
A Reconfigurable Fault-tolerant Deflection Routing
Algorithm Based on Reinforcement Learning for

Network-on-Chip

Chaochao Feng1,2, Zhonghai Lu2, Axel Jantsch2, Jinwen Li1, Minxuan Zhang1

1School of Computer, National University of Defense Technology, Changsha, P.R. China
2Royal Institute of Technology, Stockholm, Sweden

1{fengchaochao, lijinwen, mxzhang}@nudt.edu.cn 2{cfeng, zhonghai, axel}@kth.se

ABSTRACT
We propose a reconfigurable fault-tolerant deflection rout-
ing algorithm (FTDR) based on reinforcement learning for
NoC. The algorithm reconfigures the routing table through
a kind of reinforcement learning—Q-learning using 2-hop
fault information. It is topology-agnostic and insensitive to
the shape of the fault region. In order to reduce the routing
table size, we also propose a hierarchical Q-learning based
deflection routing algorithm (FTDR-H) with area reduction
up to 27% for a switch in an 8 × 8 mesh compared to the
original FTDR. Experimental results show that in the pres-
ence of faults, FTDR and FTDR-H are better than other
fault-tolerant deflection routing algorithms and a turn model
based fault-tolerant routing algorithm.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Reliability

Keywords
fault-tolerant, deflection routing, reinforcement learning, NoC

1. INTRODUCTION
Network-on-Chip (NoC) has already become a promising

solution for integrating a large number of cores on a chip
to achieve high performance. However, as the CMOS tech-
nology scales down to the nanometer domain, smaller fea-
ture size, lower voltages and higher frequencies increase the
number of occurrence of intermittent and transient faults,
besides manufacturing defects and wear out effects which
lead to permanent faults are also inevitable [1]. The in-
herent structure redundancy of NoC provides the potential
to design a fault-tolerant routing algorithm to enhance the
reliability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc ’10, December 4, 2010, Atlanta, Georgia, USA
Copyright 2010 ACM 978-1-4503-0397-2 ...$10.00.

Recently, bufferless routing, also called deflection routing,
has been widely used for reducing the hardware overhead
and power consumption of NoC [2, 3, 4]. In deflection rout-
ing, an incoming packet is always routed to a free output
port even though it is far away from the destination. Be-
cause of its non-minimal routing characteristic, deflection
routing can be easily modified to achieve fault-tolerance.
This paper proposes a reconfigurable fault-tolerant deflec-
tion routing algorithm (FTDR) based on a kind of rein-
forcement learning—Q-learning. It is a table-based rout-
ing algorithm, which reconfigures the routing table through
Q-learning and uses 2-hop fault information to make effi-
cient routing decision to avoid faults. In order to reduce the
routing table size, we also propose a hierarchical Q-learning
based deflection routing algorithm (FTDR-H) with area re-
duction up to 27% for a switch in an 8 × 8 mesh compared
to the original FTDR. Simulation results under both syn-
thetic and application traffic workloads demonstrate that in
the presence of faults, FTDR and FTDR-H perform better
than other fault-tolerant deflection routing algorithms [5, 6]
and a turn model based resilient routing algorithm [7].

The rest of paper is organized as follows: Related work
is reviewed in Section 2. Section 3 describes the NoC ar-
chitecture and fault model. The detailed routing algorithm
and implementation are proposed in section 4. In section
5, simulation experimental results are analyzed, followed by
the conclusion and future work in section 6.

2. RELATED WORK AND MOTIVATION
Depending on the shape of the fault region, fault-tolerant

routing algorithms can be categorized into two classes: one
can handle regular fault regions (convex and concave shapes)
and the other, which is also known as topology-agnostic,
can handle irregular fault regions. The regular nature of
a faulty block facilitates to route packets around the fault
region but it is not practical. For general interconnection
network, a fault-tolerant adaptive routing algorithm using
safety level concept [8] is used to find a minimal path in a
mesh with rectangular faulty blocks (convex fault regions)
and a software-based fault-tolerant oblivious routing algo-
rithm [9] has been proposed to handle both convex and con-
cave fault regions.

There are also some fault-tolerant routing algorithms for
NoC to tolerate regular fault regions. Routing packets throu-
gh a cycle free contour surrounding a faulty switch by a re-
configurable routing algorithm for a fault-tolerant 2D mesh
NoC has been investigated in [10]. But it can only be used
in one faulty switch or region topology. In [11], a deadlock
free routing algorithm is presented to handle irregular mesh
topology with rectangular regions. This algorithm uses the
concept faulty-rings and faulty-chains to isolate the faulty

nodes from the rest of the network. A resilient routing al-
gorithm for fault-tolerant NoC based on turn model is de-
scribed in [7]. The switch can be reconfigured around faulty
components while maintaining correct operation without us-
ing virtual channels. For deflection routing, a fault adaptive
routing algorithm, which makes routing decision based on a
cost function, has been proposed in [5]. Because it makes
routing decision only based on the fault information of the
current switch, the hop count field of the packet can eas-
ily overflow even in some simple fault patterns. A Fault-
on-Neighbor (FoN) aware deflection switch [6], which can
tolerate convex and concave fault regions (which have at
most one concave point in sequence) without deadlock and
livelock, makes routing decision based on 2-hop fault infor-
mation and fault region shape without using routing table.

Few works focus on handling network with irregular fault
regions because it needs more fault information to make
correct routing decision. A Dependable routing for paral-
lel computer systems is described in [12]. It can be applied
to arbitrary topologies and tolerate any number of failures
regardless of their spatial and temporal distributions. For
NoC, a region-based routing has been proposed to handle
irregular networks [13]. This algorithm groups destinations
into regions to make routing decision. Its main overhead is
the execution time of the region computation process.

Q-routing based on Q-learning is first proposed to han-
dle rectangular regions in dynamic Network-on-Chip [14].
The proposed FTDR algorithm inspired by Q-learning is to
overcome the constraint of the regular fault region. It is
insensitive to the shape of the fault region and guarantees
communication between any pair of switches as long as a
path exists between them.

3. NOC ARCHITECTURE AND FAULT
MODEL

3.1 NoC Architecture
The NoC architecture is based on Nostrum NoC [15],

which is a 2D mesh topology. Each process element (PE) is
attached to a switch (S), as shown in Fig. 1. The difference
from the ordinary 2D mesh is that the boundary output is
connected to the input of the same switch, which can be
used as a packet buffer. All incoming packets are prioritized
based on its hop counts which record the number of hops the
packet has been routed. The switch makes routing decision
for each arriving packet from the highest priority to the low-
est. If a desired output port has already been occupied by
a higher priority packet, a free port with the smallest stress
value, which is the traffic load of neighbor switches in last
4 cycles, will be chosen, which means the packet has to be
deflected.

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

S

PE

Figure 1: NoC architecture.

The packet format which is compatible for a multi-core
NoC platform [16] is shown in Fig. 2. A packet, which is

114 bits, contains a 34 bits head and an 80 bits payload. A
valid bit (V) is used to mark a packet valid or not. Relative
addressing is used for the source and destination address
fields (SA and DA) which are 12 bits respectively. The HC
field (9 bits) records the number of hops the packet has been
routed.

1 12 12 9 80

SA HC PayloadV DA

Figure 2: Packet format.

3.2 Fault Model
In this paper, faults can be categorized as faulty links

and switches which are permanent faults (wear out faults).
For deflection switch, the number of input ports should be
equal to the number of output ports. So link failures are
assumed to be bidirectional. For the focus on the routing
algorithm, we also assumed that there exists a fault diag-
nosis mechanism to detect faults. How to detect faults is
beyond the scope of this paper. In each switch, a 4-bit fault
vector is used to represent the fault status of its four links.
A switch fault is modeled by making all four links attached
on it faulty. Packets are only destined to fault-free switches.
The fault region can be any shape as long as it does not
disconnect the network.

A 2-hop fault information transmission mechanism [6] is
used to reduce the average hop counts. In the 2-hop fault
information transmission mechanism, four additional sig-
nals (fault from[d] (1 bit), fault to[d] (1 bit), FoN from[d] (3
bits), FoN to[d] (3 bits)), which are 8 bits in total for each
direction of a switch, are used to transmit fault information,
as shown in Fig. 3. Each switch is not only responsible
for transmitting its own link status to four neighbors but
also collecting the link status from its three neighbors and
transmitting to the fourth neighbor. For example, switch
A can get the status of 16 links within 2 hops, as shown in
Fig. 3. The signal FoN to[d] collected by the current switch
is a 3-bit vector to denote link status along the other three
directions except d and is transmitted to the neighbor along
d.

fa
u

lt
_

to
[N

]

fault_to[W]

fault_to[E]

fa
u

lt_
to

[S
]

fa
u

lt
_

fr
o

m
[N

]

fault_from[E]

fa
u

lt_
fro

m
[S

]

fault_from[W]

FoN_to[W]

FoN_from[W]
Switch
(i , j)

F
o
N

_
to

[N
]

F
o

N
_

fr
o

m
[N

]

FoN_to[E]

FoN_from[E]

F
o

N
_

to
[S

]

F
o

N
_

fro
m

[S
]

A

Figure 3: Fault information transmission mecha-
nism.

4. RECONFIGURABLE FAULT-TOLERANT
DEFLECTION ROUTING ALGORITHM

4.1 Basic Idea of Q-routing
Q-routing is an adaptive routing algorithm based on a

variant of the reinforcement learning—Q-learning, which ma-
kes routing decision using only local information without
having to know the network topology in advance [17]. In
Q-routing, a switch x sends a packet to a switch d through

a neighbor switch y with the lowest estimated delivery time
Qx(d, y) which is stored in a two dimensional table. After
the packet is sent to y, x receives the minimum estimated
delivery time minzQy

t−1(d, z) from y. Then the estimated
delivery time Qx(d, y) can be updated with formula (1).

Qx
t (d, y) = (1− α)Qx

t−1(d, y) + α(bx
t + min

z
Qy

t−1(d, z)) (1)

where bx
t is the time the packet spent in the buffer of switch

x and α is the learning rate which determines to what extent
the newly acquired information will override the old infor-
mation. A factor of 0 will make no learning, while a factor
of 1 would consider only the most recent information.

4.2 FTDR Algorithm
For deflection routing, we use the number of hops to des-

tination instead of the estimated delivery time to build the
routing table Qx in each switch. There are n × m entries
in the routing table, where n is the number of switches in
the network and m is the number of neighbor switches. For
2D mesh, m is 4. For a given topology, the initial routing
table is fixed. For example, Table 1 shows a routing table of
switch 5 in a 3× 3 mesh. In order to achieve fault-tolerance
in deflection routing, the formula (1) can be modified to for-
mula (2) to update the routing table. The packet does not
have to wait in a switch in deflection routing, so bx

t is zero.
In order to reduce the learning period, we set α to 1. The
switch chooses a direction with the smallest number of hops
to destination to send a packet. In the case of several direc-
tions with equal number of hops to destination, the switch
chooses one of them with the smallest stress value. When a
switch x sends a packet to d through y, y returns the min-
imum number of hops to d back to x. Then x updates the
corresponding entry with 1 hop plus the minimum number
of hops to d from y (minzQy

t−1(d, z)).

Qx
t (d, y) = 1 + min

z
Qy

t−1(d, z) (2)

Table 1: Routing table of switch 5 in a 3× 3 mesh

North East South West
Number of hops to S1 2 4 4 2
Number of hops to S2 1 3 3 3
Number of hops to S3 2 2 4 4
Number of hops to S4 3 3 3 1
Number of hops to S5 0 0 0 0
Number of hops to S6 3 1 3 3
Number of hops to S7 4 4 2 2
Number of hops to S8 3 3 1 3
Number of hops to S9 4 2 2 4

The routing table update function is shown in Fig. 4. If
there is no fault in the network, the routing table can not
be updated. If one link of the switch is broken, all table
entries corresponding to this direction are set to ∞ (step
2-4). After a learning period, the table entries will con-
verge to a fixed value which denotes the minimum number
of hops from each port to each destination. Additionally, we
use the 2-hop fault information to reduce the average hop
counts. If a switch detects that one of its neighbors y along
direction d has only one link not faulty based on the 2-hop
fault information, the table entries from d to all destinations
except y are set to ∞ (step 5-7). If a 2-hop link is faulty
(FoN from(d)(j) = 1, j ∈ {North, East, South, West}),
the table entries from d to all destinations along j are up-
dated with the previous Q-value plus 2 (step 8-11).

The pseudo code of the algorithm is shown in Fig. 5.
There are at most four packets reaching a switch at the same

RoutingTableUpdate(dest_ID, Q_value_from, FoN_from)

1: for dir {North, East, South, West}

2: if link(dir) is faulty then

3: for i = 1 to N and i Swich_ID

4: table_entry(i)(dir)

5: if Neighbor(dir) has only one link not faulty then

6: for i = 1 to N and (i Swich_ID and i Neighbor_ID(dir)) then

7: table_entry(i)(dir)

8: for j {North, East, South, West}

9: if FoN_from(dir)(j)=1 then

10: for n {all switches along j through Neighbor(dir)}

11: table_entry(n)(dir)=table_entry(n)(dir) + 2;

12: if Q_value_from(dir, dest_ID) 0 and dest_ID Swich_ID then

13: table_entry(dest_ID)(dir) Q_value_from(dir, dest_ID)

Routing table update function

Figure 4: Routing table update function.

time. The switch makes routing decision from the highest
priority packet to the lowest. The switch first calculates the
destination ID of the packet and looks up the routing table to
check if the packet has reached the destination (step 1-4). If
the packet has not reached the destination, the switch looks
up the productive direction(s) with the minimum number of
hops to destination from the routing table and then chooses
a free productive port with the smallest stress value to route
the packet (step 7-9). If there is no free productive port, the
switch chooses a free port with the smallest stress value to
route the packet which can balance the network traffic loads
(step 10,11). The switch also sends the minimum number
of hops to destination back to the neighbor switch, which
sends the packet, to update its routing table (step 6).

For each input packet (from the highest priority to the lowest priority)

1: dest_ID get_dest_ID(dx, dy)

2: Hops_to_Dest table_lookup(dest_ID)

3: if Hops_to_Dest = (0,0,0,0) then

4: Route packet to local port

5: else

6: Q_value_to(input_Dir, dest_ID) 1 + min(Hops_to_Dest) //send Q-value

7: {dproductive} get_prefer_Dir(Hops_to_Dest)

8: if there are free ports in {dproductive} then

9: Choose a free productive port with the smallest stress value to route the packet

10: else //all productive ports are not free

11: Choose a free port with the smallest stress value to route the packet

FTDR Algorithm

Figure 5: FTDR algorithm.

4.3 FTDR-H Algorithm
The routing table is the main overhead of FTDR algo-

rithm. In order to reduce the table size, we also propose
a hierarchical Q-learning based deflection routing algorithm
(FTDR-H). The n×n mesh can be divided into several sub-
regions with equal size. Each switch contains a local and a
region routing table. When a packet reaches a switch, the
switch first checks whether the destination is in the same re-
gion as the current switch or not. If it is, the switch makes
routing decision based on the local routing table. If the des-
tination is not in the same region, the switch makes routing
decision based on the region routing table. The local and
region routing tables are also updated by formula (2). How-
ever, it is assumed that each region is not disconnected by
faults for FTDR-H algorithm. Here, an 8×8 mesh, which is
divided into four 4× 4 regions, is used as an example. Each
switch contains a local routing table of 16× 4 entries and a
region routing table of 4× 4 entries. So the total size of the
routing table is reduced from 64× 4 to 20× 4 entries.

4.4 Deadlock and Livelock Avoidance

Deflection routing is inherently deadlock free since pack-
ets never have to wait in a switch. However, it must avoid
livelock by limiting misrouting. FTDR algorithm makes
routing decision based on the packet priority and routing
table. First, the algorithm always gives the highest priority
to the oldest packet. Given a network size and different fault
patterns, the length of the hop count field must be enough
to guarantee the priority can not saturate. Second, it can
be proved that the routing table entry will converge to the
minimum hops to each destination from the following proof.
Packet priority and converged routing table, which limit the
number of misrouting, guarantee a packet can eventually ad-
vance towards its destination to achieve freedom from live-
lock.

Theorem: In FTDR algorithm, the routing table entry
will converge to the minimum number of hops to destination
in the presence of fault regions which do not disconnect the
network.

Proof: Without loss of generality, assume x sends packets
to d through y. The initial Q-value Qx

0(d, y) is the minimum
number of hops from x to d through y.

In the case of no faults, according to the equation (2),
the term minzQy

t−1(d, z) equals to the minimum number of
hops to d from y, so 1 + minzQy

t−1(d, z) still equals to the
minimum number of hops from x to d through y (Qx

0(d, y)).
So the routing table entry will not be updated.

If there are faulty links on the shortest path from y to d,
the routing table entry of the switches with faulty links will
be updated immediately. It will take some time to propagate
the updated routing table entry to reconfigure the routing
table entry Qy

t−1(d, z) of y. After that, minzQy
t−1(d, z) is

still the minimum number of hops to d from y. The cor-
responding table entry Qx(d, y) of x will be reconfigured to
minimum number of hops to d after Qy

t−1(d, z) converges.
In summary, after a learning period, the routing table

entry will converge finally. 2

4.5 Hardware Implementation
The structure of FTDR switch is shown in Fig. 6. Each

switch contains an n × 4 routing table. Each entry of the
routing table contains 6 bits, so the size of the whole ta-
ble is n × 24 bits. An entry of all ’1’ denotes ∞. The
stress value, fault information and Q-value are transmitted
between two switches. Routing controller makes routing de-
cision based on the above three kinds of information. For
FTDR-H switch, the routing table includes local and region
routing tables.

To make a comparison, we also implement the FoN [6] and
cost-based deflection switches [5]. All switches are synthe-
sized using TSMC 65nm standard-cell library by Synopsys
Design Compiler. All switches are implemented in an 8 × 8
mesh and optimized for speed. The results of the perfor-
mance, area and power consumption for the four switches
are shown in Table 2. The FoN switch can achieve highest
frequency and smallest area and power consumption because
it is not table-based. But it can only handle regular fault
regions. Although the cost-based switch does not use rout-
ing table, it has high hardware overhead because it has to
find the best permutation among all permutations of input
and output ports based on a cost function. Compared to
the original FTDR, FTDR-H can reduce area up to 27%.

5. EXPERIMENTAL STUDIES
In this section, FTDR and FTDR-H algorithms are com-

pared with the FoN and cost-based deflection routing algo-
rithms and a turn model based resilient routing algorithm
[7] in terms of throughput and hop count applying both syn-
thetic and application workloads on an 8× 8 2D mesh.

Table 2: Comparison of four deflection switches

Frequency Area Power per MHz
(MHz) (µm2) (mW/MHz)

FoN 500 39076 0.01
Cost-based 166 82277 0.042
FTDR 400 101754 0.028
FTDR-H 400 74323 0.022

In
p

u
t

R
E

G

In
p

u
t

R
E

G

In
p

u
t

R
E

G

O
u

tp
u

t

R
E

G

O
u

tp
u

t

R
E

G

O
u

tp
u

t

R
E

G

O
u

tp
u

t

R
E

G

N E S W

n

1 2 4 4 2

6 4 4 6

Routing

Table

Routing

Controller

In
p

u
t

R
E

G

L_outL_in

N_out

E_out

W_out

S_out

N_in

E_in

W_in

S_in

FoN_from/to[N,E,S,W]

Q_value_from[N,E,S,W]

Stress_value_from[N,E,S,W] Stress_value_to[N,E,S,W]

fault_from/to[N,E,S,W] Q_value_to[N,E,S,W]

Figure 6: FTDR switch structure.

5.1 Simulation Platform
The switch is developed in VHDL and performed a cycle-

accurate RTL-level simulation. For synthetic workload, a
packet generator is attached to each switch and there is a
FIFO in it to buffer the packets which can not be injected
into the network because of no free output port. Six com-
mon synthetic traffic patterns (uniform random, transpose,
bit complement, bit reverse, shuffle and tornado) are used.
For application workload, we use a Distributed Shared Mem-
ory (DSM) based multi-core NoC architecture, in which a
LEON3 processor and a local memory are attached to each
switch through a Dual Microcoded Controller [16]. The fault
pattern is randomly generated before the simulation.

5.2 Results with Synthetic Workload
First, we will show the advantage of the FTDR algorithm

with 2-hop fault information against 1-hop information. Fig.
7 plots the average hop count vs. simulation time under uni-
form random traffic with a fault pattern of 10% link faults
and the packet injection rate of 0.1 packets/cycle/node. It
can be seen that at the beginning of the simulation the aver-
age hop count increases quickly. After an initial learning pe-
riod which is about 350 cycles in this figure, the average hop
count will slightly decrease and remain stable. The length
of the learning period depends on the fault pattern. Using
2-hop fault information, some unnecessary misroutings can
be avoided, so the average hop count is smaller than using
only 1-hop fault information.

0

5

10

15

20

25

30

20 100 180 260 340 420 500 580 660 740 820 900 980

A
v
e
ra

g
e
 h

o
p

 c
o

u
n
t

Simulation time (cycles)

1-hop fault_info 2-hop fault_info

Figure 7: Comparison of the FTDR algorithm with
1-hop and 2-hop fault information.

Fig. 8 (a)-(f) show the throughput of the network with
link faults from 0 to 30% achieved by four routing algo-
rithms under six synthetic traffic patterns respectively. In
the case of no faults, the throughput of the cost-based switch
is slightly higher than other switches, because it can al-
ways find the best permutation for each packet in a con-
gested network instead of unnecessary deflections. In the
presence of link faults, the cost-based switch achieves the
lowest throughput among the four switches, while FTDR
and FTDR-H achieve almost the same throughput. The
throughput of FTDR is 14% and 23% higher on average than
FoN and cost-based deflection switch respectively. Based
on the throughput data of the turn model based resilient
routing algorithm in [7], we also compare it with FTDR
and FTDR-H algorithms. For 8 × 8 2D mesh with 10%,
20% and 30% faulty links, the throughput of the turn model
based resilient routing algorithm is 0.1, 0.08 and 0.06 pack-
ets/cycle/node under uniform traffic pattern respectively,
while FTDR and FTDR-H can achieve 0.16, 0.13 and 0.1
packets/cycle/node respectively.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(o

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(f) Tornado

0

0.1

0.2

0.3

0.4

0.5

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(d) Bit reverse

0

0.1

0.2

0.3

0.4

0.5

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(e) Shuffle

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(c) Bit complement

0

0.1

0.2

0.3

0.4

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(a) Uniform random

FoN Cost FTDR FTDR-H

0

0.1

0.2

0.3

0.4

0.5

0 10% 20% 30%

T
h

ro
u

g
h

p
u

t
(p

a
c
k
e
ts

/c
y
c
le

/n
o

d
e
)

Fault rate
(b) Transpose

FoN Cost FTDR FTDR-H

Figure 8: Throughput with various link fault rates
under synthetic workloads.

Fig. 9 (a)-(f) present the average hop count of the four
routing algorithms with various link faults under six syn-
thetic traffic patterns respectively. The packet injection rate
is 0.1 packets/cycle/node. FTDR-H can achieve 2.5x, 1.7x,
1.2x, 2x, 2.8x and 1.3x less hop counts on average than the
cost-based algorithm for each traffic pattern respectively.
The cost-based algorithm makes routing decision only based
on local fault status, so even in some simple fault patterns
the hop count field of the packet can easily overflow. FTDR
and FTDR-H perform better than FoN because after a learn-
ing period the routing table will converge. For uniform ran-
dom, bit reverse and shuffle traffic patterns, the average hop
count of FTDR-H is 18%, 10%, 15% less than FTDR respec-
tively. For the rest of patterns, FTDR-H performs similar
as FTDR.

5.3 Results with Application Workload

0

10

20

30

40

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Fault rate
(e) Shuffle

0

10

20

30

40

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Fault rate
(a) Uniform random

FoN Cost FTDR FTDR-H

0

10

20

30

40

50

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Fault rate
(b) Transpose

FoN Cost FTDR FTDR-H

0

10

20

30

40

50

60

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Fault rate
(c) Bit complement

0

10

20

30

40

50

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
n

t

Fault rate
(d) Bit reverse

0

10

20

30

40

50

0 10% 20% 30%

A
v
e
ra

g
e
 h

o
p

 c
o

u
m

t

Fault rate
(f) Tornado

Figure 9: Average hop count with various link fault
rates under synthetic workloads.

For application workloads, three applications, matrix mul-
tiplication, 1D radix-2 1024-point parallel DIF FFT and
wavefront computation, are mapped manually on LEON3
processors. The matrix multiplication calculates the prod-
uct of two matrices, A(128× 1) and B(1× 128), resulting in
a C(128×128). Three matrices are distributed stored in the
shared memory. The data of FFT are equally partitioned
into 128 groups of 8 complex numbers each and stored in
the local shared memory of 64 nodes respectively. In wave-
front computations, given a 64× 64 matrix, the left and top
edges of which are all ’1’, the computation of each remaining
element depends on its left, above and above-left neighbors.

Due to the fact that the cost-based deflection routing can
not guarantee livelock-free under some fault patterns, we
compare the FoN, FTDR and FTDR-H algorithms in the
application platform. Fig. 10 (a)-(c) reveal the average hop
count of the three algorithms with an increasing link fault
rate from 0 to 30% for the three application workloads. As
it can be observed, FTDR and FTDR-H algorithms perform
better than FoN especially under high fault rate. The aver-
age hop count of FTDR-H is 25%, 18% and 18% less than
FoN for the three application workloads respectively. For
matrix multiplication and wavefront computation, FTDR-H
performs slightly better than FTDR. For FFT, the average
hop count of FTDR-H is 10% less than FTDR in the pres-
ence of link faults. This is because the local routing table of
FTDR-H will converge more quickly than FTDR.

5.4 Area Cost Evaluation
Fig. 11 compares the switch area in different network sizes

for different switches (non fault-tolerant, FoN, cost-based,
FTDR and FTDR-H). All synthesized results are optimized
for area. For FTDR-H algorithm, the 8 × 8, 12 × 12 and
16×16 meshes are divided into 4, 9 and 16 4×4 sub-meshes
respectively. The areas of FoN and cost-based switches do
not increase with the network size. As the network size
increases, the area of FTDR switch increases significantly.
FTDR requires 2 to 8 times the area of other switches as

4

6

8

10

12

14

0 10% 20% 30%

A
v
e
ra

g
e

h
o

p
c
o

u
n
t

Fault rate
(a) Matrix multiplication

FoN FTDR FTDR-H

1.5

2

2.5

3

3.5

4

4.5

0 10% 20% 30%

A
v
e
ra

g
e

h
o

p
c
o

u
n
t

Fault rate
(c) Wavefront

FoN FTDR FTDR-H

3

4

5

6

7

8

9

0 10% 20% 30%

A
v
e
ra

g
e

h
o

p
c
o

u
n
t

Fault rate
(b) FFT

FoN FTDR FTDR-H

Figure 10: Average hop count with various link fault rates under application workloads.

the network size increases from 4 × 4 to 16 × 16. The area
of the routing table is the main overhead of FTDR switch.
For an n × n mesh, assume each routing table entry has
d bits, so the routing table has a cost of n2 × d bits. In
FTDR-H algorithm, an n × n mesh is divided into n2/m2

m ×m sub-meshes, so the routing table cost can reduce to
(m2 +n2/m2)× d bits. (m2 +n2/m2) has a minimum value
2n (when m =

√
n). The routing table cost of FTDR-H can

reduce up to n/2 times less than FTDR in theory.

�

�����

������

������

������

������

������

��� ��� ����� �	��	

�
��
�
��
�
�
	

�����������

���� ��
 ���� ���� �����

Figure 11: Switch area in different network sizes.

6. CONCLUSION AND FUTURE WORK
In this paper, we propose a fault-tolerant deflection rout-

ing algorithm which uses a Q-learning method to reconfigure
the routing table to avoid faults. It is a topology-agnostic
routing algorithm which is insensitive to the shape of fault
regions. An optimized routing algorithm based on hier-
archical Q-learning is also proposed to reduce the routing
table size. We compare the proposed FTDR and FTDR-
H switches with other fault-tolerant deflection switches for
both simulation and synthesize results. Although FoN switch
has smaller hardware overhead, it can only handle limited
fault patterns with the regular shape, which is not practi-
cal. Because of the large area overhead of the routing ta-
ble, FTDR switch is suitable for small and medium network
sizes. Compare to FTDR switch, FTDR-H switch can save
the area up to 27%. Simulation results show that in the
presence of link faults, FTDR and FTDR-H switches out-
perform the other two fault-tolerant deflection switches and
a turn model based fault-tolerant switch.

In future work, we will explore fault detection mechanism
and extend the fault-tolerant routing algorithm for irregular
NoC.

7. ACKNOWLEDGMENTS
The research is partially supported by the National 863

Program of China(No. 2009AA01Z102), and the National
Natural Science Foundation of China (No. 60873212 and
No. 60873016).

8. REFERENCES
[1] C. Constantinescu, “Trends and challenges in VLSI circuit

reliability,” IEEE Micro, 23(4):14–19, July-August 2003.
[2] Z. Lu, M. Zhong and A. Jantsch, “Evaluation of on-chip

networks using deflection routing,” In Proceedings of ACM
Great Lakes Symposium on VLSI, pages 296–301, May 2006.

[3] T. Moscibroda and O. Mutlu, “A case for bufferless routing in
on-chip networks,” In Proceedings of International Symposium
on Computer Architecture, pages 196–207, June 2009.

[4] M. Hayenga, N.E. Jerger and M. Lipasti, “SCARAB: a single
cycle adaptive routing and bufferless network,” In Proceedings
of International Symposium on Microarchitecture, pages
244–254, June 2009.

[5] A. Kohler and M. Radetzki, “Fault-tolerant architecture and
deflection routing for degradable NoC switches,” In Proceedings
of IEEE International Symposium on Networks-on-Chip,
pages 22–31, May 2009.

[6] C. Feng, Z. Lu, A. Jantsch, J. Li and M. Zhang, “FoN:
Fault-on-Neighbor aware routing algorithm for
Networks-on-Chip,” In Proceedings of the 23rd IEEE
International SoC Conference, pages 441-446, September 2010.

[7] D. Fick, A. Deorio, G. Chen, V. Bertacco, D. Sylvester and D.
Blaauw, “A highly resilient routing algorithm for fault-tolerant
NoCs,” In Proceedings of Design, Automation and Test in
Europe Conference and Exhibition, pages 21–26, April 2009.

[8] J. Wu, “Fault-tolerant adaptive and minimal routing in
mesh-connected multicomputers using extended safety levels,”
IEEE Transactions on Parallel and Distributed Systems,
11(2):149–159, February 2000.

[9] Y.J. Suh, B.V. Dao, J. Duato and S. Yalamanchili,
“Software-based rerouting for fault-tolerant pipelined
communication,” IEEE Transactions on Parallel and
Distributed Systems, 11(3):193–211, March 2000.

[10] Z. Zhang, A. Greiner and S. Taktak, “A reconfigurable routing
algorithm for a fault-tolerant 2D-mesh Network-on-Chip,” In
Proceedings of ACM/IEEE Design Automation Conference,
pages 441–446, June 2008.

[11] R. Holsmark, M. Palesi and S. Kumar, “Deadlock free routing
algorithms for irregular mesh topology NoC systems with
rectangular regions,” Journal of Systems Architecture,
54(3):427–440, March 2007.

[12] V. Puente, J.A. Gregorio, F. Vallejo and R. Beivide, “Immunet:
dependable routing for interconnection networks with arbitrary
topology,” IEEE Transactions on Computers,
57(12):1676–1689, December 2009.

[13] A. Mejia, M. Palesi, J. Flich, S. Kumar, P. Lopez, R. Holsmark
and J. Duato, “Region-based routing: a mechanism to support
efficient routing algorithms in NoCs,” IEEE Transactions on
VLSI Systems, 17(3):356–369, May 2009.

[14] M. Majer, C. Bobda, A. Ahmadinia and J. Teich, “Packet
routing in dynamically changing networks on chip,” In
Proceedings of IEEE International Parallel and Distributed
Processing Symposium, pages 154b, April 2005.

[15] E. Nilsson, M. Millberg, J. Oberg and A. Jantsch, “Load
distribution with the proximity congestion awareness in a
network on chip,” In Proceedings of Design, Automation and
Test in Europe Conference and Exhibition, pages 1126–1127,
March 2003.

[16] X. Chen, Z. Lu, A. Jantsch and S. Chen, “Supporting
distributed shared memory on multi-core network-on-chips using
a dual microcoded controller,” In Proceedings of Design,
Automation and Test in Europe Conference and Exhibition,
pages 39–44, March 2010.

[17] J.A. Boyan and M.L. Littman, “Packet routing in dynamically
changing networks: a reinforcement learning approach,”
Advances in Neural Information Processing Systems, Vol. 6,
pages 671–678, 1994.

