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Abstract— Faults may occur in numerous locations of a router in 

a NoC platform. Compared with the faults in the data path, faults 

in the control path may cause more severe effects which may 

result in crashing the entire system. Most of the current efforts in 

literature focus on disabling a router when a fault is detected. 

Considering this level of coarse-granularity, the functioning parts 

of a router have to be unnecessarily disabled which may severely 

affect the performance or functionality of the on-chip network. 

To cope with this problem, in this paper we propose a mechanism 

to tolerate faults in the control path which largely avoid disabling 

a router as long as the fault is not severe. This mechanism is 

called DMT, standing for three distinguishing characteristics of 

the proposed method as fault Detection, fault Masking and fault 

Tolerance. The proposed mechanism can efficiently detect the 

faults expressed as illegal turns while it has the capability to 

tolerate faults without a prior knowledge on where and why a 

fault has happened.  
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I.  INTRODUCTION 

As a competitive solution in communication structure, 
Network-on-chip (NoC) is a preferable choice of infrastructure 
to connect hundreds of processing elements to each other in a 

complex Systems-on-Chip ‎[1]‎[2]. In NoC, resources are largely 
distributed and shared, meaning that packets may use several 
links and routers in different parts of the network. In spite of 
these advantages, the drawback is that a single fault in NoC 
may result in different types of router malfunctions such as 
miscalculation in the routing computation, conflict in the 
arbitration, mismatches in the crossbar, and reading from an 

empty buffer ‎[3]. NoC routers generally consist of five stages 
as routing computation (RC), virtual channel allocation (VA), 
switch allocation (SA), crossbar (Xbar), and link traversal 
(LT). The RC unit unwraps the header of the incoming packets 
and decides to which direction the packet should be delivered. 
The VA unit determines the virtual channel in which the packet 
should be delivered from. In the SA unit, packets are granted to 
traverse the crossbar (Xbar) unit. Finally, packets pass the 
output channel (LT) toward the next switch. The RC, VA and 
SA units are part of the control path by directly affecting the 
routing decision while buffers, LT and ST are categorized as 
the units in the data path, determining the path taken by the 
packets to pass through the router.  

When faults occur in the data path, the most common and 
obvious phenomenon is that faults affect the data carried by 

packets such as a bit flip caused by the low noise margin ‎[4], 

the electromagnetic coupling effects ‎[5], or the crosstalk ‎[6]. 

Fortunately these faults can be easily detected by the receiving 
nodes using Error Correcting Code (ECC) and can be solved by 
data redundancy mechanism like retransmission. These 
methodologies would guarantee the protection of the packet’s 
contents, and thus we can assume that flits are well protected. 
Unlike the faults in the data path, which can be worked out by 
mature fault-tolerant methods, faults in the control path of NoC 
routers are hard to be detected and even harder to be tolerated. 
A fault (e.g. stuck-at-1 or stuck-at-0) in the control path may 
lead to, among the others, the miscalculation of the routing 
algorithm or the wrong matching pair between the input and 
output port in the crossbar unit. When these faults are 
introduced, packets may be forwarded to a wrong direction and 
eventually lead to the deadlock or livelock. 

In order to enhance the reliability of on-chip networks, we 
propose a routing-level solution to address the faults in the 
control path, targeting those leading to illegal turns. This 
solution provides real-time and on-line fault detection, called 
DMT, covering the detection, masking and tolerating of illegal-
turn faults. To achieve these goals, a non-minimal routing 
algorithm is designed and faults are classified into severe and 
ignorable. More importantly, the additional hardware for fault 
detection is very lightweight. Compared with the complicated 
components of the control path, the detection parts achieve 
much higher reliability to ensure the reasonable detection 
results. 

The reminder of this paper is organized as follows. In 
Section II, related work is given. In Section III, the simple idea 
of the proposed mechanism is presented. In Section IV, the 
components of the DMT are introduced. The analytical and 
experimental results are reported in Section V while the 
summary and conclusion are given in the last section. 

II. RELATED WORK 

Fault-tolerance in NoC is more than a feature but a 
necessity for achieving higher reliability because of the 
increasing design complexity and the continued shrinkage of 

semiconductor process feature sizes ‎[7]. The functionality of 
on-chip network can be highly affected by power supply noise, 
ground bounce, energetic particles and interconnection noise 
such as crosstalk and electromagnetic interference. These 
faults, considered as transient faults, occur randomly and do 
not cause physical damages on circuits. 

Most of the current efforts in literature focus on disabling a 

router when a fault is detected ‎[8]‎[9]. In other efforts, non-
minimal routing algorithms have been investigated aiming to 



achieve fault-tolerant methods by enabling packets to turn 

around the faulty areas ‎[10]‎[11]. In ‎[8], an algorithm is 
proposed to tolerate a single faulty router in the network 
without using virtual channels. The main idea of this algorithm 
is to route packets through a cycle-free contour surrounding a 
faulty router. Each router should be informed about the faulty 
status of eight direct and indirect neighbouring routers. The 

DBP approach ‎[9] uses a default back-up path at each router to 
connect the upstream to the downstream router in the case of 
fault. Thereby, besides the underlying interconnection 
infrastructure, these backup paths connect all routers together 
in a form of a unidirectional cycle such as a ring. This 
algorithm is based on taking non-minimal routes. In contrast, 

HiPFaR ‎[12] targets tolerating faulty routers by avoiding non-
minimal paths as along as possible. These proposed methods 
are based on a common assumption that the entire router is 
disabled in the case of a single fault. They try to keep the 
network working by disconnecting both the faulty router and 
the core from the network. In fact, this assumption is not 
realistic and may have a severe impact on the functionality of 
the entire system (i.e. the tasks of the disabled core cannot be 
transferred to the other cores) or the performance (i.e. traffic 
highly increases around the faulty area). 

Some other literatures are susceptible to failures during an 
initial phase of transmission where every intermediate node 

drops packets thus thwarting the transmission altogether ‎[13]. 
These methods targets special types of faults or specific router 
components. In addition, the capability of tolerating faults is 
based on the prior knowledge on where and why a fault has 
occurred. 

In this paper, we introduce a mechanism with the capability 
of fault detection, the non-minimal routing support, the fault 
classification and the fault tolerance which are able to improve 
the reliability of on-chip network. Routers are no longer 
necessarily disabled when faults occur. By applying the 
proposed mechanism, latency of the network are close to those 

of using DyXY routing algorithm ‎[14] (which is considered as 
a high-performance algorithm in NoC-based routing) in the 
absent of faults. Similar to DyXY, only one additional virtual 
channel along the Y dimension is utilized in the proposed 
mechanism. 

III. THE SIMPLE IDEA OF DMT 

Using the example of Fig. 1, we explain the simple idea of 
the proposed mechanism, DMT. Let us assume that a packet is 
sent from the source 0 to the destination 8. The packet is 
currently at the router 4 arrived from its south input port and 
the virtual channel 1 (S1). Since the destination is to the NE 
position of the router 4, the possible minimal directions are as: 
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Fig. 1 Example of the proposed mechanism 

N1, N2, and E where among them the E port is selected in the 
example of Fig. 1 (a). However, due to faults at the control path 
of the router 4, the packet may be delivered to the router 3 
instead of the router 5 as shown in Fig. 1 (b). Since the 
algorithm does not support non-minimal paths, the packet is 
blocked at the router 3 which results in blocking other packets 
and finally crashing the whole system. DMT enables the router 
3 to detect the fault at the router 4 by checking the possibility 
of receiving a packet taking a North-West turn while having the 
destination at the NE position. It is worth mentioning that non-
minimal routing algorithms are commonly used to turn around 
the disabled faulty router. However, in DMT, non-minimal 
routing algorithms are used for a different purpose, i.e. avoid 
disabling a router for as long as possible.   

If due to faults, the turn taken by the packet leads to a 
minimal direction (e.g. the packet is delivered from the router 4 
to the router 7 instead of the router 5), the fault is masked and 
no further attention is needed as the fault is prevented from 
introducing errors. On the other hand, we design a non-minimal 
routing algorithm to tolerate the faults that lead to non-minimal 
directions which cannot be masked (Fig. 1 (b)). Based on the 
capability of the algorithm in delivering packets over different 
output channels, the faults are categorized as severe or 
ignorable. 

IV. THE PROPOSED  MECHANISM 

A. Fault Detection 

The first step in the proposed algorithm is the fault 
detection which is done at the neighbouring routers of the 
faulty router. In the other words, upon receiving a packet at a 
router, it is checked whether the upstream router has performed 
the routing correctly or not. However, no routing recalculation 
is done in the receiving router. Taking the example of Fig. 1 (b) 
where a minimal routing algorithm is running, fault at the 
router 4 will be detected at the router 3. To detect the 
correctness of the routing decision made in the router 4, two 
parameters are needed at the router 3 as: the input port in which 
the packet is received at the router 4 and the destination 
position of the packet regarding the router 4. As shown in Fig. 
2, the input port and the virtual channel number are transferred 
using 3 extra bits along with the packet. The destination 
position of the packet can be easily obtained using the same 
logic as in the routing unit without any extra hardware and 
effect on the critical path of the routing computation unit. This 
step can be done in parallel with the output selection part in the 
routing computation unit, shown in Fig. 2 which implies that 
the fault detection circuit will not affect the critical path. In 
sum, the algorithm follows a minimal and fully adaptive 
algorithm, similar to DyXY and for detecting faults, the 
algorithm shown in Fig. 3 is used.  
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Fig. 2 Block diagram of the fault detection 



  

Fig. 3 The fault detection algorithm 

B. Classifying Faults into Ignorable and Severe 

We classify faults into two groups as ignorable faults and 
severe faults depending on whether the turn taken by a packet 
is among the allowable turns or not.    

The ignorable fault is the fault that can be tolerated by our 
proposed mechanism. When faults occur in the control path, 
one of the most obvious cases is that a packet is sent to a wrong 
port which eventually may lead to deadlock and livelock in 
NoC platforms. Fortunately, by applying the proposed 
mechanism, some illegal turns in the network are still 
supported. It means that the packet experiences a wrong turn(s) 
but eventually arrives at the right destination node by taking 
advantage of the flexibility of the non-minimal routing 
algorithm. 

The severe fault is the fault that cannot be supported by 
our mechanism because of the rules of the non-minimal routing 
in which some turns are illegal. Under this circumstance, faults 
cannot be tolerated and the affected packet must be dropped in 
order to avoid deadlock or livelock. 

In general, DMT introduces a new perspective to non-
minimal routing algorithms. In traditional approaches, non-
minimal routing algorithms are used to reroute packets around 
the faulty router or region. Thereby, the basic assumption is 
that the whole router is disabled due to faults. However, in 
DMT, the flexibility of non-minimal routing is used to avoid 
disabling the faulty router. The non-minimal algorithm in this 
paper is used as a case study while more flexible algorithms 
can be designed such that to eliminate more types of faults 
even those of classified as severe in the proposed solution. 

V. RESULT AND DISCUSSION 

We evaluate the proposed mechanism in terms of average 
latency and reliability. The average latency is defined as the 
average time takes for packets to reach from a source node to a 

destination node. When faults occur in the control path, turns 
may be illegal and some packets may never reach the 
destination. Therefore, the survival rate is a vital factor to 
measure the fault-tolerant capability, which defined as the ratio 
of the number of packets successfully reach the destinations 
over the total number of packets. These experiments are 
performed on a 2D 8×8 mesh network using wormhole 
switching with a constant packet size of 4 flits and different 
packet injection rates. The simulator is cycle-accurate 
implemented with VHDL. It is able to generate different traffic 
patterns such as Uniform, Transpose1, Transpose2, and Bit-
Reversal traffic. The difference between Transpose1 and 
Transpose2 is in the orientation of choosing source and 
destination nodes. DMT introduces an innovative way of 
tolerating faults at the control paths of the routers. It implies 
that the fault injection method is also different from other 
approaches. In traditional methods, faults are injected directly 
to the routers by disabling them while in DMT faults are 
injected in the form of taking a wrong turn inside a router to 
simulate faults expressed as illegal turns. In DMT, for example 
fault injection rate of 5% means that at every router in the 
network 5% of all turns are chosen differently as decided by 
the routing unit. This assumption is pessimistic and faults may 
happen with a lower probability. Since the nature of the DMT 
approach is unique and the form of injecting faults is specific, 
there is no equivalent fault-tolerant method to be compared 
with. In simulations, DMT is compared with DyXY which is a 
fully adaptive routing algorithm using the same number of 
virtual channels but supporting only the minimal 

directions ‎[14]. 

A. Performance Evaluation 

The performance of DMT and DyXY methods are 
compared with each other from Fig. 4 to Fig. 6 under 4 traffic 
patterns. The packet injection rates are indicated along the X 
axis while the Y dimension shows the average latency. 

The performance comparison is shown in Fig. 4 when there 
is no fault in the whole network. As can be seen in this figure, 
the average latency of the proposed mechanism is nearly the 
same as those using DyXY. The reason is that, in fault-free 
conditions, both methods follow the minimal paths.  

Fig. 5 shows the performance results when 3% of turns are 
faulty in all the routers of the network. By comparing the 
equivalent curves of Fig. 4 and Fig. 5, it can be observed that 
the saturation point of the DMT method remains almost the 
same in both figures. However, the saturation point of DyXY 
improves in Fig. 5. This can be explained that DyXY cannot 
tolerate faults and thus packets are dropped from the network. 
It results in less congestion and thus a better performance. Even 
though the DyXY apparently seems to work better than DMT 
in Fig. 5. The latency of DMT and DyXY methods with the 
fault but in reality it is because of its inability to tolerate faults. 

In order to observe the impact of a higher injection rate, we 
increase the injection rate to 5% in Fig. 6. The results show that 
the performance of the network is still at the same level in 
DMT even though many turns are taken wrongly due to faults. 
On the other hand, the performance of DyXY keeps growing, 
implying that more and more packets are dropped in the 
network. 

(Xc,Yc): X and Y coordinate of the current router; 

IF InCh (Xc,Yc) = {E}  

     IF InCh (Xc+1,Yc) = {L,N1,S1,E} THEN 

        “Fault is Ignorable”   ELSE   “Severe”; 

IF InCh (Xc,Yc) = {W}  

     IF InCh (Xc-1,Yc) /= {E} AND Pos((Xc-1,Yc) and (Xd,Yd))=  

        {E,NE,SE} THEN 

        “Fault is Ignorable”   ELSE   “Severe”;        

IF InCh (Xc,Yc) = {N1}  

     IF InCh (Xc,Yc+1) = {L,S1,E} THEN 

        “Fault is Ignorable”   ELSE   “Severe”; 

IF InCh (Xc,Yc) = {N2}  

     IF InCh (Xc,Yc+1) /= {S2} AND Pos((Xc,Yc+1) and (Xd,Yd))=  

        {N,E,NE,SE} THEN 

        “Fault is Ignorable”   ELSE   “Severe”; 

IF InCh (Xc,Yc) = {S1}  

     IF InCh (Xc,Yc-1) = {L,N1,E,S1} THEN 

        “Fault is Ignorable”   ELSE   “Severe”; 

IF InCh (Xc,Yc) = {S2}  

     IF InCh (Xc,Yc-1) /= {N2} AND Pos((Xc,Yc-1) and (Xd,Yd))=  

        {S,E,NE,SE} THEN 

        “Fault is Ignorable”   ELSE   “Severe”; 
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Fig. 4. The latency of DMT and DyXY methods in fault-free cases 

and under four traffic patterns as (a) Uniform, (b) Transpose1, (c) 

Transpose2 and (d) Bit-Reversal 

(a) (b)

(c) (d)
  

Fig. 5 The latency of DMT and DyXY methods with the fault 

injection of 3% and under four traffic patterns as (a) Uniform Traffic, 

(b) Transpose1 Traffic, (c) Transpose2 Traffic (c) and Bit-Reversal 

Traffic (d)) 

(a) (b)

(c) (d)
 

Fig. 6 The latency of DMT and DyXY methods with the fault 

injection of 5% and under four traffic patterns as (a) Uniform Traffic, 

(b) Transpose1 Traffic, (c) Transpose2 Traffic (c) and Bit-Reversal 

Traffic (d)) 

Table 1. Area overhead and power consumption 

 Proposed 

Mechanism 

Router with 

DyXY 

Additional 

Overhead 

cell area 31255 29502 5.9% 

cell power 444.967uW 416.525uW 6.8% 

 

B. Fault-Tolerant Capability 

In order to evaluate the reliability of DMT, we simulate the 
faults which occur in the control path of a router. Thereby, we 
force packets to take a random turns despite the decision of the 
routing computation unit. This operation is similar to the 
behaviours when a fault occurs in the circuit level of routers 
such as stuck-at-1 and stuck-at-0 and eventually faults lead to 
illegal turns.  

In this set of experiment, we evaluate the reliability of the 
network for different fault injection percentage and for 
different traffic patterns. The fault injection percentages are 
selected to be 0%, 0.5%, 1%, 1.5% and 2%. Since the number 
of dropped packets exceeds 10% of the total number of 
packets, we stop the fault injection percentage at 2%. The 
results are shown from Fig. 7 to Fig. 10. The statistical 
information in these experiments includes the total number of 
packets which can be successfully received by the destination 
(shown along y-axis) and the fault injection percentages (from 
0% to 2% along x-axis). DMT has the capability to tolerate 
faults in the control path without the prior knowledge on where 
and why a fault has happened. As can be seen from Fig. 7 to 
Fig. 10, DMT is able to survive about 2839, 2291, 3276, and 
2987 packets, respectively, more than the DyXY algorithm 
with 2% fault injections. Although in this paper we introduce a 
new way of utilizing non-minimal routing, there are several 
ways for more improvement as 1- designing a more flexible 
non-minimal algorithm 2- combining this method with ordinary 
way of using the non-minimal algorithm so that if a router is 
detected as creating severe faults repeatedly, it can be disabled. 

C. Hardware Overhead  

To assess the area overhead and power consumption, an on-
chip network router with the proposed mechanism and a 
general one using DyXY routing algorithm are synthesized 
using Synopsys Design Compiler. We compared the area 
overhead and power consumption of a router in both models. 
For synthesizing, we use the TSMC45nm technology at the 
operating frequency of 1GHz and supply voltage of 0.9V. As 
indicated in Table 1, the power consumption and area overhead 
of the router with the proposed mechanism and the general one 
are comparable. With a negligible hardware overhead, the 
proposed algorithm can offer a more reliable no-chip network. 

VI. CONCLUSION 

We proposed a mechanism to tolerate faults which can be 
expressed as illegal turns in the control path, called DMT. It is 
an efficient process with low latency and hardware overhead 
including fault detection, non-minimal routing, fault 
classification and fault tolerance. DMT introduces a new way 
of employing non-minimal algorithms in NoCs and taking a 
better advantage of them. By applying the proposed mechanism, 
a router is not necessary disabled when faults occur. The extra 
hardware resources to implement the algorithm do not affect 
the critical path of the router. According to the experimental 
results, the average latency of transmission in the proposed 
mechanism is almost the same as DyXY routing when no faults 
occur. The algorithm leads to less packet drops as illegal turn 
faults will be supported by the non-minimal algorithm. 



 

Fig. 7 Fault-tolerant capability under uniform traffic 

 

Fig. 8 Fault-tolerant capability under Transpose1 Traffic 

 

Fig. 9 Fault-tolerant capability under Transpose2 Traffic 

 

Fig. 10 Fault-tolerant capability under Bit-Reversal Traffic 
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