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Abstract—Climate change mitigation poses a great challenge
for our society. The need to reduce greenhouse gas emissions
facilitates the expansion of renewable energy sources and elec-
tromobility. This transition is an already ongoing process, and
with the worldwide increasing energy consumption, we face the
need for automatic control and monitoring of the future electrical
grid. To ensure a calculable and stable Low Voltage grid we need
reliable load forecasting in order to avoid critical overloads and
potential financial losses. This paper presents a novel concept for
forecasting critical overloads based on an LSTM recurrent neural
network. Our algorithm was tested using a one-year simulation
of a rural Low Voltage grid section containing a grid-friendly
energy community. Our results show the successful detection of
29 overloads within 12 simulated weeks. We reach a recall of
100% and a precision of 85%. Furthermore, we proved the ability
of our LSTM to forecast two weeks with an MAE of 12.41 kW
for the month of July. When optimizing the weather forecast
data, we can lower this to 6.89 kW.

Index Terms—Smart Grids, Load Forecasting, Energy Com-
munity, Simulation, Deep Learning

I. INTRODUCTION

The effects of climate change are becoming more and more
visible [1]. Reducing greenhouse gases requires strong efforts
in changing our current lifestyle. The electrical grid, especially
energy generation and the amount and way of consumption,
will play a crucial role in climate change mitigation [2].
Tackling energy generation, renewable energy sources are one
of the most affordable concepts for reducing the usage of fossil
fuels and therefore restrict the CO2 emissions [3]. However,
renewable energy sources are characterized by their volatility
and challenging predictability due to their dependence on
external environmental factors. Besides these ongoing changes
regarding energy generation sources, global energy consump-
tion increases [4]. This is partly related to the electrification of
mobility that serves the goal of CO2 emission reduction [5].

The increasing variety in both energy generation and con-
sumption poses great challenges for future electrical grids.
Enhancing the resilience of Smart Grids, which essentially de-
termines the amount of renewable energy that can be supplied
to or sourced from the grid, is a crucial challenge [6]. The
existing infrastructure will frequently be utilized to its max-
imum capacity. To avoid cost-intensive grid expansions, we
experience a transition from passive grids to intelligent cyber-
physical systems with different actuators in them (”Smart

Grids”). The implementation of concepts like an Energy Com-
munity (EC) will optimize the usage of locally produced en-
ergy by controlling active components (e.g., electric vehicles,
heating, ventilation, and air conditioning systems) and battery
storages to increase local self-consumption [7]. Additionally,
the operation of these new assets is influenced by factors
such as irradiance, azimuth, and altitude of the sun [8], [9].
As different stakeholders such as ECs or Distribution System
Operators (DSOs) may have conflicting goals (energy costs
vs. grid stability), grid behavior becomes more incalculable
and unstable. In combination with the closer operation to
its borders, this raises the need for reliable monitoring and
forecasting systems. A special focus has to be set on avoiding
overloads in local grid sections, particularly Low Voltage (LV)
grids. Knowing the future behavior and potential overloads
allows for proactive interventions to avoid blackouts or cut-
offs with financial losses.

Machine Learning (ML) approaches for time series forecast-
ing are commonly used and subject to various applications in
the literature (see Section II). Time series analysis for electric-
ity systems can enable low-carbon electricity and reduce the
climate impact of current systems [2]. Therefore, we propose a
ML based forecasting approach to predict the load of LV grid
sections with a focus on the prediction of overload situations.
The main contributions of our work are:

• A medium-term forecasting algorithm for predicting crit-
ical grid load events based and evaluated on a simulated
heterogeneous Smart Grid scenario.

• We provide a heterogenous Smart Grid benchmark
dataset1 for one year consisting of a rural LV grid section
containing an optimized EC.

II. RELATED WORK

A. Smart Grid Simulation

Smart Grid simulations serve as vital tools for compre-
hending and managing the complex dynamics of power grids.
Several simulation platforms have been proposed, each offer-
ing different capabilities. CityLearn provides a Reinforcement
Learning (RL) environment designed to model a microgrid

1Code and data accessible at: https://github.com/mbitob/forecasting-overl
oads-based-on-simulated-smartgrid-data

https://github.com/mbitob/forecasting-overloads-based-on-simulated-smartgrid-data
https://github.com/mbitob/forecasting-overloads-based-on-simulated-smartgrid-data


of nine buildings, incorporating various elements such as
batteries, electric vehicles, water heaters, and photovoltaic pan-
els [10]. Another framework, OPF-Learn, targets AC optimal
power flow, providing tools for both Julia and Python [11]. It
operates by uniformly sampling load profiles from a convex
set that envelops the AC Optimal Power Flow (OPF) feasi-
ble set. PowerGridWorld, an open-source software package,
creates multi-agent Gym environments for Smart Grid simu-
lations [12]. It allows multiple actors to influence the grid si-
multaneously, a feature that becomes crucial as the complexity
of the grid grows, and centralized control approaches become
infeasible. Another contribution is BeoBench, a Python toolkit
that offers unified access to existing building simulations
from multiple frameworks [13]. This toolkit comprises several
distinct building models in frameworks such as BOPTEST
with three residential and commercial buildings [14], Energym
with six residential, commercial, and office buildings [15], RL
Testbed with one data center building [16], and Sinergym
with three buildings including a data center, a residential
building, and an office [17]. While these platforms offer a
wide range of simulation capabilities, they are not applicable
to fully represent interactions of new stakeholders (e.g., ECs,
DSOs) within a rural LV grid, underscoring the need for more
comprehensive and adaptable simulation environments.

B. Smart Grid Datasets

Datasets play a critical role in advancing research, especially
in the field of Smart Grids. However, obtaining access to
real-world data for critical infrastructures can be challeng-
ing, particularly for security research purposes. The work of
Ahmed et al. addresses this issue by collecting and sharing a
comprehensive dataset from a real-world Smart Grid testbed,
thus making a significant contribution to the research commu-
nity [18]. Another notable approach comes from Arzamasov
et al., who propose Decentral Smart Grid Control (DSGC)
as a system to implement demand response without requiring
significant changes to the infrastructure [19]. Through data-
mining techniques, the authors aim to remove simplifications
common in DSGC models, such as the assumption of identical
behavior among all grid participants. Using many simulations
with diverse input values and applying decision trees to the
resulting data, they gain new insights into the system, discov-
ering, for instance, that the system can remain stable even if
some participants adapt their energy consumption with a high
delay. Despite the valuable insights these datasets provide,
there is a need for more diversified and representative datasets
to reflect the heterogeneity and dynamic behavior inherent to
new stakeholders within rural LV grids.

C. Load Forecasting and Event Detection in Smart Grids

Predicting load patterns and detecting events in Smart Grids
are essential to ensure the grid’s stability and efficiency.
Load forecasting approaches can be categorized based on the
forecasting horizon, including Short-Term Load Forecasting
(STLF), Medium-Term Load Forecasting (MTLF), and Long-
Term Load Forecasting (LTLF) [20]. Existing techniques for

forecasting and event detection include advanced machine
learning models such as Long Short-Term Memory (LSTM)
and Generative Adversarial Networks (GANs) [21]–[23], as
well as hybrid algorithms explicitly designed for event de-
tection, localization, and classification in power systems [24].
However, existing work lacks the capability to forecast safety
critical loads based on future-proof heterogeneous Smart Grid
simulation scenarios.

III. METHODOLOGY

A. Heterogeneous Smart Grid Simulation

We introduce a Smart Grid simulation environment of a
local Renewable Energy Community (REC) based on the work
from [25]. This existing environment will serve as a virtual
testbed for data generation for this work, as it includes various
actors, resulting in a reliable and future-proof setup.
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Fig. 1: Topology of the simulated rural LV grid with its four
feeders and 13 buildings. 7 of them are part of the REC (grey)
and 6 not (white).

The simulation use case represents a typical rural LV grid
in which a REC performs grid-friendly operations character-
ized by minimizing electricity costs for all participants while
complying with DSO constraints. All design parameters were
taken from the SimBench dataset ”LV-rural1” [26] for a future
scenario of the year 2034 with the extensive deployment of
Photovoltaic (PV) systems and batteries. This includes the
topology, dimensioning of the transformer, PV systems, house-
hold batteries, and Electric Vehicle (EV) charging stations as
well as the electric household load profiles. Table I gives an
overview of the different assets and the selected 50% REC par-
ticipants and Fig. 1 sketches the grid topology. The simulated
LV grid section is connected to the medium voltage grid by
one transformer (distribution substation). The substation, with
a capacity of 250 kVA, is designed to be operated at 80% of its
rated power, hence 200 kW. Transformer overloads are power
dips above (for demand) or below (for feed-in) this threshold.

The framework for our Smart Grid simulation, as shown in
Fig. 2, is composed of three software components communi-
cating via application programming interfaces (REST APIs).

The ”BIFROST Virtual Testbed” models the behavior of the
LV grid section. BIFROST is a co-simulation framework that
consists of a discrete core simulation engine and a 3D web UI
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Fig. 2: Simulation framework overview

for the use case creation [27]. The core provides an editable
data model for external simulation models, which have to
register at the core using a REST API. In every discrete sim-
ulation step, BIFROST calls the connected modules and they
can respond with new simulation data (e.g., new household
load or new outdoor temperature). All values are stored in an
influx database and can be visualized using the BIFROST UI.
Fig. 3 shows a screenshot of the simulated rural grid section.
In the given simulation environment, BIFROST uses a load-
flow solver, a weather generation module as well as a model
for all buildings, including PV systems, household batteries,
and EV charging stations. The building model includes the
logic for both REC participants and households that are not
part of the REC, which are referred to as non-participants.
While the existing profiles for all passive assets (i.e. household
base loads) are directly used from the SimBench data set,
all active assets (i.e. PV systems, batteries, and EV charging
slots) are modeled by BIFROST and only the dimensioning
parameters, e.g., the installed PV power and size of batteries,
are taken from SimBench. The PV generation is derived based
on weather data from Vienna in 2021 [28]. Weather Forecast
data is based on corresponding historic data from [29]. The
behavior of the batteries and EV charging slots is simulated
using state of the art physical models.

The Energy Community Operator (ECO) optimizes the
flexibility deployment of REC participants’ controllable as-
sets to optimize the collective REC operation [30]. In every
simulation step, the building model forwards all current mea-
surements to the ECO. The ECO uses measurement data of the
last week and day-ahead weather forecasts to perform a cost-
optimization of the REC. A linear optimization is addressed,
wherein decision variables include the power for charging and

TABLE I: Composition of the simulated rural LV settlement
and the REC members.

complete LV grid section
13 participants 3 households, 10 farms
13 PV systems 520 kWp
5 battery storages 421 kWh
5 EV charging stations 2× 3.7 kW, 2× 11 kW, 1× 22 kW
REC participants
7 participants 2 households, 5 farms
7 PV systems 285 kWp
3 battery storages 245 kWh
4 EV charging stations 1× 3.7 kW, 2× 11 kW, 1× 22 kW

Fig. 3: Low-Voltage (LV) grid section in the BIFROST UI
with different agricultural and residential buildings.

discharging of batteries, curtailment of PV systems, and the
charging power allocation of EV charging stations. Resulting
variable values, referred to as setpoints, are sent back to
the building model, which implements them and changes the
operation of the assets accordingly. As the ECO focuses on
optimal utilization of renewable generated energy within the
REC to minimize its costs, this can cause a response that
might lead to overloads for both infeed and demand at the
local distribution substation.

Therefore, the ECO communicates its scheduled behavior
to the DSO. The DSO then calculates time-dynamic active
power demand and feed-in limits, called ”operating envelope”
(OE), which is communicated to the ECO. The OE represents
a virtual boundary for the REC’s total residual load, which
is then used as a constraint in the optimization problem.
The calculation of the OE is based on the substation trans-
former’s rated power capacity and a naive forecast for the
non-participants’ load.

While the overall goal of this setup is the avoidance of
transformer overloads, this can not always be guaranteed. The
monitored limit violations can be caused by:

• Physical limitations: Batteries can not always be charged
or discharged as required, e.g., due to state of charge or
power limitations.

• Deviating weather forecast data: The ECO uses weather
forecast data for its operation scheduling. The forecast
data is prone to differ from the real weather measure-
ments due to forecast uncertainties.

• Deviating human behavior forecast: Both the ECO and
the DSO forecast load related to human behavior, e.g., for
calculation of the OE, which is subject to uncertainties.
Hence, household load or utilization of EV charging
stations might differ.

We, therefore, propose a monitoring concept, which is
independent of the Smart Grid actors such as ECO and DSO
in the simulation setup. The concept enables the prediction of
critical loads, specifically the residual load at the distribution
substation, by forecasting daily load profiles.



B. Grid Load Forecasting

Recurrent Neural Networks (RNNs) are widely used for
load forecasting in electrical Smart Grids [31]. The crucial part
for successful training is the proper definition of the lookback
window L, which specifies the amount of information allowed
to be seen by the network before predicting a new value. The
nature of the different features used for training also has a
huge impact on the forecasting performance (Section IV-C).
Once a proper lookback window L and useful features such
as weather, sun position, and temperature are fixed and the
network is trained, one is able to perform forecasting.

Short-term forecasting for a single time point can be
achieved solely on historical data. If it is desired to forecast
for a longer period, such as a whole day, it is achieved in an
autoregressive fashion. Besides the autoregressive forecasting
of the active power, one also needs additional features for the
to-be-predicted time points. This future feature information
can either be generated through mathematical models, e.g.,
an astronomical model for the sun’s position, adding the
missing features as an additional forecasting feature, or using
weather forecast data such as solar radiation. Fig. 4 provides
a structural overview for the autoregressive medium-term load
forecasting used in our approach.

Fig. 4: Reccurrent autoregressive Load-Forecasting. Firstly, the
RNN and its hidden cell states are initialized with original
historical feature values with a lookback sequence length of
L. Then p̂ is forecasted in an autoregressive fashion until we
reach the end of the forecasting window t = T .

IV. EXPERIMENTAL RESULTS

We evaluate our proposed methodology by simulating a
settlement consisting of an EC with an equal amount of
participants and non-participants. This simulated heteroge-
neous data (Section IV-A) is used to train a LSTM for load
forecasting (Section IV-B). We show the mid-term forecasting
performance (Section IV-C) and the accuracy for detecting
safety-critical load events (Section IV-D) on a monthly basis.

A. Heterogeneous Dataset

Based on the setup described in Section III-A we introduce
a high-resolution dataset to explore the dynamic interactions

within an EC. The dataset is derived from a simulation
covering a one-year period that captures the complexity of
system dynamics, including load demand variations, solar
power production, and the effects of environmental factors.
The main features used from the simulation are:

• Time t: Simulation time with a resolution of 15 minutes.
• Active Power p: Active Power at the transformer in kW.
• Sun Altitude θ: The angle relative to the horizon.
• Sun Azimuth ϕ: The compass direction of the sun.
• Actual Solar Irradiance ζ: Measured in W/m2.
• Forecasted Solar Irradiance ζ̂

Active power and irradiance readings provide insight into
the grid’s energy consumption and generation patterns. Si-
multaneously, solar altitude and azimuth data are crucial for
determining the efficiency of solar power generation and serve
as positional encoding for the machine learning models.

Fig. 5 provides a detailed view of two exemplary days from
the simulated dataset and displays the dataset of the full year,
delineating the division into training, validation, and test sets.
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Fig. 5: Top: Two selected days showing power demand and
generation variations on January 15th and June 15th.
Bottom: Entire dataset demonstrating the division into training,
validation, and test sets. Smoothing is achieved with a rolling
mean over four weeks. Negative values represent infeed.

The first subplot on the top left illustrates a day in winter,
specifically chosen from January, showing relatively low solar
power generation and therefore no overload. The second
subplot on the top right illustrates a day in summer, chosen
from June, where the active power dips below −200 kW due
to excess power production. The bottom subplot shows the
smoothed active power over a year as well as the overloads.
It clearly shows that there is a seasonal trend that is mirrored
around June. The data for the first six months is used for
training (dark red). To keep seasonal effects in validation
(blue), and testing (orange) we divide the rest into 15 days
sections.

B. Neural-Architecture and Training

RNNs and especially LSTMs are well suited to handle
and process sequential data. Their internal long short-term



memory cell and the recurrent structure are known to be
effective, for time series forecasting applications [32]. The
Neural Network (NN) architecture used for our experiments
consists of four LSTM cells with a hidden size of 50, followed
by a single fully connected layer that maps the 50 hidden states
of the last layer to a scalar prediction output. All experiments
are implemented with PyTorch We train the network for
100 epochs and use the standard Adam optimizer [33] with
β1 = 0.9, β2 = 0.999, ϵ = 10−8. Cosine annealing with warm
restarts [34], an initial learning rate of 10−3 and a period of
T0 = 10 is used as a learning rate scheduler. Additionally, we
use a batch size of 64 and Mean Squared Error (MSE) as a
loss function. We train on a single Tesla V100S-PCIE-32GB.
The best network is stored based on the checkpoint with the
lowest validation loss.

The effects and influences of using and combining different
input features for forecasting the active power p are analyzed
with three experiments (Table II). The scenario of using the
historic active power, sun position, and the original irradiance
during training results in the lowest validation loss. All exper-
iments, including the forecasting accuracy on the test set, are
discussed in more depth in Section IV-C.

TABLE II: Input features, experiment names, minimum vali-
dation loss during training, Multiply–Accumulates (MACs) for
predicting a single time step, and the number of parameters
of the model when training with different input features.

NN input
features

experiment
name

validation
loss

MACs params

x = [p] no metadata 17.68×10−4 146.85k 71.85k
x = [p, θ, ϕ] sun position 16.55×10−4 147.65k 72.25k
x = [p, θ, ϕ, ζ] sun position +

orig. irradiance
6.71×10−4 148.05k 72.45k

During training, we consider the proposed train and vali-
dation splits (Section IV-A) for updating and evaluating the
network. Sequence datasets are generated for the training and
validation splits. One sequence feature and label pair,

Xi = [pi:i+L,θi+1:i+L+1,ϕi:i+L+1, ζi+1:i+L+1], (1)
yi = pi+L+1, (2)

consists of the features Xi ∈ R4×L, and label yi ∈ R1.
Each element i in the test and validation sequence dataset is
corresponding to a sliding window generated with a stride of
one and a lookback window of L = 100. With a 15-minute
resolution, this corresponds to a lookback window of 25 hours.

C. Grid Load Forecasting

To show the importance of the different input features, we
compare the resulting grid load forecasts based on the test set
for the individual months for each of the three trained models
and scenarios (Table II). We generate forecasts for a whole day,
by initializing the LSTM and its hidden states with the original
measurements of a whole previous day. Then we forecast the
power consumption p̂ ∈ R1×96 for the whole future day in
an autoregressive fashion (details Fig. 4). The test set for each

month consists of 15 days. Since the previous day is always
exploited for initialization we are able to generate forecasts for
14 days, which results in P̂month ∈ R14×96 for each month
and scenario.

Fig. 6 visualizes the results including their daily mean power
profiles and standard deviation p±σp for the different months
and different input features. In the following, we explain the
results of each experiment in more depth.

Test Set: The true distribution for the daily power profiles of
the test set for each month is visualized in green (Fig. 6). The
mean is highlighted with a solid line. The standard deviation
is indicated by the area plot.

No Meta Data: The first experiment of forecasting the active
power just by considering the historic power as an input feature
x = [p̂] is visualized in red (Fig. 6). We observe that the
network is not able to forecast the real amplitude and does not
resolve the seasonal effects. Additionally, we face the issue of
a phase shift due to the lack of a positional encoding.

Sun Position: The sun’s position is based on an astro-
nomical model and can be calculated at any time and at
any geological position. Including the sun’s position to the
feature vector x = [p̂, θ, ϕ] enables the capability to encode
positional information on a local (daily) scale due to the
azimuth ϕ and the sinusoidal amplitude of the altitude θ.
The seasonal effects are encoded due to the offset shift of
the altitude. This hypothesis is confirmed, by investigating the
graphs in blue (Fig. 6). It is clearly visible, that we avoid the
phase shift, that the expected daily mean profiles are similar to
the test set ones, and that the seasonal descending amplitude
from July to December is covered. The only drawback left is
the low variance due to the missing irradiance information.

Sun Position & Irradiance Forecasts: For this experiment
(Fig. 6, depicted in yellow), we train the network with the
original irradiance ξ. The evaluation is based on the feature
vector x = [p̂, θ, ϕ, ξ̂] with the forcasted irradiance. Again,
we have no phase shift, and the expected values match the
test set ones. The standard deviation increases compared to
the scenario of not including the irradiance in the feature
vector. Comparing the green area, associated with the variance
of the real test data, and the yellow area, corresponding to the
variance for the predictions when using solar irradiance fore-
casts, we still observe a lower variance. The higher variance
in the test set is caused by fluctuations of the real irradiance,
due to spontaneous cloud coverage. Such effects are rather
unpredictable and not covered, by our irradiance forecasts.

Next, we showcase the forecasting performance differ-
ence between using the original irradiance vs irradiance
forecasts. To simulate an ideal weather forecast we replace
x = [p̂, θ, ϕ, ξ̂] by x = [p̂, θ, ϕ, ξ]. We compare the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE)
errors for both scenarios on a monthly basis (Fig. 7). We
observe the effect, that the prediction error is always higher
when using the irradiance forecasts, especially in the summer
months (July, August, and September). This is due to a higher
impact of the discrepancy between the forecasted and real
irradiance and its direct impact on the PV-systems production.



The error in August is the highest since the forecasts are
deviating stronger compared to July and September. We also
note that the difference between the two errors is decreasing
with the declining impact of the PV systems, caused due to
the seasonal effect of the sun’s altitudes θ offset.

To analyze the forecasting error on a more fine-grained level
we provide the forecasting results for the whole test set of
July (Fig. 8). The upper half of the graph shows the original
active power time series and the generated power predictions
when using the irradiance forecasts. The lower plot compares
the absolute error for using original irradiance vs irradiance
forecasts. The difference in the error is higher at the active
power dips caused by unpredictable cloud coverage. The still
remaining error when comparing the ground truth and the
prediction with the original irradiance can be interpreted as
the model error caused by different consumption patterns,
deviating from the training/validation data.
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Fig. 6: The comparison of the daily mean power profile p±σp

of the ground-truth in the test set and the resulting forecasts.
The results for the three trained networks show the effect of
the individual heterogeneous features on a monthly basis.

D. Grid-Overload detection

Our simulation study covers a smart grid scenario with an
existing EC consisting of participants known to the ECO and
participants not fully considered during optimization (Table I).
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Fig. 8: Medium-term forecasting for the test set in July. We
initialize the hidden states of the LSTM with the first day
and forecast for the remaining 14 days. We highlight the non-
preventable error due to the difference between the original
irradiance and its forecast.

This discrepancy can lead to scenarios where we face power
dips below −200 kW (feed-in limit). With our approach,
we are able to forecast and detect these so-called critical
transformer overloads. Detecting these events a day in advance
can help the system operator (e.g., ECO or DSO) take action
before overloads occur.

For this specific experiment, we consider the real-world
scenario of using the forecasting model with the sun position
and irradiance forecasts as input features x = [p̂, θ, ϕ, ξ̂].
Forecasts are again generated for a whole day, by initializing
the LSTM and its hidden states with the original historic
measurements of a whole previous day. If the forecasted power
consumption p̂ ∈ R1×96 for the whole future day hurts the
feed-in limit of −200 kW once, we mark the day as positive
detected grid overload. The overall performance compared to
the original ground truth of the test set is again evaluated on
a monthly basis and depicted in Table III.



TABLE III: Overload detection results for a feed-in limit of
−200 kW. Once setting the detection threshold to the feed-
in limit and once to −159 kW. We analyze the amount
of true-positives (TP), true-negatives (TN), false-positives
(FP), and false-negatives (FN). In each column, we give
No−200 kW/No−159 kW, corresponding to the number of oc-
currences with respect to the respective threshold.

month TP TN FP FN acc f1
july 12 / 14 0 / 0 0 / 0 2 / 0 0.86/1.00 0.92/1.00
august 8 / 13 1 / 1 0 / 0 5 / 0 0.64/1.00 0.76/1.00
september 0 / 2 11 / 7 1 / 5 2 / 0 0.79/0.64 - /0.44
october 0 / 0 14 / 14 0 / 0 0 / 0 1.00/1.00 -
november 0 / 0 14 / 14 0 / 0 0 / 0 1.00/1.00 -
december 0 / 0 14 / 14 0 / 0 0 / 0 1.00/1.00 -

Taking a recap on the year-long simulated active power pro-
file (Fig. 5), we observe that the critical overloads are mostly
occurring during the summer months (April-September). This
is also reflected in the detection results, by e.g., correctly
identifying all days as true-negatives in October-December.
The highest interest, from theDSOs’s perspective, remains in
correctly identifying true-positives and minimizing the amount
of false-negatives. To analyze this behavior in more depth, we
compare the area-of-harm and time-of-harm,

Eharm =
∑
i

|pi|≥200 kW

(|pi| − 200 kW)Tsample (3)

Tharm =
∑
i

|pi|≥200 kW

Tsample, (4)

which indicates the amount of energy Eharm, and the time
period Tharm of the transformer facing an overload based on
the sample time Tsample = 15min.
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Fig. 9: Comparison of area-of-harm and time-of-harm between
the ground-truth and the predictions.

Fig. 9 compares the area-of-harm and time-of-harm between
the ground-truth and the predictions. Analyzing the critical and

unwanted false-negatives we note that these are edge cases
(low Eharm and Tharm), caused by real irradiance outlier,
not covered by our forecasts. Modifying and lowering the
active power threshold used for detecting overloads can reduce
the amount of false-negatives. E.g., setting the threshold to
−159 kW results in no false-negatives and four additional
false-positives (Table III).

V. CONCLUSION AND OUTLOOK

We demonstrated a novel approach for forecasting critical
overloads in a Smart Grid simulation scenario. Our algorithm
is based on a lightweight LSTM recurrent neural network,
with 72.45k parameters and 148.05k MACs, corresponding
to 283kB in storage and 12.3ms latency for a single time-
step forecast on a NUCLEO-L432KC - ARM Cortex M4
(assuming 4 Bytes per parameter and ≈ 12M MACs/s). It
is able to provide medium-term forecasts for the load at a LV
transformer. The network is trained using simulated load data
of a transformer, the sun’s altitude and azimuth, and irradiance
data. During the forecasting step, we use the sun position and
irradiance from weather forecast data to calculate the future
transformer load. In particular, the algorithm is used to predict
overloads at the transformer on a day-ahead base.

We verified our approach with a one-year simulation of a
rural LV grid based on realistic data from the SimBench data
set [26] and a grid-friendly EC according to [30] and [25]. The
LSTM is trained using data from January to June and verified
using 12 weeks in the time period from July to December,
encompassing the seasonal cycle (winter to summer) for both
training and validation. In the evaluated test set (opposite 12
weeks in the second half of the year) our algorithm was able to
detect 20 out of 29 overloads resulting in a precision of 95%
and a recall of 69%. As missed alerts (FN) are more system
critical but at the same time often based on short and minor
load exceedances, we also showed that lowering the alerting
threshold for the prediction can increase the recall to 100%
while keeping the precision at 85%. In addition, we proved the
ability of our algorithm to forecast two weeks with an MAE
of 12.41 kW in July. As renewable energy sources such as PV
systems heavily rely on weather data, we could also show that
enhancing the quality of weather forecasts improves prediction
accuracy. With an optimal irradiance forecast the MAE can be
reduced to 6.89 kW in our two-week prediction for July.

While this work already tackles multiple influential aspects
of Smart Grids such as seasonal behavior and the coexis-
tence of multiple active stakeholders, additional simulations
and real-world experiments could further prove the validity
of our LSTM-based forecasting algorithm. Including other
topologies (e.g., from the SimBench data set) could be used
to show and optimize the algorithm’s independence of the
system’s structure and components. Further studies should also
consider the neural network implementation on edge devices
and incorporating other relevant domains for the Smart Grid
(e.g., heat pumps, wind turbines, etc.) which could show the
need for additional features such as temperature or wind data.
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