SDF to Synchronous Cross Domain
Analysisin For SyDe Stream Processing Framewor k

Jun Zhu, Axel Jantsch, and Ingo Sander
ECSI/ICT, Royal Institute of Technology, StockhoBweden
{junz, axel, ingo}@kth.se

Abstract

Stream processing has been a very active fielauiallel programming for its suitability to express
the concurrent architecture in embedded systemssea@iaby its concurrent reasoning features,
stream programming frameworks are built on som&attsmodels of computation (MoCs) to
handle the complexity and unpredictability. To allos focus on the essential issues of time,
communication and synchronisation of the paradisks, the support from a sound heterogeneous
MoCs framework to stream application system is istiheed. ForSyDe is our high level
executable design framework to express multi-coatmrial-models, based on stream processing
concept. It is a heterogeneous diagram to destribeate application behaviors, and offers cross
domain analysis features to support multi-domaitsgration and optimization. A case study in
ForSyDe framework shows that the communicatiorcsitire of a stream application in SDF
domain could be migrated to the synchronous domvahout any extra work on its computation
functions. To integrate it with our work on a comaation based NoC simulator, we believe
some more interesting design exploration work cixéldione on the analysis of communication
and computation efforts, besides power issues.

1. Introduction

With the prosperous emergence of multi-coregssors and multi-processor systems-on-chip
(SoCs), the ‘free performance lunch era’ [1] fonegentional sequential programming in
embedded system design has come to the end. Tdé®alesign the incoming heterogeneous
parallel systems with high reliability, predictatyi low cost, high performance, besides extreme
power efficiency, the theory and foundations ofliianal design need to be advanced
significantly. This underscores the pressing denfandnprovements in programming models
which could not only efficiently map to the complearallel structure, but also be able to
implement the applications with disciplined methtalachieve guaranteed real-time properties.

Stream programming, with exposed communicatauincture, are an extremely promising
paradigm to allow parallel processing. To define/libe series of computation kernel functions
interact and how time is represented, stream lageguare always based on particular MoCs.

2. Related work

Streamlt [2-3] is a high level streaming congpiain language, with a good matching with the
communication dominated NoC-based RAW architectitiis.based on synchronous dataflow
(SDF) model, in which data rates of the applicatiare compile-time static. Although SDF model
is suitable to model signal processing system.ediicient in buffer analysis, it ignores the
computation or communication time, and could notubed handle the interaction with
asynchronous events. To express time dependeptsyshaviors, N-synchronous programming

language [4] builds on synchronous model, whiclpsi&b gain increased control on buffer
management in reactive and safe-critical real-systems.

Instead of using a single given MoC basis mgpamming model to address the heterogeneity at
the implementation level (full custom HW, FPGA, D&l embedded SW), a sound MoCs
framework need to model the heterogeneity at teeegylevel. Ptolemy [5] has been pioneered
with the development of the integration of differ&oCs to simulate the heterogeneous streaming
processing system. However, to model, analyzedasajn complex, heterogeneous embedded
systems and SoCs, we propose ForSyDe [6-7] framefwoheterogeneous MoCs (timed models,
synchronous models and untimed models).

Another very active field in parallel programmirggskeletal parallel programming [8], which is
a framework with functional style primitive skelegy and aims to facilitate the traditional
language programmers to build parallel skeletoganms in a sequential way. In commercial uses,
MapReduce [9] model in Google has been very sutidesgich uses the similar functional style
framework to parallelize programs, with the genemlcepts “map” and “reduce” borrowed from
functional languages. It has achieved great peda®a improvement on clusters of commodity
machines, with the support of the scalable GootgeJystem.

3. Heter ogeneous For SyDe framewor k

ForSyDe is a denotational framework, which classifilifferent MoCs based on the abstract
denotation of timing in the model. It is developeith the objective to move system design to a
higher level of abstraction and to bridge the alusion gap by transformational design refinement.
Furthermore, it suites very well to model streamwcpssing applications in different MoCs
domains without any extension itself. In this paper consider ForSyDe streaming programming
in SDF and synchronous domains.

3.1 Streamsin MoCs

Stream in ForSyDe is a list of events. We distisguhe MoC by using different kinds of
events in streams. Given a set of value V, whighagents the data communicated over the

streams. SDF events are just values without furtiffermation, e = v . Synchronous events
include an extra pseudo valiéto model absent value, in addition to the nornadligs, to

represent physical time slot; henge- v o {0}. In this way, ForSyDe use the similar

representation of streams in different domains amtain the global time in an abstract way. The
execution rule is strictly data driven and basedhenavailability of data.

3.2 Generic process and composition operators

In heterogeneous MoCs, to handle the streamerafial values together with possible timing
information, we extend the traditional kernel fuantin stream processing to generic process (Fig
1). The generic process is a 3-layer structurey(thd blocks in shadow are compulsory), which
integrates the communication and computation foneti Based on the timing information in the
input stream and the corresponding settings ircdmstructor wrapper, this model could be used to
instantiate specified types of processes with ffefunctionalities in multi-domain of MoCs.

Now, ForSyDe framework is written in function larmge Haskell, and with the support of Haskell

foreign function interface (FFI), it could invokeet conventional sequential language, such as C
[10].

stream in stream out
Ll

Communication
skeleton layer

Process
constructor layer

Sequential
computation layer

ocal kernel foreign kernel
function || function (in C, etc)

Fig. 1. The 3-layer structure of the generic preces

We define only a few basic types of processtractors that could be used to compose more
complex processes and process networks. Proceéastiated withmapconstructor operates on
the input stream in sequence to generate the osii@am, and has no internal state. Constructor
mealycreate process resemble Mealy state machineatithidy have a next state function and an
output encoding function that depends on bothrbpatiand the current state. Furthermore, to
handle arbitrary input and output processes, wednicezip andunzipprocesses that merge two
input streams into one and split one compound isfream into two output streams.

With the hierarchical composition abilities lypthree basic composition operators are
considered, namely sequential compositio)y parallel composition (||), and feedbagk)(

3.3 GenericMoC

One of our objectives is to capture the diffiéi@mputational models in a uniform way. From
the structure of the generic process, we couldissdhe processes in ForSyDe are more
independent of the MoC, that allows cross domaalyais and optimization become easier.

Thus, we define the generic MoC.

Definition A generic MoC is a 2-tuple MoC=(C, O), where @iset of process constructors
instantiated by generic process, each of whichyvgireen constructor specific MoC domain and
parameters, instantiates a process. O is a seboégs composition operators, each of which,
when given processes as arguments, instantiatew anocess.

C ={mapmealy zip,unzig

(1)
O ={l|o,)

Using this definition and the composition opers, we construct some basic structures with
denotable directed graph, where nodes represemhaaination and computation compound of
processes and edges represent data streams, shbigare 2.

Especially, the mealy process in the loopbaekt¢h is modeled to provide the initial firing
token needed by the feedback strycture.

a) sequential b) parallel feedback loop
Fig. 2. Basic structures in ForSyDe stream proogssamework

3.4 Crossdomain analysis

Given the interface procegs between two different domains of MoCs, the deifomitof
movingmapbased procesg,,,,spr from SDF domain to a function equivalent proc@ssn
synchronous domain is given as:

Pi © Prapsor= P ° Py
where P = Pigiaize® Prapsync® Ppack
in which, p_ .« and p; ... are the same type of map processes. They could stesame

kernel function, but are instantiated from the gengrocess model in a different synchronous
domain; Asp, .., CONSUMES Iy > 1) €vents during each execution cycle, whilg -

()

consumes only ong,,,,and p..;.., @S the names specified, are the processes fkingguroper

input stream data format fqg;,,,and serializing the output stream fropp,,, separately.p,,,., and
Pimie COUlD both be modelled asealyprocesses, and are only needed when the correésgond

consuming or outputting events are more than oeraise, they could be omitted as dummy
processes.

In this way, the process cross domain anafysim SDF to synchronous domain could be
formalized, but we do not need to modify the bebiaef the kernel function, which nicely
preserve the separation of parallel communicatkehesons from computation functions.

3.5 Process merge

Merging and splitting of processes, withoutrayiag the system behavior, could form a well-
structured design to map onto the implementatichitacture. In addition, it could achieve a
significant influence on non-functional propert@gh as performance, cost, and power
consumption. Processes that form a perfect omaltimatch can be easily merged [6].

map o map, = map
map o mealy = mealy

®3)

mealy - map = mealy
mealy o mealy, = mealy
Thus, the synchronous domginin (2) could be seen as a merged mealy process:

p, = pr’neaIySync
Where p;neaIySylh = pr’napSyncO p’pack (4)

pmealySyn(:= pserializeo pmeaIySyn]:

4. Application study

We use the FM software radio application g2jnThe parallel communication structure is
sketched out using ForSyDe SDF library, with itaatable graph shown in Fig. 3. The numbers
besides each edge stand for the amount of consutpete@vents of the end side node. The kernel
functions are written in ANSI C, which exchangeadaith the process skeleton through Haskell
FFI.

Using the ForSyDe cross domain migration semanttes;ould get one alternative of the FM
radio designs in synchronous domain, shown in&igvhen thenapprocess in SDF domain
consumes and outputs only 1 event per evaluatiole cye will get the same typeapprocess in
synchronous domain; otherwise, we get a functieqalvalentmealyprocess, in which the state
function and output function are based on a semangéiserved transformation from the kernel
function of themapprocess in SDF domain and the pack/serialize fomah ForSyDe library.

stream il

:Adder
1

stream ot

stream ot
Fig. 3. SDF FM Radio design in ForSy Fig. 4. Synchronous FM Radio design in ForS

Assume each process node corresponds to orutaton unit in the communication oriented
NoC-architecture, the synchronous executable mafdéle design provides us a high level design
exploration environment to consider non-functiogf@cts of different alternatives. We could
move the pack function of the two parallel mealygass in theBandpassmodule up into the
“FM Demodulatot process to avoid the duplicated data preparatiail “Bandpas$ branches,
merge the LowPassFiltet and “FM Demodulatot into onemealyprocess, or merge all the
processes inBandpasinto one, without change the whole system behavior

5. Conclusion and future work

In this paper, we have shown that ForSyDevisrg flexible framework to support different
domains of stream processing applications. Withrtegration of heterogeneous MoCs in
ForSyDe, it will facilitate the integration of mutlomain stream programming in one framework
also.

To address communication cost and power buegettribution issues in an early system level,
we plan to develop a stream processing systemthdticommunication framework based on our
Nostrum [11] NoC simulator in the future.

Reference

[1] H. Sutter,” The Free Lunch Is Over: A Fundamental Turn TowanddTirrency in Softwarg,
Dr. Dobb's JournglMarch 2005.

[2] W. Thies, M. Karczmarek, and S. Amarasingharé&mit: A language for streaming
applications, in International Conference on Compiler Constructi@renoble, France, April
2002.

[3] M. Gordon, W. Thies, and S. AmarasinghExploiting Coarse-Grained Task, Data, and
Pipeline Parallelism in Stream Prograins, Proceedings of the Twelfth International Conference
on Architectural Support for Programming Languagesl Operating SystemSan Jose, CA, Oct.
2006.

[4] A. Cohen, M. Duranton, C. Eisenbeis, C. PagEttPlateau, and M. PouzéN-sychronous
Kahn networks, in 33th ACM Symposium on Principles of ProgrammingdLegesCharleston,
SC, pp. 180-193, Jan. 2006.

[5] The Ptolemy Project, http://ptolemy.eecs.bezieddu.

[6] A. JantschModeling Embedded Systems and SoCs - Concurreicyiare in Models of
Computation Morgan Kaufmann, 2003.

[7] 1. Sander,' System Modeling and Design Refinement in ForSYyRh.D. dissertation, Royall
Institute of Technology, Stockholm, Sweden, 2003.

[8] The skeletal parallelism homepage, http://hoages.inf.ed.ac.uk/mic/Skeletons.

[9] J. Dean, S. GhemawadtMapReduce: Simplified Data Processing on Larget€ta$ in Sixth
Symposium on Operating System Design and Impletr@mt&an Francisco, CA, Dec. 2004.
[10] The Haskell 98 Foreign Function Interface hiip://www.cse.unsw.edu.au/~chak/haskell/ffi.
[11] The Nostrum home page, http://www.imit.kthisE/FOFU/Nostrum.

