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Abstract—We propose an analytical model based on queueing
theory for delay analysis in a wormhole-switched network-on-chip
(NoC). The proposed model takes as input an application commu-
nication graph, a topology graph, a mapping vector, and a routing
matrix, and estimates average packet latency and router blocking
time. It works for arbitrary network topology with deterministic
routing under arbitrary traffic patterns. This model can estimate
per-flow average latency accurately and quickly, thus enabling
fast design space exploration of various design parameters in NoC
designs. Experimental results show that the proposed analytical
model can predict the average packet latency more than four
orders of magnitude faster than an accurate simulation, while the
computation error is less than 10% in non-saturated networks for
different system-on-chip platforms.

Index Terms—Modeling and prediction, network-on-chip
(NoC), performance analysis and design aids, queueing theory.

I. INTRODUCTION

L ATENCY is recognized as one of the most critical de-
sign characteristics for on-chip interconnection network

architectures [17]. In this work, we propose a performance
model which predicts the latency of flows in a network-on-chip
(NoC)-based system. Performance models are frequently
employed by system designers for early architecture and de-
sign decisions. Typically, engineers construct a performance
model, and then compare future technology options based on
performance model projections. To this end, application and
architecture models are first developed separately. Then, the
application is mapped to the architecture and a performance
model is used to evaluate the chosen application-architecture
combination. Nowadays, most performance models of NoCs
rely on simulations [2], [19]. The use of simulation experiments
makes the task of searching for efficient designs computation-
ally intensive and does not scale well with the size of networks.
Therefore, it is simply impossible to use the simulation in
optimization loops.
An alternative approach is an analytical model which can es-

timate the desired performance metrics in a fraction of time. An-
alytical models can be used to prune the large design space in
a very short time compared to simulation. Thus, it is justified
to derive accurate analytical models for performance prediction
of NoCs to eliminate the need for time consuming simulations.
The information provided during the performance analysis step
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can be used in any optimization loop for NoCs such as topology
selection, application mapping, and buffer allocation. Although
the use of high-level models conceals a lot of complex techno-
logical aspects, it facilitates fast exploration of the NoC design
space. Accurate simulations can be setup at later steps of de-
sign process when the design space is reduced to a few practical
choices.
In this research a performance queueing (PQ) model, is pro-

posed and evaluated for NoCs. The PQ model, which is based
on a G/G/1 queueing model, has been developed for determin-
istic routing and wormhole switching. The proposed model is
topology-independent and supports any kind of spatial and tem-
poral traffic patterns. The estimated performance metrics such
as average latency and router blocking time can be conveniently
used for optimization purposes to find appropriate design pa-
rameters, as well as obtaining quick performance estimates. Our
results show that the PQ model calculates quickly the latency of
flows in the network with less than 10% error when compared
to the simulation. This gives us confidence that we can utilize
the model in the early design phase of high performance on-chip
networks.
The rest of this paper is organized as follows. We start by

reviewing previous studies and highlighting our contribution
in Section II. Since our work is based on queueing theory, we
give a very brief review of G/G/1 queues and priority queues in
Section III. The proposed performance model is then described
in Section IV, while Section V compares the modeling results
and those obtained through accurate simulations. Finally, con-
cluding remarks and future work plans are given in Section VI.

II. RELATED WORK

Much of the previous analytical latency models in worm-
hole-switched off-chip networks have been formulated for a
specific topology and traffic pattern [12], [13]. In [7], the authors
utilized a queueing model and presented a performance model
to overcome the problem of buffer allocation in NoC-based sys-
tems, but the approach cannot handle the wormhole-switched
networks. The authors in [6] addressed the allocation of link ca-
pacities in NoCs through an analytical latency model. Their pro-
posed model, however, only works for networks with single flit
buffers and also ignores the queueing delays and network con-
tentions. A more accurate analytical router model has been pro-
posed in [16]. This work assumes that packet arrivals to the net-
work follow the Poisson distribution. As a result, such models
lack the accuracy for use in applications with bursty traffic such
as multimedia application. In [11] a mathematical performance
model for NoC-based systems was proposed to predict perfor-
mance metrics in NoCs. However, the modeling approach was
limited to -ary -cube networks with single flit buffers and
dimension-order routing algorithm. A worst-case analysis of
flow latency in the NoC-based systems was considered in [8].
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This paper optimizes the traffic regulation parameters aiming
for buffer optimization. Although this approach is proper for
such a system with real-time requirements, many NoC-based
systems have more relaxed timing constraints.
To the best of our knowledge, this work proposes the first

average case analytical model for on-chip routers which takes
into account the burstiness of the traffic. The proposed model
can be used to develop a thorough performance analysis for ar-
bitrary network topology with wormhole switching under arbi-
trary traffic pattern. Our proposed model, besides providing per-
formance metrics such as average latency and router blocking
time, gives useful feedbacks about the network behavior which
can be used in an optimization loop for NoCs such as topology
selection, application mapping, and buffer allocation.

III. FOUNDATION

Queueing theory is an appropriate and useful modeling tool
for system analysis and performance evaluation in computer and
telecommunications network [14]. Since our proposed model
has been constructed on the G/G/1 priority queue [3], [22], in
this section we give a quick review on the G/G/1 queue and
priority queue concepts.

A. G/G/1 Queue

The G/G/1 model has a single service facility with one server,
unlimited waiting room and the first-come first-served queue
discipline. The service times are independent and identically
distributed with a general distribution, the interarrival times of
customers are also independent and identically distributed with
a general distribution, and the interarrival times are independent
of the service times. It is assumed that the general interarrival
time and service time distributions are each partially specified
by their first two moments. We should remind here that the th
moment of a random variable is defined as the average of

. All descriptions of this model thus
depend only on the basic parameter 4-tuple , where
and are the first and second moments of the customers’ in-

terarrival time, and similarly, and are the first and second
moments of the service time. Also in this work we consider the
arrival rate and service rate as and , respec-
tively. The mean waiting time of a G/G/1 queueing system can
be approximated by Allen-Cunneen formula [3]

(1)

where is the utilization factor of the server and equal to ,
and and are the coefficient of variation (CV) of the in-
terarrival time and service time respectively [3]. We remind that
the relationship between CV of random variable and its mo-
ments is represented by .

B. Priority Queue

We consider a system with one server in which the customers
have preferential treatment based on priorities associated
with them. We assume that the priority of a customer is an
integer fixed at arrival time, and a customer with priority

belongs to class . We say one customer has

Fig. 1. Typical priority queueing system.

higher priority than another if it belongs to a priority class with
lower index. In other words, the lower the index, the higher the
priority. The priority queueing system to be studied is depicted
in Fig. 1, where the different queue levels correspond to the
different priority classes. For the service discipline, we assume
that whenever a customer is completed, the server is next
assigned to that customer at the head of the highest priority
nonempty queue. Once a customer begins on the server, it
is allowed to run to completion; i.e., the service discipline is
nonpreemptive. Independent and identically distributed arrivals
and service times are assumed for the th class with the arrival
and service rate denoted by and , respectively. The mean
waiting time of random arrivals to the th queue can be
written as [22]:

(2)

where is the residual service time seen by an incoming cus-
tomer. In a G/G/1 queueing system, is approximated by [3]

(3)

where and are average service rate and utilization factor of
class , respectively. Also, and are CV of interarrival
time and service time of class , respectively.
In all the analysis we have reviewed so far, the queue size

of each class was infinite. However, in the case of wormhole
switching this is not a true assumption, because in wormhole
switching each buffer can hold only finite number of flits. Later
in Section V-B, we analyze such a queueing system.

IV. PERFORMANCE ANALYSIS

The following assumptions are made when developing the
proposed performance model.
• The PQ model works for deterministic routing algorithms
which may be minimal or non-minimal.

• The switching method is wormhole and messages are
broken into packets.

• There is one finite FIFO queue per channel and channels
are allocated per packet. It means that the channel is
released when the whole packet has passed through the
channel.

• Packets are consumed immediately by the destination
node.

In order to characterize network performance, architecture
and application models are essential.
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Fig. 2. (a) Graph representation of a general NoC architecture. (b) Structure of
a node in an NoC-based system.

A. Architecture Model

As shown in Fig. 2(a), a directed graph can represent the
topology of an NoC architecture. Vertices and edges of the
graph show nodes and channels of the NoC, respectively. The
structure of a single node is depicted in Fig. 2(b). Every node
contains an intellectual property (IP) core and a router with
input channels and output channels. Each IP core performs
its own computational, storage or I/O processing functionality,
and is equipped with a resource-network-interface (RNI).
The RNI translates data between IP cores and routers by
packing/unpacking data packets and also manages the packet
injection process. Packets are injected into the network on the
injection channel (input port 1) and leave the network from
the ejection channel (output port 1). Generally, each channel
connects output port of node to input port of node .
Therefore, we denote this channel ( th output channel
of router or ( th input channel of router . We
consider the general reference architecture for routers in [4]
and it comprises the following major components.
• Buffer. This is a finite FIFO buffer for storing packets in
transit. In the model shown in Fig. 2(b), a buffer is asso-
ciated with each input physical channel and each output
physical channel. In alternative designs, buffers may be
associated only with inputs (input buffering) or outputs
(output buffering).

• Link controller (LC). The flow of packets across the phys-
ical channel between adjacent routers is implemented by
the link controller. The link controllers on either side of a
channel coordinate to transfer flits.

• Crossbar switch. This component is responsible for con-
necting router input channels to router output channels.

• Routing and arbitration unit. This component implements
the routing algorithms, selects the output channel for an
incoming packet, and accordingly sets the crossbar switch.
Routing is only performed with the head flit of a packet.
If two or more packets simultaneously request the same
output channel, the arbiter must provide for arbitration
among them. In this work, we suppose that input chan-
nels have a descending order of priority in a clockwise
direction for each output channel. The incoming packets

Fig. 3. Delay of a one hop flow.

from injection channel have the highest priority in each
priority group. Usually, a control mechanism prevents the
network from being overloaded. Therefore, it is guaranteed
that the router is never overloaded and incoming packets
from lower priority channels do not face starvation. If the
requested output channel is busy, the incoming head flit
remains in the input buffer. It will be routed again after
the channel is freed and if it successfully arbitrates for the
channel.

Similar to the network model in [4], we suppose that the
routing decision delay for a packet, crossing time of a flit over
the crossbar switch, and transfer time of a flit across a wire
between two adjacent routers are , and , respectively.
Also the transfer times of a flit across the injection and ejection
channels are considered to be and , respectively. Having
looked at Fig. 3, we can infer that the latency of a head flit of a
one hop packet in the absence of contention includes injection
channel delay , first router delay , inter-node wire
delay , second router delay , ejection channel delay

. Therefore, we can write it as
.

In this study, we consider the wormhole switching under de-
terministic routing algorithm. Although adaptive routing algo-
rithms avoid congested channels and result in more balanced
load on the network, they may cause out-of-order packet de-
livery. The reorder buffers needed at the destination for ordering
the packets impose large area and power on system [15]. Deter-
ministic routers not only are more compact and faster than adap-
tive routers, but also guarantee in-order packet delivery. There-
fore, it is not surprising that designers would like to use deter-
ministic routing algorithms in the NoCs which desire small sil-
icon overheads. Thus, in this research we use the deterministic
routing for deadlock-free routing.

B. Application Model

The target application can be specified by the communication
graph [18]. The communication graph is a directed graph where
each vertex represents an IP core, and the directed edge repre-
sents the communication between cores. The weight of the edge
represents the communication rate between source and desti-
nation. In experimental results section, we consider the com-
munication graph of a multimedia application (see Table III).
Although generation of data packets in NoC nodes has depen-
dence, especially in application-specific platforms, the studies
in [1], [21] show that compared to real traffic traces in NoCs, it
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TABLE I
PARAMETER NOTATION

will be still accurate to model their traffic generation separately
as independent bursts of packets with statistical characteristics.
We assume that the packet injection process to the router
has a general distribution with mean value of packets/

cycle and coefficient of variation of . Also, the probability of
packet transmission from the source node to the destination
node is . This information can be easily extracted from
the communication graph of application. Messages are broken
into some packets with arbitrary size distribution. and
represent the average and standard deviation of the packet size,
respectively, as listed in Table I along with other parameters.

V. COMMUNICATION ANALYSIS

To have a better view of the proposed model, the main idea
of the analysis approach is summarized here.
a) To estimate the average latency of flows, it is essential to
estimate the packet waiting times for network channels.

b) Each channel is modeled as a G/G/1 priority queue and the
waiting time to access each channel is calculated based on
the packet arrival rate and channel service time which are
calculated in (c) and (d), respectively.

c) Given the communication volume among IP cores and
routing algorithm, the packet arrival rate to each channel
is determined.

Fig. 4. Two-hops flow from (source) to (destination).

d) The channel service time, which is part of the waiting
time, is calculated recursively for each communication
path starting from the destination node.

A. Latency Model

The average packet latency is used as the performance
metric. We assume that the packet latency spans the instant
when the packet is created, to the time when the packet is deliv-
ered to the destination node. We also assume that the packets are
consumed immediately once they reach their destination nodes.
In Fig. 4, consider a flow which is generated in , and

reaches its destination after traversing , and
. The latency of this packet consists of two parts:

the latency of head flit and the latency of body flits
. In other words

(4)

is the time since the packet is created in , until the
head flit reaches the , including the queueing time spent at
the source node and intermediate nodes. In Fig. 4, can
be computed as

(5)

where is the mean waiting time for a packet from
to . Note that in Fig. 4, the channel between and can
be addressed with or .
Once the head flit arrives at the destination, the flow pipeline

cycle time is determined by the maximum of the switch delay
and wire delay. For an input-only or output-only buffered router,
this cycle time would be given by the sum of the switch and wire
delays [4]. In other words, in an input-output buffered router
is given by

(6)

and in an input-only or output-only buffered router it is

(7)

The only unknown parameter for computing the latency is
. This value can be calculated using a queueing model.

B. Waiting Time Estimation

A router is primarily modeled based on nonpreemptive pri-
ority queueing system. Let us consider, for instance, the th
output channel of . As can be seen in Fig. 5, this
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Fig. 5. Queueing model of a channel of an arbitrary topology.

channel is modeled as a server in a priority queueing system
with classes ( to ), the arrival rate ,
and served by one server of service rate . Both in-
terarrival and service times are independent and identically dis-
tributed with arbitrary distributions.
The queueing model for output channel represented in Fig. 5

is different from traditional priority queue model in Fig. 1. Since
in the wormhole switching each input buffer can hold finite
number of flits, we cannot use (2) and we have to compute the
average waiting time for the head of class in this special case
of priority queues. Using a technique similar to that employed in
the literature for general priority queues [3], [22], we can write

(8)

where is the fraction of time that the is occupied by
packets from and equals

(9)

Also is the residual service time of seen by an in-
coming head flit. Based on (3), in a G/G/1 queueing system the
residual service time is approximated by [3]

(10)

Since we do not have enough insight about the CV of inter-
arrival time at each channel , we suppose that
is the same for all input channels in the network and equal to
the coefficient of variation of the arrival process to network

. Therefore, we can rewrite (10) as

(11)

Due to the definition of , we can write
. It is obvious that the average packet rate

to an output channel of is equal to sum of the average
packet rate from all input channel of to this output channel.
Therefore, we can write . As a
result, (11) can be rewritten as

(12)

By substituting in (8) we can write

(13)

Therefore, to compute the we have to calculate the ar-
rival rate from to , and also first and second

moments of the service time of . In the fol-
lowing two subsections, packet arrival rate and channel service
time are computed.

C. Packet Arrival Rate Calculation

Assuming the network is not overloaded, the arrival rate from
to can be calculated using the following general

equation

(14)

In (14), the routing function equals
1 if a packet from to passes from to ; it
equals 0 otherwise. Note that we assume a deterministic routing
algorithm, thus the function of can
be predetermined, regardless of topology and routing algorithm.
After that, the average packet rate to can be easily deter-
mined as

(15)

D. Channel Service Time Estimation

After estimating the packet arrival rates, now we focus on the
estimation of the moments of channel service times. At first, we
assign a positive integer index to each output channel. Let
be the set of all possible destinations for a packet which passes
through . The index of is equal to the maximum of
distances among and each where . Obviously,
the index of a channel is between 1 and diameter of the network.
In addition, the index of all ejection channels is supposed to be
0. After that, all output channels are divided into some groups
based on their index numbers, so that group contains all chan-
nels with index .
Determination of the channel service time moments starts at

group 0 (ejection channels) and works in ascending order of
group numbers. Therefore, the waiting time from lower num-
bered groups can then be thought of as adding to the service
time of packets on higher numbered groups. In other words, to
determine the waiting time of channels in group , we have to
calculate the waiting time of all channels in group . This
approach is independent of the network topology and works for
all kinds of deterministic routing algorithm, whether minimal or
non-minimal.
In the ejection channel of , the head flit and body flits are

accepted in and cycles, respectively. Therefore, we
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Fig. 6. (a) Passing flow from and . (b) Some possible path for an
entering flow to .

can write and since the standard devia-
tion of packet size is known, we can easily compute . Now,
by using (13), the waiting time of input channels for ejection
channel can be determined for all nodes in the network,
where .
Although the moments of service time can be computed

simply for all ejection channels, service time moments of the
other output channels cannot be computed in a direct manner
by a general formula, and we have to use a more complicated
approach. Consider flow in Fig. 6(a) which passes through
routers and . We suppose that the average service time
of with index has been computed before, and now
we want to compute the average service time of
with index . At the first glance, it seems that the average
service time of is equal to .
However, we should ponder the effect of buffer spaces in
input and output port of a router on channels service time. In
the Fig. 6(a), when the tail flit of the passing packet through

reaches position 2, the service time of is finished
and similarly the service time of is finished, when
the tail flit of the packet reaches position 1. Therefore, the
preceding equation should be decreased by the spent time for
reaching position 2 from position 1. Therefore, we can write

,
where and are the capacity of the buffer in
and , respectively.
Although the effect of buffer size on the channel service time

is considered in this equation, it does not work in all cases. Be-
cause, as shown in Fig. 6(b), there might be several paths for
different flows in , so we should consider the possibility
of using several output channels to make the next hop. Now, we
can estimate the first moment or average service time of
as

(16)
where is the probability of a packet entered form to
be exited from and equals

(17)

Here, we should remind that to calculate , all values of
must be computed before. Likewise, the

second moment of service time of can be approximated
by

(18)

Finally, the CV of channel service time for can be given
by

(19)

Now, we are able to compute the average waiting time of all
output channels using (13). After computing for all nodes
and channels, the average packet latency between any two nodes
in the network, , can be calculated. The average packet
latency is the weighted mean of these latencies

(20)

where is the probability of a packet is generated in
and is delivered to .

E. Analysis Flow

To have a clear view of our proposed analysis approach, the
flowchart description of the performance model is shown in
Fig. 7. Average packet latency in the network is computed in
following steps.
Step 1) Given the application communication graph, we can

easily extract the temporal and spatial features of
communication among IP cores with the computa-
tional complexity of where is the number
of nodes in the network.

Step 2) After a mapping phase, the traffic input rates to net-
work channels are computed. The computational
complexity of this step is proportional to and ,
where is the diameter of the network. As a re-
sult the overall complexity of this step is obtained
as .

Step 3) Statistical distribution of channel service times are
partially computed using (16), (18), and (19). The
computational complexity of this step is ,
where is the number of output ports per router.

Step 4) After computing the channel service times, the av-
erage waiting time of packets are computed with the
complexity of , where is the number of
input ports.

Step 5) The complexity of the average latency calculation
using (20) is as with Step 2).

As a result, the overall complexity of the PQ model is obtained
as , if the number of input and output ports of
routers are the same. More especially, in the case of 2-D mesh
network, a router is connected to maximum four neighboring
routers and also a local IP core through injection and ejection
channels. Therefore, and equal 5 and is proportional to .
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Fig. 7. Flowchart of proposed analytical model.

As a result, the proposed model has time requirement
for 2-D mesh networks.

VI. EXPERIMENTAL RESULTS

The proposed analytical model has been validated through a
discrete-event simulator that mimics the behavior of the routing
algorithm in the network at the flit level. The simulator uses the
same assumptions as the analytical model. To achieve a high ac-
curacy in the simulation results, we use the batch means method
[20] for simulation output analysis. There are 10 batches and
each batch includes 1000 up to 80 000 000 packets depending
on the workload type, traffic injection rate, packet length, and
network size. Statistics gatheringwas inhibited for the first batch
to avoid distortions due to the startup transient. The standard de-
viation of latency measurements is less than 1.8% of the mean
value. As a result, the confidence level and confidence interval
of simulation results are 0.99 and 0.02, respectively [20]. In
other words, the probability of is
0.99, where is the real average value and is the estimated
average value by simulator [20].
For the sake of comprehensive study, numerous validation

experiments have been performed for several combinations
of workload types, network sizes and packet lengths. In what
follows, the accuracy of PQmodel will be assessed in multi-pro-
cessor system-on-chip and application-specific system-on-chip
platforms. Since their applications differ starkly in purpose,
these classes of NoCs have substantially different traffic pat-
terns.

Fig. 8. (a) Average packet latency of all flows against simulation results. (b)
Some selected flows of uniform traffic in a 9 9 mesh network. (c) The average
packet latency of the flows in (b), predicted by the PQ model against simulation
results.

A. Multi-Processor System-on-Chip Platform

We have considered a 9 9 mesh on-chip interconnect and
input-output buffered router with four flits in each input and
output channel. It takes two clock cycles to pass a flit within
a router and 1 clock cycle to transmit a flit between neigh-
boring routers. We also consider the XY routing algorithm to
route the data packets among IP cores. Packet destinations are
uniformly distributed across the network nodes. Following a
Poisson process, nodes generate packets independently of each
other. It means that the time between two successive packet gen-
erations in an IP core is distributed exponentially. The Poisson
model widely used in many performance analysis studies, and
there are a large number of papers in many application domains
that are based on this stochastic assumption [7].
Fig. 8(a) depicts latency results predicted by the PQ model

explained in the previous section, plotted against those pro-
vided by the simulator for the two different fixed packet lengths

and flits. The horizontal axis in the figure shows the
packet generation rate while the vertical axis shows the average
packet latency. The figure reveals that in both cases the analyt-
ical model predicts the average latency with a good degree of
accuracy. However, some discrepancies around the saturation
point are apparent. These can be accounted for by the approxi-
mations made to facilitate the derivation of different variables,
e.g., the approximation made to estimate CV of the interarrival
time of each channels. Such an approximation greatly simplifies
the model as it allows us to avoid computing the exact distribu-
tion of the interarrival time at a given channel, which is not a
straightforward task due to interdependencies between succes-
sive arrival times at channels as wormhole switching relies on a
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Fig. 9. Two-state MMPP model.

blocking mechanism for flow control. However, the analytical
model can still predict the average latency fairly accurately in
almost all traffic regions which are appropriate for network op-
erations.
Also, we compare the average latency of some selected flows

in the network predicted by the PQ model and the simulator.
Fig. 8(b) shows these flows from node 0 in the corner of the
network and node 40 in the centre of the network. Fig. 8(c)
depicts the average latency of these flows when the flit injection
rates are 0.18 and 0.12 flits/cycle/node for the packet length of 4
and 64 flits, respectively. The comparison results show that the
model is in good conformity with the simulator with average
relative error of 7.5%.

B. Application-Specific System-on-Chip Platform

Analyzing the multimedia applications in NoCs shows bursty
patterns of traffic over a wide range of time scales [23]. Since
the Poisson process cannot model the bursty traffic very well, we
use Markov-modulated Poisson process (MMPP) model [5] to
model the temporal burstiness of traffic. MMPP has been widely
employed to model the traffic burstiness in the temporal domain
[5]. Fig. 9 shows a two-state MMPP in which the arrival traffic
follows a Poisson process with rate and . The transition
rate from state 0 to 1 is , while the rate from state 1 to state 0
is .
In this study, we use the notation for the two-

state MMPP in which . Fig. 10 shows the number
of packet arrivals in a node against time for different values of
when the mean generation rate is 0.01 packet/cycle. Fig. 10(a)
vividly shows that Poisson process cannot model the
traffic burstiness and Fig. 10(b)–(f) reveal that greater results
in greater intensity of packet burstiness.
The distribution of the interarrival times in the two-state

MMPP is a second order hyper-exponential distribution [9].
Therefore, it is easy to compute the coefficient of variation of
the interarrival time which is reported in Table II. We can
infer that the greater the , the greater the . It means that
reflects the burstiness intensity very well. Here we recall that

is used in (13) to estimate the packet waiting time.
To evaluate the capability of the proposed model to predict

the performance of application-specific applications, we applied
it to a generic multimedia system (MMS), which includes an
H.263 video encoder, an H.263 video decoder, an mp3 audio
encoder, and an mp3 audio decoder [7]. MMS includes 40 tasks
and the tasks are assigned into 16 selected IPs. The communica-
tion volume requirements (in bytes) of this application are sum-
marized in Table III. In the next phase, wemap theses 16 IPs into
tiles of a 4 4 torus network randomly. Throughout the exper-
iments, we considered an application-specific system-on-chip
with 3 cycle router delay, 1 cycle wire delay and exponentially
distributed packet size with average size of 16 flits. In addition,

Fig. 10. Number of packets against time in the MMPP model for (a)
(Poisson model), (b) , (c) , (d) , (e) , (f)

.

TABLE II
CV OF PACKET INTERARRIVAL TIME FOR DIFFERENT VALUES OF

we supposed that input and output buffers of the routers have
the capacity of 6 and 2 flits, respectively.
Latency of flows in this configuration is investigated in

Fig. 11(a) and (b). Average latency of all packets generated by
MMPP(10), MMPP(20), and MMPP(50) in different network
throughput are compared in Fig. 11(a). Fig. 11(b) depicts the
average latency of all flows generated by MMPP(50) when the
network operates at 0.02 flits/cycle/node.
As can be seen again, the model has a fairly good degree of

accuracy in comparison to the simulation results with average
relative error of 4.7%. We also implement the proposed model
in [13] and compare it with the PQ model. Fig. 11(a) also shows
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Fig. 11. (a) Average packet latency of all flows in case of bursty traffic. (b)
The average packet latency of each flow predicted by the PQ model against
simulation results.

TABLE III
MMS APPLICATION TRAFFIC REQUIREMENT [7]

that using themodel in [13] to design a systemwith bursty traffic
may lead us to less trusted decisions.

C. Arbitrary Topology

To show the capability of PQ model to predict the average la-
tency in an arbitrary network, we consider the topology shown
in Fig. 12(a) with the uniform workload and 32 flits packets. We

Fig. 12. (a) Custom topology. (b) The average packet latency of all flows.

Fig. 13. Average packet latency for a 16 16 mesh network and an 8-D hy-
percube network with dimension-order routing.

used the CAR framework [10] to find the deadlock-free routes
in this network. CAR constructs the channel dependency graph
based on the network topology and application, and then deletes
some edges from the channel dependency graph to guarantee
the deadlock freedom. After that, CAR creates the routing space
by finding all possible shortest paths for each flow. Finally, the
simulated annealing heuristic is used to find congestion-aware
routes. Fig. 12(b) reveals that the proposed analytical model pre-
dicts the average packet latency accurately in almost all traffic
regions which are appropriate for network operation.
Furthermore, to assess the proposed model for large net-

works, we compare the PQ model and simulation results for
16 16 mesh network and 8-D hypercube network with 256
nodes. Dimension-order routing algorithms are used to route
the data packets among IP cores. We choose the hypercube
network for this experiment because it has totally different
topological properties compared to the mesh network. Fig. 13
shows the comparison result when the packet length is 32 flits,
input buffers of the routers have the capacity of 8 flits and there
are no output buffers.

D. Execution Time Comparison

Finally, the execution time of the proposed analytical model
and simulation are compared. We implement both the PQmodel
and the simulator in C++ and run on the same computer. The
execution times of the PQ model and simulation for mesh net-
works with various sizes from 9 (3 3) to 400 (20 20) nodes
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Fig. 14. Execution time comparison of the PQ model and simulation for dif-
ferent size of mesh networks.

are compared in Fig. 14. We simulate different size networks
for 4 flits input and output buffers and 32 flits packets under
uniform traffic. In such a traffic pattern, the number of flows are
considerably increased with where is the number of
nodes in the network.
As we mentioned previously in this section, a simulation run

is divided into 10 batches. To reduce the simulation time we
suppose that the simulator generates only three packets for each
flow and averages the latency of these three packets to esti-
mate the average latency of flows in each batch. Fig. 14 shows
that the proposed approach is much faster than the simulation
and the overall speed-up due to the analytical model is more
than 60 000 for small networks and more than 260 000 for large
networks. Also, the simulation execution time grows faster for
larger buffer size, longer packet length, heavier traffic, and more
bursty traffic, while the execution time of the analytical ap-
proach is constant for the same platform under different oper-
ation conditions. Furthermore, we observe that the model ac-
curacy fluctuates randomly with the network size and does not
confirm any specific trend.

VII. CONCLUSION AND FUTURE WORK

Usually, system designers address the design problems by
exploring the design space using detailed simulations. How-
ever, this approach has high run-time overhead and lacks of in-
sights. Like in other disciplines of science and engineering, the
use of analytical models can potentially address these limita-
tions under certain assumptions. To this end, we propose the
PQ model for predicting the communication performance of
wormhole-switchedNoC platforms. This queueing theory based
model takes as input: 1) an application communication graph;
2) a topology graph; 3) a mapping vector; and 4) a routing ma-
trix, and estimates some performance metrics of the system such
as average packet latency and router blocking time. The pro-
posed model is validated through simulation experiments, and
we have shown that the proposed model achieves a good degree
of accuracy ( % error) making it a practical and useful eval-
uation tool that can be used by researchers in the field to gain
insight into the performance behavior of the designed system.
The model independency on network topology and workload

type makes it a robust tool to explore the huge design space of
NoC-based systems.
In many applications such as real-time systems, the worst

case execution time is of particular concern since it is impor-
tant to know how much time might be needed in the worst case
to guarantee that the task will always finish its jobs before the
predetermined deadline. Therefore, we plan to advance this re-
search by integrating the proposed average case model with an
analytical worst case model. Finally, we would like to utilize the
integrated performance model to find a near optimal solution
for some design problems such as topology selection, module
placement and buffer allocation problems in the network-based
systems.
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