForSyDe

mealy

mealy

 6

 Assume each process node corresponds to one computation unit in the communication oriented
NoC-architecture, the synchronous executable model of the design provides us a high level design
exploration environment to consider non-functional effects of different alternatives. We could
move the pack function of the two parallel mealy process in the “Bandpass” module up into the
“FM Demodulator” process to avoid the duplicated data preparation in all “Bandpass” branches,
merge the “LowPassFilter” and “FM Demodulator” into one mealy process, or merge all the
processes in “Bandpass”into one, without change the whole system behaviors.

5. Conclusion and future work
 In this paper, we have shown that ForSyDe is a very flexible framework to support different
domains of stream processing applications. With the integration of heterogeneous MoCs in
ForSyDe, it will facilitate the integration of multi-domain stream programming in one framework
also.
 To address communication cost and power budget redistribution issues in an early system level,
we plan to develop a stream processing system with the communication framework based on our
Nostrum [11] NoC simulator in the future.

Reference

[1] H. Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software,”
Dr. Dobb's Journal, March 2005.
[2] W. Thies, M. Karczmarek, and S. Amarasinghe, “Streamit: A language for streaming
applications,” in International Conference on Compiler Construction, Grenoble, France, April
2002.
[3] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Programs,” in Proceedings of the Twelfth International Conference
on Architectural Support for Programming Languages and Operating Systems, San Jose, CA, Oct.
2006.
 [4] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and M. Pouzet. “N-sychronous
Kahn networks,” in 33th ACM Symposium on Principles of Programming Languages, Charleston,
SC, pp. 180-193, Jan. 2006.
[5] The Ptolemy Project, http://ptolemy.eecs.berkeley.edu.
[6] A. Jantsch, Modeling Embedded Systems and SoCs - Concurrency and Time in Models of
Computation, Morgan Kaufmann, 2003.
[7] I. Sander, “System Modeling and Design Refinement in ForSyDe,” Ph.D. dissertation, Royal
Institute of Technology, Stockholm, Sweden, 2003.
[8] The skeletal parallelism homepage, http://homepages.inf.ed.ac.uk/mic/Skeletons.
[9] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in Sixth
Symposium on Operating System Design and Implementation, San Francisco, CA, Dec. 2004.
[10] The Haskell 98 Foreign Function Interface 1.0, http://www.cse.unsw.edu.au/~chak/haskell/ffi.
[11] The Nostrum home page, http://www.imit.kth.se/info/FOFU/Nostrum.

