
The MOSART Mapping Optimization for
multi-core ARchiTectures ∗

Bernard Candaele1, Sylvain Aguirre1, Michel Sarlotte1, Iraklis Anagnostopoulos2,
Sotirios Xydis2, Alexandros Bartzas2, Dimitris Bekiaris2, Dimitrios Soudris2,
Zhonghai Lu3, Xiaowen Chen3, Jean-Michel Chabloz3, Ahmed Hemani3, Axel
Jantsch3, Geert Vanmeerbeeck4, Jari Kreku5, Kari Tiensyrja5, Fragkiskos
Ieromnimon6, Dimitrios Kritharidis6, Andreas Wiefrink7, Bart Vanthournout7,
Philippe Martin8

1 THALES Communications, Colombes Cedex, France
2 Institute of Communications and Computer Systems, Athens, Greece
3 Royal Institute of Technology-KTH, Stockholm, Sweden
4 IMEC, Interuniversity Micro-electronics Center, Leuven, Belgium
5 VTT Communication Platforms, Oulu, Finland
6 INTRACOM S.A. Telecom Solutions, Peania, Greece
7 SYNOPSYS, Leuven, Belgium
8 ARTERIS, Guyancourt Cedex France

Abstract
MOSART project addresses two main challenges of prevailing architectures: (i) The
global interconnect and memory bottleneck due to a single, globally shared memory
with high access times and power consumption; (ii) The difficulties in programming
heterogeneous, multi-core platforms MOSART aims to overcome these through a
multi-core architecture with distributed memory organization, a Network-on-Chip
(NoC) communication backbone and configurable processing cores that are scaled,
optimized and customized together to achieve diverse energy, performance, cost and
size requirements of different classes of applications. MOSART achieves this by:
(i) Providing platform support for management of abstract data structures including
middleware services and a run-time data manager for NoC based communication
infrastructure; (ii) Developing tool support for parallelizing and mapping applica-
tions on the multi-core target platform and customizing the processing cores for the
application.

1 Introduction and Motivation

The widening gap between power and performance requirements of applications and
what is afforded by technology scaling and architectural techniques clearly points
to multi-processor architectures as the solution. As an example, even the present

∗ This work is supported by the E.C. funded FP7-215244 MOSART Project, www.mosart-
project.org

1



2 Authors Suppressed Due to Excessive Length

day wireless standard 802.11a requires more than 5 GIPs (IST - Project E2R) of
conventional DSP processing for its physical layer. The challenge going forward is
to be able to sustain several applications that are at least an order of magnitude more
demanding than the 802.11a/n/m.

Memory dominates the cost, power and performance of heterogeneous multi-
processor architectures. The need for large amount of storage and a high bandwidth
access to it comes from two ends. The primary need comes from the applications be-
coming more complex and data intensive (high resolution, higher bandwidth com-
munication etc.). The secondary need comes from the requirement to hide the la-
tency of accessing slower off chip memory. To comprehensively optimize both the
aspects, the challenge is to treat the memory question at system level where deci-
sions are made about how to map complex and abstract data structures to efficient
distributed memory hierarchy and provide runtime support for memory management
and scheduling.

To address the memory and interconnect challenges, MOSART has developed a
distributed memory architecture that is tightly integrated with a Network-on-Chip
(NoC) interconnect backbone. Physically and architecturally NoC is an enabling
technology that addresses the memory and interconnect challenge. Such NoC based
distributed architecture enables arbitrary communication pattern among applica-
tions and also significantly lowers the interconnect latency, memory latency and
energy requirement for accessing data. Developing appropriate design methods and
tools, we have explored within affordable time budgets, various NoC interconnec-
tion topologies and multi-layer memory structures resulting into high performance
and low energy NoC architecture.

To effectively utilize the distributed architecture and make the development cycle
more modular, MOSART has developed middleware services for memory manage-
ment for runtime data allocation and access scheduling. This middleware provides
an abstract data type library offering optimized data types to the applications run-
ning on the platform. Additionally, a run-time data allocator is in charge of the data
allocation over the distributed memory of the NoC platform. Present in the middle-
ware are APIs that interface to the data transfer services (e.g., block transfers over
the communication infrastructure).

Key characteristics of the developed architecture and the methodology are flex-
ibility, scalability and modularity. The flexibility comes from a library of system
level building blocks, both functional and infra-structural. The scalability comes
from the ability to logically combine resources for increased performance, storage
and/or bandwidth. The modularity comes from the way the building blocks are ar-
chitected and harnessed at the chip level and how the design methodology models
and abstracts them.

MOSART is the first attempt, to the best of our knowledge, that proposes the
usage of NoC properties to actually solve some of the most vexing problems facing
the SoC architectural and design community like a) design productivity, b) computa-
tional power, c) low power, d) domination of memory in terms of power and perfor-
mance, e) global interconnect latency, f) bus scalability and g) managing arbitrary
concurrency. MOSART is also the first serious attempt at developing a methodology



The MOSART Mapping Optimization for multi-core ARchiTectures 3

around it to be able to deploy it for real life applications. In MOSART, we also use
NoC to provide us with scalability so that we can tune and customize the computa-
tional power, the interconnect bandwidth and the storage to the needs of applications
at hand.

To summarize, the technical objectives are: a) to develop a multi-core architec-
ture with distributed memory organization, a NoC communication backbone and
configurable processing cores that are scaled, optimized and customized together to
achieve diverse energy, performance, cost and size requirements of different classes
of applications, b) to provide platform support for management of abstract data
structures including middleware services and a run-time data manager for NoC
based communication infrastructure, c) to develop tool support for parallelizing and
mapping applications on the multicore target platform and customizing the process-
ing cores for the application, and d) to validate and evaluate the architecture and tool
support using applications from future high data rate wireless access.

2 Project description

The MOSART project has developed a flexible modular multi-core on-chip platform
architecture and associated exploration design methods and tools. The overall sys-
tem level methodology by MOSART is depicted in Fig. 1. The methodology steps
are a)Applications and Performance Requirements (Section 2.1), b)Parallelization
and System-Level exploration (Section 2.2), c)NoC Customization (Section 2.3) and
d)ASIP exploration (Section 2.4).

2.1 Applications and Performance Requirements

The credibility of the MOSART approach is demonstrated by means of illustrative
applications that demonstrate a high degree of usability for the existing design base.
Two such applications have been chosen for the purposes of validation/evaluation.

The first one is the implementation of a part of the cognitive radio application
on the MOSART platform. Cognitive radio is a new concept, employed in order to
optimize the frequency band usage. It will be integrated into the next generation of
post-SDR wireless terminal. This test case has already been used to demonstrate the
interest of the ASIP approach in a first step, that is followed by the implementation
of porting and execution of the parallelized code on a combination of multi-core and
multi- ASIP architecture.

The second is an implementation on the MOSART platform of selected parts
of the PHY layer of an experimental prototype of an IEEE 802.16e based broad-
band wireless system. The 802.16e standard has been defined to support broadband
mobile connectivity in urban environments. The standard places heavier process-
ing requirements than the earlier fixed WIMAX standard of 802.16d, coupled with



4 Authors Suppressed Due to Excessive Length

Fig. 1 MOSART framework overview

the ever-present need for low-power mobile terminals. The chosen application sub-
set has been coded in C, and gone through the steps of parallelization. This step
provides the necessary profiling information that will guide the ASIP exploration
phase.

2.2 Parallelization and System-Level exploration

Extraction of parallelism from the sequential model of applications is convention-
ally used by algorithm developers. The MPSoC Parallelization Assist (MPA) tool [1]
analyzes the application and generates parallel source code based on the directives
specified by the designer. Then, MPA allows reporting performance (coarse-grain)
obtained by simulating the parallelized application. The general idea of paralleliza-
tion is that the designer identifies parts of the sequential code that are heavily exe-
cuted and should be executed by multiple threads in parallel to improve the perfor-
mance of the application. These pieces of code that will be parallelized are denoted
as parallel sections (ParSec). Given the input code and the parallelization directives,
the tool will generate a parallel version of the code and insert FIFOs and synchro-
nization mechanisms where needed. Each time a flow dependency crosses a thread



The MOSART Mapping Optimization for multi-core ARchiTectures 5

boundary, the last definition has to be communicated from the producing thread to
the consuming thread. This is done by inserting FIFO style communications chan-
nels into the generated partitioned code [1]. The parallelizations generated by the
MPA need to be evaluated (fine grain) to find out the overall application gain in
power and/or performance. To achieve this, an approach is required to evaluate sys-
tem power and performance at a high-level.

The performance modeling and analysis approach is achieved with ABSO-
LUT [2] that is a model-based approach for system-level design. This approach
takes service orientation into focus, and the execution platforms are modeled in
terms of services provided (ASIPs, memories, interconnect, etc). The layered hier-
archical workload models represent the computation and communication loads the
applications cause on the platform when executed. The layered hierarchical platform
models represent the computation and communication capacities the platform offers
to the applications. The workload models are mapped onto the platform models and
the resulting system model is simulated at transaction-level to obtain performance
data. The approach enables performance evaluation early, exhibits light modeling
effort, allows fast exploration iteration, reuses application and platform models, and
provides performance results that are accurate enough for system-level exploration.

2.3 NoC Customization

MOSART has developed new technologies for future MPSoC based upon Network
on Chip and distributed memory and computing cores for multimedia and wire-
less communications. In our McNoC, memories are distributed but shared among
network nodes. An example is shown in Fig. 2. The system is composed of 16
Processor-Memory(PM) nodes interconnected via a packet-switched mesh network.
A node can also be a memory node without a processor, pure logic or an interface
node to off-chip memory. As shown in Fig. 2, each PM node contains a proces-
sor, for example, a LEON3, hardware modules connected to the local bus, and a
local memory. The key module, which we introduce as an engine for memory and
data management, is the DME, able to simultaneously serve various requests from
the local core and the remote ones via the network. A Data Management Engine
(DME) [3] has been designed and implemented to handle all on-chip memory and
data management tasks for a distributed shared memory architecture. A set of data
management methodologies for future McNoC platforms is proposed too. The first
methodology that is developed is the abstract data type optimization (ADT). Em-
ploying this technique, the designers will be able to change the way the dynamic
data of applications are stored and accessed (MTh-DMM). Also, the mapping of
abstract data types to a distributed memory architecture is managed by the runtime
memory management.

A novel asynchronous communication scheme (GRLS = Globally Ratiochronous-
Locally Synchronous) [4] has been developed. The GRLS paradigm is based on the
observation that in SoCs all on-chip clocks are normally derived from the same



6 Authors Suppressed Due to Excessive Length

Leon3 
core D-Cache

I-Cache

Dual Microcoded 
Controller

AHB Bus

other 
modules

Private SharedLocal Memory

PM

PM PM PM

PM PM

PM PM

PM

PM

PM

PM

PM

PM

PM

PM

router

D
is

tr
ib

ut
ed

 sh
ar

ed
 

m
em

or
y 

se
rv

ic
es Abstract data type supportDynamic data/memory (de)allocation 

Memory consistency Cache coherency
SynchronizationShared memory access

Virtual to physical address translation

Advanced services (for dynamic applications)

Base services

Fig. 2 A 16-node mesh McNoC; Processor-Memory (PM) node and Supported services.

master clock. The GRLS paradigm constrains all local frequencies to be rationally-
related, and uses clock dividers for the generation of the local frequencies. The
asynchronous communication problem is inherently more complex compared to the
ratiochronous counterpart, and we used the periodic properties of rationally-related
systems to build efficient latency-insensitive communication interfaces, allowing
maximum throughput, low latency and low overhead, coupled with low complex-
ity and high flexibility. We have shown how GRLS communication does not re-
quire handshake and has overhead and performance figures which are close to those
of mesochronous interfaces, while keeping a flexibility close to that of GALS. We
used the GRLS paradigm as the basis for the MOSART power management scheme,
which partitions the SoC into different clock regions, which can be optimized inde-
pendently from each other by means of Dynamic Voltage and Frequency Scaling
(DVFS). Voltage Scaling is realized using a quantized approach, in which mul-
tiple supply voltages are distributed throughout the chip and the regions can dy-
namically select which voltage to use for power supply. We have developed fully-
programmable Power Management Units to manage power services in the platform.
The Power management Units allow to dynamically change the frequency and the
supply voltage of any region and offers clock gating and shutoff services. Dynamic
reconfiguration of the GRLS regions is also supported.



The MOSART Mapping Optimization for multi-core ARchiTectures 7

Table 1 Description of the five different allocators

Allocator Description (free-lists) Code size

Alloc1

free-list0(blockSize = 40)

4792 Bytesfree-list1(blockSize = 1460)
free-list2(blockSize = 1500)
Generic heap (holds blocks of other sizes)

Alloc2

free-list0(blockSize ∈ [0,40])

4792 Bytesfree-list1(blockSize ∈ [1280,1460])
free-list2(blockSize ∈ (1460,1500])
Generic heap (holds blocks of other sizes)

Alloc3

free-list0(blockSize ∈ [0,40])

7728 Bytes

free-list1(blockSize = 1460)
free-list2(blockSize = 1500)
free-list3(blockSize ∈ (40,92])
free-list4(blockSize ∈ (92,132])
free-list5(blockSize ∈ (132,256])
free-list6(blockSize ∈ (256,512])
free-list7(blockSize ∈ (512,1024])
free-list8(blockSize ∈ (1024,1500))
Generic heap (holds blocks of other sizes)

Alloc4 Similar to Alloc 1 with the addition of 5824 Bytesfree-list3(blockSize = 92)

Alloc5 Similar to Alloc 2 with the addition of 5824 Bytesfree-list3(blockSize = 92)

Fig. 3 (a) Description and (b) Comparison of the different memory allocators.

2.4 ASIP exploration

The ASIP design space can be very complex, and the performance estimations be-
come very late in the design process in traditional approaches. The amount of man-
ual work is considerable and the design cycle takes so much time that the exploration
of the ASIP architecture design space remains very weak. The proposed methodol-
ogy and prototype tool is according to our knowledge the first attempt to raise the
ASIP design abstraction level above a standalone ASIP. Adding the ASIP architec-
ture exploration to front of an existing ASIP design flow will allow for finding a
good architecture for the actual design of an ASIP. It facilitates evaluation of the



8 Authors Suppressed Due to Excessive Length

ASIP performance early in the design process which results in a more systematic
approach, increase automation and allow exploration of larger ASIP design space.
The method and tool gives estimates of number of registers, number and types of
functional units, number of pipeline stages and the instruction set of the ASIP core
that would best satisfy the computational requirements of the types of algorithms it
is targeted for. From the set of core models in the design space, the approach finds
the most optimal for the given algorithm.

3 Experimental Results

In this Section, examples of MOSART’s are presented. According to the aforemen-
tioned methodology we show the results in the field of (a) Parallelization, (b) System
level exploration, (c) Supporting distributed shared memory services and (d) ASIP
exploration.

3.1 Parallelization

The aforementioned application of selected parts of the PHY layer of an experimen-
tal prototype of an IEEE 802.16e based broadband wireless system (Section 2.1)
was used as input to the parallelization tool. The first step towards code mapping
was the modification of the C sources, so that the coding style is conformant with
MPA syntax and semantics requirements. Once the C source was cleaned-up, the
sequential code was executed on a conventional PC platform to verify that the ap-
plication functionality had been preserved. It was then annotated with standard C
syntax labels, to facilitate parallelism extraction from the MPA tool and conver-
sion of the original sequential code into a multi-threaded version. Instrumentation
code had also been added by the MPA suite, to facilitate gathering of vital program
statistics which are displayed in textual and visual form once the modified code
is compiled and run onto the targeted MPSoC platform. The parallelization and
optimization process was thus guided towards production of multi-threaded code,
matching the capabilities of the multi-core platform.

During the learning phase of MPA use, trivial parallelization scenarios were run,
where a single thread executes all functionality of the labeled code segments. Subse-
quently, more elaborate parallelization scenarios were tried, initially extracting the
”easy” parallelism that is suggested by the application code outline: the iFFT/FFT
blocks were assigned to individual threads, with the rest of code functionality as-
signed to a couple of additional threads. During the process of code parallelization,
additional ”unsafe” code features were identified and removed from the original
sequential code, that is always the starting point of the exploration effort. Issues
such as arrays of structures and inconsistent use of declared multi-dimensional ar-
rays, which are forbidden by MPA although allowed by C semantics and able to go
through production compilers such as gcc, were removed from the code. All such



The MOSART Mapping Optimization for multi-core ARchiTectures 9

transformations of the sequential original sources were validated by runs on the PC
platform.

3.2 System level exploration

The JPEG encoder was used to experiment and validate the GCC compiler-based
workload generation tool in the context that takes MPA-parallelized source codes,
creates respective workload models and maps them on the ABSOLUT platform
model for transaction-level performance simulation in SystemC. The parallel ver-
sions of the JPEG encoder were created with the MPA tool. We generated four
sets of workload models from the encoder. The first one was from the unmodified
sequential application and the other three from parallelized versions of the appli-
cation: Par-1 had two threads with the second thread executing Getblock and DCT
algorithms. Par-2 consisted of three threads with the second and third one interleav-
ing the execution of Getblock, DCT, and Quantization. Par-3 had also three threads
with the second and third thread executing just Getblock and DCT in an interleaved
manner.

Fig. 4 Example platform consisting of four ARM nodes.

The execution platform model for the performance simulation of the JPEG appli-
cation is depicted in Fig. 4. It consists of 4 ARM nodes connected by routers, which
form a ring-like network. Each node has an ARM9 CPU, some local SRAM mem-
ory, a shared bus, and an interface to the other nodes. The accuracy of the ABSO-
LUT simulation approach has been evaluated with several case examples in [5, 6].

According to [6] both Par-1 and Par-3 have 100% utilization on the cpu of the
ARM node 0. Par-1 has 44% cpu utilization in the second ARM node, whereas Par-
3 has 21% utilization across nodes 1 and 2. Par-2 has 88% utilisation in the first
node: it is idling at some point of simulation while waiting data from the other two



10 Authors Suppressed Due to Excessive Length

threads. Since Par-2 has a shorter execution time and more work for nodes 1 and 2,
the cpu utilisation in those nodes is considerably higher at 53%

3.3 Supporting distributed shared memory services

3.3.1 Utilization of Base Services

We implemented two applications, matrix multiplication and 2D radix-2 DIT FFT,
on the McNoC platform (See Fig. 2) with a range of sizes from 1 node to 64 (8×8)
nodes. The matrix multiplication, which is computation intensive and does not in-
volve synchronization, calculates the product of two matrices, A[64,1] and B[1,64],
resulting in a C[64,64] matrix. To vary the computation time, we consider both in-
teger and floating point matrix multiplications. Fig. 5 shows the system speedup for
the two applications. As the system size increases from 1 to 64 cores, the speedup
rises from 1 to 36.494 for the integer matrix multiplication, from 1 to 52.054 for
the floating point matrix multiplication, and from 1 to 48.776 for the 2D FFT. The
speedup for the floating point matrix multiplication is higher than that for the in-
teger matrix multiplication. This is as expected, because, when the computation
takes more time, the portion of communication time becomes less significant, thus
achieving higher speedup. That is to say, as the system size increases, communica-
tion becomes a more limiting factor for performance due to nonlinear increase in
communication latency. In all cases, the DME overhead is insignificant.

Fig. 5 Speedup of matrix multiplication and 2D DIT FFT.



The MOSART Mapping Optimization for multi-core ARchiTectures 11

3.3.2 Utilization of Advanced Services

The application we use as a test driver is a combination of several real-life kernels
that are present in network applications [7, 8]. We triggered the system with a set of
traces from a real wireless network. The software application is fully multi-threaded
as it is increasingly common in computing systems: each kernel is executed in its
own independent thread and communicates asynchronously with the other kernels
through asynchronous FIFO queues. Through extensive application profiling we
captured the allocation behavior of the application [8]. This information contains the
block size distribution of the memory allocation requests. Based on the allocation
behavior of the application the most appropriate allocator would be a pure-private
one [9], offering the best performance in multi-processor environments. To evalu-
ate our approach we use five different pure-private memory allocators, presented in
Table. 1.

The results are presented in Fig. 3, where a comparison is performed in terms
of number of memory accesses, maximum requested memory footprint and DME
cycles. Out of the five memory allocators Alloc1 is the one that offers the smaller
amount of memory accesses (21% less than Alloc3, which is the most complex
one) and DME cycles, as it has the simplest internal structure and thus needing few
memory accesses to service the allocation requests. Since all memory allocators
have their free-lists and mapping functions to match the application’s requirements,
they all have similar behavior regarding the requested maximum memory footprint.
However, when the static memory solution is compared against the dynamic one it
requires 100% more memory footprint (Fig. 3).

3.3.3 Power Management Services

CHAPTER 4. POWER MANAGEMENT ARCHITECTURE

Figure 4.1: Structure of the GRLS Power Management System

was given to the implementation of the CGU, since this is a critical part
of the architecture. A first design that meets all the requirements was
made. Later, a second approach that intends to trade performance for
power efficiency was proposed: the LFSR CGU. Further information is
given in chapter 5.

VCU: The VCU is responsible for selecting one of the five input voltages dis-
tributed in the chip as the local node’s voltage of operation. These five
input voltages include four active voltages and the minimum retention
level. Only one voltage is selected at a time. The VCU is also capable
of disconnecting the node from the power supply. Although the VCU has
not yet been implemented, its specifications are reported in chapter 6.

PMU: The PMU is the hardware entity responsible for implementing the power
management policies and executing the power management modes by con-
trolling the CGU and the VCU. A more detailed description of the power
modes can be found in Chapter 7.

4.2 Power Management Services
The Power Management System in McNoC provides a wide range of power man-
agement services to the Power Management Intelligence software PMINT. The
services are accessible through the Power management Unit (PMU), through
an interface using a single 32-bits command register. The PMINT accesses the
services using an API (see MOSART deliverable D 1.2).

• Changing frequency: This service allows to select one of the global clocks
and set the factor by which the clock is divided, without changing the
supply voltage of the resource.

• Changing Voltage: This service allows to change the voltage of a resource
without altering the frequency of the clocks.

• Changing DVFS Point: This service allows to change the DVFS point
of a resource. The frequency-voltage pairs are programmable and can be

www.mosart-project.org 36 TCF/EDS/SIE,010/009

Fig. 6 Structure of the Power Management System

The power services are accessed by the Power Management Intelligence software
(PMINT) through what we call Power Management System (PMS) (Fig. 6). The
PMS is made up of three separate blocks: the Power Management Unit (PMU),
the Clock Generation Unit (CGU) and the Voltage Control Unit (VCU). The Power
Management Intelligence PMINT communicates with the PMU, which is a complex
set of state machines giving access to the power services. The power services are



12 Authors Suppressed Due to Excessive Length

coordinated by the PMU and actuated by the CGU and the VCU, used respectively
to generate the local clock(s) for the region and to regulate its supply voltage. While
some of the power management services involve only CGU or VCU, the majority
involve both units under the supervision of the PMU. The offered services are: a)
changing frequency, b) changing voltage, c) changing DVFS point, d) clock gating,
e) hybernation and f) power off. The maximum frequency (post layout) of the PMU
is 1.25GHz.

3.4 ASIP exploration

3.4.1 Initial profiling

There are three profiling level. The highest one (the least detailed) only simulate
the total cycles required to run the whole application. On the other hand, the lowest
one (the most detailed) profiles the time spent in each functions called in the C
code (emulation function included). Both this two levels are activated by default
while profiling. The third level of profiling is user-defined, and profiles the time
spent in a (or several) user-defined part (called section) of the C code; usually, the
detail level of this profiling is between the two other level. The initial profiling,
with meaningful defined sections, on the VLIW architecture template provided by
Processor Designer showed most of the cognitive radio application runtime were
required to perform the wideband filter, as shown in Figure 7.The ”not profiled”
part is mainly composed of extra cycles introduced by the user-defined profiling
section, for about 10% among 15%. The 5% last percents gathered mainly memory
management (malloc, free, etc.), and the filter coefficient initialisation.

Fig. 7 Initial profiling results on the VLIW architecture template

3.4.2 MAC instruction

First, as the filtering required more than 85% of the total runtime, a MAC instruc-
tion has been added in the processor instruction set to speed this up. In order to
not slow down too much the frequency, this MAC operation is implemented within
two pipeline stages, i.e. within two clock cycles. During, the first cycle, operands are



The MOSART Mapping Optimization for multi-core ARchiTectures 13

Fig. 8 Profiling result with the MAC instruction

read and the multiplication is computed. Then, during the second cycle, the multipli-
cation result is accumulated in the destination result, i.e. added with the destination
register previous value. The implementation of this operation has been automati-
cally mapped to a multiplication-accumulation from the C to the assembly code
tested and validated. Then, the application has been profiled again on this optimised
processor, and its results are shown on Figure 8.

As a comparison, initial profiling results are shown on the left (figures are in mil-
lions of cycles). Moreover, the total runtime is cut in four different parts. The first
one (”MAC”, represented in yellow) is the time spent computing the multiplication-
accumulation. The second one (”index”, represented in red) is the time spent com-
puting the memory address of the MAC operands (input sample and filter coeffi-
cient). The third one (”misc”, represented in orange) is the remaining time spent
in the filtering function; it is mainly composed of extra (useless) cycles introduced
by the user-defined profiling sections, and of loop branching instruction and index
computing. Eventually, the last part (represented in blue), is the time left (transpo-
sition, decimation, etc.). Among these four parts, the MAC instruction obviously
optimized the ”MAC” part; it speeds it up more than 8 times.

3.4.3 Branch prediction

The MAC instruction enhanced much the step 1 runtime. A second analyzing of
these new performances showed many cycles were wasted in computing branch
condition. As the application is based on nested loops, there are many conditional
branch instructions, and each of them required a pipeline stall to compute whether
the condition is true or not. The second ASIP optimization consists in implementing
a loop-optimized branch prediction. It means that the processor would recognize a
conditional branch that corresponds to a loop (defined by a branching address before
the current program address). Then, it would automatically take the branch without
computing the condition which is actually true most of the time. Then, the condition



14 Authors Suppressed Due to Excessive Length

is computed to check the branching was right; if not, the processor goes back the
instruction right after the branch instruction. Performances for this new ASIP have
then been profiled, and the results are shown in Figure 9.

Fig. 9 Profiling result with the branch prediction

3.4.4 SW / HW performances trade-off

Figure 10 provides a summary of the achieved results about the software / hardware
trade-off. It represents the different gains from the initial VLIW architecture. The
first gain (cycles) represents the software gain, i.e. how faster (in comparison with
the initial version) the application runs considering the same chip frequency; for
example, a gain of 5 means than the application required fives times less cycles to
run in comparison with the initial version. Then the next two figures (frequency
and area) are related to the hardware impact. A figure greater than one means that
the design is better than the initial one; for area, it means the chip is smaller, and
for frequency, it means it run faster. Eventually, the last one (runtime) takes into
account both software and hardware gains. Runtime represents the time (in seconds)
required to run the application, and is determined from both the amount of cycles
and the chip frequency. Actually, it shows than the great software gain afforded by
the MAC instruction is partially counterbalanced by the frequency fall it introduces.

4 Conclusions

The objective of the MOSART project is to develop a flexible, modular multi-core
on-chip platform architecture and associated exploration design methods and tools,
to allow the scaling of the platform and optimization of its constituent elements
for various embedded, multimedia and wireless communication applications. In
MOSART, we have deployed a cluster of ASIPs to target a suite of applications
and we enhance the efficacy of the MPSoC concept by using distributed memory ar-



The MOSART Mapping Optimization for multi-core ARchiTectures 15

Fig. 10 Software / Hardware trade-off

chitecture and use of NoC. By adopting such an architecture, we claim that we not
only gain flexibility, scalability and modularity, we also improve the computational
efficiency to the extent that in the ladder of computational efficiency, the proposed
architecture would be only one notch below hardwired ASICs and yet largely retain
the flexibility of programmable solutions.

References

1. J.-Y. Mignolet et al., “Mpa: Parallelizing an application onto a multicore platform made easy,”
IEEE Micro, vol. 29, no. 3, pp. 31–39, 2009.

2. J. Kreku et al., “Combining uml2 application and systemc platform modelling for performance
evaluation of real-time embedded systems,” EURASIP J. Embedded Syst., vol. 2008, pp. 1–18,
2008.

3. X. Chen et al., “Supporting distributed shared memory on multi-core network-on-chips using a
dual microcoded controller,” in Proc. of DATE, 2010, pp. 39–44.

4. J.-M. Chabloz and A. Hemani, “A flexible communication scheme for rationally-related clock
frequencies,” in Proc. of ICCD, 2009, pp. 109–116.

5. J. Kreku et al., “Workload simulation method for evaluation of application feasibility in a mo-
bile multiprocessor platform,” in Proc. of DSD. IEEE Computer Society, 2004, pp. 532–539.

6. ——, “Automatic workload generation for system-level exploration based on modified GCC
compiler,” in Proc. of DATE, 2010.

7. A. Bartzas et al., “Enabling run-time memory data transfer optimizations at the system level
with automated extraction of embedded software metadata information,” in Proc. of ASP-DAC,
2008, pp. 434–439.

8. ——, “Software metadata: Systematic characterization of the memory behaviour of dynamic
applications,” Journal of Systems and Software, vol. In Press, Corrected Proof, pp. –, 2010.

9. P. R. Wilson et al., “Dynamic storage allocation: A survey and critical review,” in Proc. of
IWMM. Springer-Verlag, 1995, pp. 1–116.


