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Abstract 
Stream processing has been a very active field in parallel programming for its suitability to express 
the concurrent architecture in embedded systems. Caused by its concurrent reasoning features, 
stream programming frameworks are built on some abstract models of computation (MoCs) to 
handle the complexity and unpredictability. To allow us focus on the essential issues of time, 
communication and synchronisation of the parallel tasks, the support from a sound heterogeneous 
MoCs framework to stream application system is still in need. ForSyDe is our high level 
executable design framework to express multi-computational-models, based on stream processing 
concept. It is a heterogeneous diagram to describe intricate application behaviors, and offers cross 
domain analysis features to support multi-domains integration and optimization. A case study in 
ForSyDe framework shows that the communication structure of a stream application in SDF 
domain could be migrated to the synchronous domain without any extra work on its computation 
functions. To integrate it with our work on a communication based NoC simulator, we believe 
some more interesting design exploration work could be done on the analysis of communication 
and computation efforts, besides power issues. 
 
1. Introduction 
 
    With the prosperous emergence of multi-core processors and multi-processor systems-on-chip 
(SoCs), the ‘free performance lunch era’ [1] for conventional sequential programming in 
embedded system design has come to the end. To be able to design the incoming heterogeneous 
parallel systems with high reliability, predictability, low cost, high performance, besides extreme 
power efficiency, the theory and foundations of traditional design need to be advanced 
significantly. This underscores the pressing demand for improvements in programming models 
which could not only efficiently map to the complex parallel structure, but also be able to 
implement the applications with disciplined methods to achieve guaranteed real-time properties.   
    Stream programming, with exposed communication structure, are an extremely promising 
paradigm to allow parallel processing. To define how the series of computation kernel functions 
interact and how time is represented, stream languages are always based on particular MoCs. 
 
2. Related work 
 
    StreamIt [2-3] is a high level streaming computation language, with a good matching with the 
communication dominated NoC-based RAW architecture. It is based on synchronous dataflow 
(SDF) model, in which data rates of the applications are compile-time static. Although SDF model 
is suitable to model signal processing system, and efficient in buffer analysis, it ignores the 
computation or communication time, and could not be used handle the interaction with 
asynchronous events. To express time dependent system behaviors, N-synchronous programming 



 2

language [4] builds on synchronous model, which helps to gain increased control on buffer 
management in reactive and safe-critical real-time systems. 
    Instead of using a single given MoC basis in programming model to address the heterogeneity at 
the implementation level (full custom HW, FPGA, DSP and embedded SW), a sound MoCs 
framework need to model the heterogeneity at the system level. Ptolemy [5] has been pioneered 
with the development of the integration of different MoCs to simulate the heterogeneous streaming 
processing system. However, to model, analyze, and design complex, heterogeneous embedded 
systems and SoCs, we propose ForSyDe [6-7] framework for heterogeneous MoCs (timed models, 
synchronous models and untimed models). 

Another very active field in parallel programming is skeletal parallel programming [8], which is 
a framework with functional style primitive skeletons, and aims to facilitate the traditional 
language programmers to build parallel skeleton programs in a sequential way. In commercial uses, 
MapReduce [9] model in Google has been very successful, which uses the similar functional style 
framework to parallelize programs, with the general concepts “map” and “reduce” borrowed from 
functional languages. It has achieved great performance improvement on clusters of commodity 
machines, with the support of the scalable Google File System. 

 
3. Heterogeneous ForSyDe framework 
 

ForSyDe is a denotational framework, which classifies different MoCs based on the abstract 
denotation of timing in the model.  It is developed with the objective to move system design to a 
higher level of abstraction and to bridge the abstraction gap by transformational design refinement. 
Furthermore, it suites very well to model stream processing applications in different MoCs 
domains without any extension itself. In this paper, we consider ForSyDe streaming programming  
in SDF and synchronous domains. 

 
3.1 Streams in MoCs 
 

Stream in ForSyDe is a list of events. We distinguish the MoC by using different kinds of 
events in streams. Given a set of value V, which represents the data communicated over the 
streams. SDF events are just values without further information, VE =

.

. Synchronous events 
include an extra pseudo value ⊥  to model absent value, in addition to the normal values, to 

represent physical time slot; hence { }⊥∪= VE
_

. In this way, ForSyDe use the similar 
representation of streams in different domains to maintain the global time in an abstract way. The 
execution rule is strictly data driven and based on the availability of data. 

 
3.2 Generic process and composition operators 
 
    In heterogeneous MoCs, to handle the streams of normal values together with possible timing 
information, we extend the traditional kernel function in stream processing to generic process (Fig 
1). The generic process is a 3-layer structure (only the blocks in shadow are compulsory), which 
integrates the communication and computation functions. Based on the timing information in the 
input stream and the corresponding settings in the constructor wrapper, this model could be used to 
instantiate specified types of processes with different functionalities in multi-domain of MoCs. 
Now, ForSyDe framework is written in function language Haskell, and with the support of Haskell 
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foreign function interface (FFI), it could invoke the conventional sequential language, such as C 
[10]. 

 
    We define only a few basic types of process constructors that could be used to compose more 
complex processes and process networks. Process instantiated with map constructor operates on 
the input stream in sequence to generate the output stream, and has no internal state. Constructor 
mealy create process resemble Mealy state machines in that they have a next state function and an 
output encoding function that depends on both the input and the current state. Furthermore, to 
handle arbitrary input and output processes, we introduce zip and unzip processes that merge two 
input streams into one and split one compound input stream into two output streams. 
    With the hierarchical composition abilities, only three basic composition operators are 
considered, namely sequential composition (o ), parallel composition (||), and feedback (µ ). 
 
3.3 Generic MoC 
 
    One of our objectives is to capture the different computational models in a uniform way. From 
the structure of the generic process, we could see that the processes in ForSyDe are more 
independent of the MoC, that allows cross domain analysis and optimization become easier. 
    Thus, we define the generic MoC. 
Definition A generic MoC is a 2-tuple MoC=(C, O), where C is a set of process constructors 
instantiated by generic process, each of which, when given constructor specific MoC domain and 
parameters, instantiates a process. O is a set of process composition operators, each of which, 
when given processes as arguments, instantiates a new process. 
 

{ }
{ }.,||,

,,,

µo=
=

O

unzipzipmealymapC
                     (1) 

 
    Using this definition and the composition operators, we construct some basic structures with 
denotable directed graph, where nodes represent communication and computation compound of 
processes and edges represent data streams, shown in Figure 2. 
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Fig. 1. The 3-layer structure of the generic process 
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    Especially, the mealy process in the loopback branch is modeled to provide the initial firing 
token needed by the feedback structure. 
 
 
 
 
 
 
     
 
 
 
 
 
3.4 Cross domain analysis 
 
    Given the interface process Ip  between two different domains of MoCs, the definition of 

moving map based process mapSDFp  from SDF domain to a function equivalent process ,p  in 

synchronous domain is given as:  

,,,,

,

packmapSyncserialize

ImapSDFI

ppppwhere

pppp

oo

oo

=

=
     (2) 

in which, mapSDFp  and ,
mapSyncp  are the same type of map processes. They could share the same 

kernel function, but are instantiated from the generic process model in a different synchronous 
domain; As mapSDFp  consumes n ( )1≥n events during each execution cycle, while ,

mapSyncp  

consumes only one,,packp and ,
serializep , as the names specified, are the processes for packing proper 

input stream data format for ,mapp and serializing the output stream from ,
mapp  separately. ,

packp  and 
,
serializep  could both be modelled as mealy processes, and are only needed when the corresponding 

consuming or outputting events are more than one; otherwise, they could be omitted as dummy 
processes.  
    In this way, the process cross domain analysis from SDF to synchronous domain could be 
formalized, but we do not need to modify the behavior of the kernel function, which nicely 
preserve the separation of parallel communication skeletons from computation functions. 
 
3.5 Process merge 
 
    Merging and splitting of processes, without changing the system behavior, could form a well-
structured design to map onto the implementation architecture. In addition, it could achieve a 
significant influence on non-functional properties such as performance, cost, and power 
consumption. Processes that form a perfect or rational match can be easily merged [6]. 
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Fig. 2. Basic structures in ForSyDe stream processing framework 
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    Thus, the synchronous domain ,p  in (2) could be seen as a merged mealy process: 

,
1

,,

,,,
1

,,
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=
=
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         (4) 

 
4. Application study 
 
    We use the FM software radio application as in [2]. The parallel communication structure is 
sketched out using ForSyDe SDF library, with its denotable graph shown in Fig. 3. The numbers 
besides each edge stand for the amount of consume/output events of the end side node. The kernel 
functions are written in ANSI C, which exchange data with the process skeleton through Haskell 
FFI.  

Using the ForSyDe cross domain migration semantics, we could get one alternative of the FM 
radio designs in synchronous domain, shown in Fig. 4. When the map process in SDF domain 
consumes and outputs only 1 event per evaluation cycle, we will get the same type map process in 
synchronous domain; otherwise, we get a functional equivalent mealy process, in which the state 
function and output function are based on a semantic preserved transformation from the kernel 
function of the map process in SDF domain and the pack/serialize function in ForSyDe library.  
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Fig. 3. SDF FM Radio design in ForSyDe 
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    Assume each process node corresponds to one computation unit in the communication oriented 
NoC-architecture, the synchronous executable model of the design provides us a high level design 
exploration environment to consider non-functional effects of different alternatives. We could 
move the pack function of the two parallel mealy process in the “Bandpass” module up into the 
“FM Demodulator” process to avoid the duplicated data preparation in all “Bandpass”  branches, 
merge the “LowPassFilter” and “FM Demodulator” into one mealy process, or merge all the 
processes in “Bandpass”into one, without change the whole system behaviors. 
 
5. Conclusion and future work 
    In this paper, we have shown that ForSyDe is a very flexible framework to support different 
domains of stream processing applications. With the integration of heterogeneous MoCs in 
ForSyDe, it will facilitate the integration of multi-domain stream programming in one framework 
also. 
    To address communication cost and power budget redistribution issues in an early system level, 
we plan to develop a stream processing system with the communication framework based on our 
Nostrum [11] NoC simulator in the future.  
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