
A Routing-Level Solution for Fault Detection,

Masking, and Tolerance in NoCs
Xiaofan Zhang

1
, Masoumeh Ebrahimi

2,3
, Letian Huang

1
, Guangjun Li

1
, Axel Jantsch

4

1
 University of Electronic Science and Technology of China, China

2
KTH Royal Institute of Technology, Sweden

3
University of Turku, Finland

4
Vienna University of Technology, Austria

Abstract— Faults may occur in numerous locations of a router in

a NoC platform. Compared with the faults in the data path, faults

in the control path may cause more severe effects which may

result in crashing the entire system. Most of the current efforts in

literature focus on disabling a router when a fault is detected.

Considering this level of coarse-granularity, the functioning parts

of a router have to be unnecessarily disabled which may severely

affect the performance or functionality of the on-chip network.

To cope with this problem, in this paper we propose a mechanism

to tolerate faults in the control path which largely avoid disabling

a router as long as the fault is not severe. This mechanism is

called DMT, standing for three distinguishing characteristics of

the proposed method as fault Detection, fault Masking and fault

Tolerance. The proposed mechanism can efficiently detect the

faults expressed as illegal turns while it has the capability to

tolerate faults without a prior knowledge on where and why a

fault has happened.

Keywords-Network-On-Chip; fault-tolerance;

I. INTRODUCTION

As a competitive solution in communication structure,
Network-on-chip (NoC) is a preferable choice of infrastructure
to connect hundreds of processing elements to each other in a

complex Systems-on-Chip ‎[1]‎[2]. In NoC, resources are largely
distributed and shared, meaning that packets may use several
links and routers in different parts of the network. In spite of
these advantages, the drawback is that a single fault in NoC
may result in different types of router malfunctions such as
miscalculation in the routing computation, conflict in the
arbitration, mismatches in the crossbar, and reading from an

empty buffer ‎[3]. NoC routers generally consist of five stages
as routing computation (RC), virtual channel allocation (VA),
switch allocation (SA), crossbar (Xbar), and link traversal
(LT). The RC unit unwraps the header of the incoming packets
and decides to which direction the packet should be delivered.
The VA unit determines the virtual channel in which the packet
should be delivered from. In the SA unit, packets are granted to
traverse the crossbar (Xbar) unit. Finally, packets pass the
output channel (LT) toward the next switch. The RC, VA and
SA units are part of the control path by directly affecting the
routing decision while buffers, LT and ST are categorized as
the units in the data path, determining the path taken by the
packets to pass through the router.

When faults occur in the data path, the most common and
obvious phenomenon is that faults affect the data carried by

packets such as a bit flip caused by the low noise margin ‎[4],

the electromagnetic coupling effects ‎[5], or the crosstalk ‎[6].

Fortunately these faults can be easily detected by the receiving
nodes using Error Correcting Code (ECC) and can be solved by
data redundancy mechanism like retransmission. These
methodologies would guarantee the protection of the packet’s
contents, and thus we can assume that flits are well protected.
Unlike the faults in the data path, which can be worked out by
mature fault-tolerant methods, faults in the control path of NoC
routers are hard to be detected and even harder to be tolerated.
A fault (e.g. stuck-at-1 or stuck-at-0) in the control path may
lead to, among the others, the miscalculation of the routing
algorithm or the wrong matching pair between the input and
output port in the crossbar unit. When these faults are
introduced, packets may be forwarded to a wrong direction and
eventually lead to the deadlock or livelock.

In order to enhance the reliability of on-chip networks, we
propose a routing-level solution to address the faults in the
control path, targeting those leading to illegal turns. This
solution provides real-time and on-line fault detection, called
DMT, covering the detection, masking and tolerating of illegal-
turn faults. To achieve these goals, a non-minimal routing
algorithm is designed and faults are classified into severe and
ignorable. More importantly, the additional hardware for fault
detection is very lightweight. Compared with the complicated
components of the control path, the detection parts achieve
much higher reliability to ensure the reasonable detection
results.

The reminder of this paper is organized as follows. In
Section II, related work is given. In Section III, the simple idea
of the proposed mechanism is presented. In Section IV, the
components of the DMT are introduced. The analytical and
experimental results are reported in Section V while the
summary and conclusion are given in the last section.

II. RELATED WORK

Fault-tolerance in NoC is more than a feature but a
necessity for achieving higher reliability because of the
increasing design complexity and the continued shrinkage of

semiconductor process feature sizes ‎[7]. The functionality of
on-chip network can be highly affected by power supply noise,
ground bounce, energetic particles and interconnection noise
such as crosstalk and electromagnetic interference. These
faults, considered as transient faults, occur randomly and do
not cause physical damages on circuits.

Most of the current efforts in literature focus on disabling a

router when a fault is detected ‎[8]‎[9]. In other efforts, non-
minimal routing algorithms have been investigated aiming to

achieve fault-tolerant methods by enabling packets to turn

around the faulty areas ‎[10]‎[11]. In ‎[8], an algorithm is
proposed to tolerate a single faulty router in the network
without using virtual channels. The main idea of this algorithm
is to route packets through a cycle-free contour surrounding a
faulty router. Each router should be informed about the faulty
status of eight direct and indirect neighbouring routers. The

DBP approach ‎[9] uses a default back-up path at each router to
connect the upstream to the downstream router in the case of
fault. Thereby, besides the underlying interconnection
infrastructure, these backup paths connect all routers together
in a form of a unidirectional cycle such as a ring. This
algorithm is based on taking non-minimal routes. In contrast,

HiPFaR ‎[12] targets tolerating faulty routers by avoiding non-
minimal paths as along as possible. These proposed methods
are based on a common assumption that the entire router is
disabled in the case of a single fault. They try to keep the
network working by disconnecting both the faulty router and
the core from the network. In fact, this assumption is not
realistic and may have a severe impact on the functionality of
the entire system (i.e. the tasks of the disabled core cannot be
transferred to the other cores) or the performance (i.e. traffic
highly increases around the faulty area).

Some other literatures are susceptible to failures during an
initial phase of transmission where every intermediate node

drops packets thus thwarting the transmission altogether ‎[13].
These methods targets special types of faults or specific router
components. In addition, the capability of tolerating faults is
based on the prior knowledge on where and why a fault has
occurred.

In this paper, we introduce a mechanism with the capability
of fault detection, the non-minimal routing support, the fault
classification and the fault tolerance which are able to improve
the reliability of on-chip network. Routers are no longer
necessarily disabled when faults occur. By applying the
proposed mechanism, latency of the network are close to those

of using DyXY routing algorithm ‎[14] (which is considered as
a high-performance algorithm in NoC-based routing) in the
absent of faults. Similar to DyXY, only one additional virtual
channel along the Y dimension is utilized in the proposed
mechanism.

III. THE SIMPLE IDEA OF DMT

Using the example of Fig. 1, we explain the simple idea of
the proposed mechanism, DMT. Let us assume that a packet is
sent from the source 0 to the destination 8. The packet is
currently at the router 4 arrived from its south input port and
the virtual channel 1 (S1). Since the destination is to the NE
position of the router 4, the possible minimal directions are as:

0(S)

3

6

1

4

7

2

5

8(D)

0(S)

3

6

1

4

7

2

5

8(D)

(a) (b)
Fig. 1 Example of the proposed mechanism

N1, N2, and E where among them the E port is selected in the
example of Fig. 1 (a). However, due to faults at the control path
of the router 4, the packet may be delivered to the router 3
instead of the router 5 as shown in Fig. 1 (b). Since the
algorithm does not support non-minimal paths, the packet is
blocked at the router 3 which results in blocking other packets
and finally crashing the whole system. DMT enables the router
3 to detect the fault at the router 4 by checking the possibility
of receiving a packet taking a North-West turn while having the
destination at the NE position. It is worth mentioning that non-
minimal routing algorithms are commonly used to turn around
the disabled faulty router. However, in DMT, non-minimal
routing algorithms are used for a different purpose, i.e. avoid
disabling a router for as long as possible.

If due to faults, the turn taken by the packet leads to a
minimal direction (e.g. the packet is delivered from the router 4
to the router 7 instead of the router 5), the fault is masked and
no further attention is needed as the fault is prevented from
introducing errors. On the other hand, we design a non-minimal
routing algorithm to tolerate the faults that lead to non-minimal
directions which cannot be masked (Fig. 1 (b)). Based on the
capability of the algorithm in delivering packets over different
output channels, the faults are categorized as severe or
ignorable.

IV. THE PROPOSED MECHANISM

A. Fault Detection

The first step in the proposed algorithm is the fault
detection which is done at the neighbouring routers of the
faulty router. In the other words, upon receiving a packet at a
router, it is checked whether the upstream router has performed
the routing correctly or not. However, no routing recalculation
is done in the receiving router. Taking the example of Fig. 1 (b)
where a minimal routing algorithm is running, fault at the
router 4 will be detected at the router 3. To detect the
correctness of the routing decision made in the router 4, two
parameters are needed at the router 3 as: the input port in which
the packet is received at the router 4 and the destination
position of the packet regarding the router 4. As shown in Fig.
2, the input port and the virtual channel number are transferred
using 3 extra bits along with the packet. The destination
position of the packet can be easily obtained using the same
logic as in the routing unit without any extra hardware and
effect on the critical path of the routing computation unit. This
step can be done in parallel with the output selection part in the
routing computation unit, shown in Fig. 2 which implies that
the fault detection circuit will not affect the critical path. In
sum, the algorithm follows a minimal and fully adaptive
algorithm, similar to DyXY and for detecting faults, the
algorithm shown in Fig. 3 is used.

Critical path of the routing computation unit

Output Selection

Fault Judgment

Fault detection

path

Routing Computation

Extra 3-bit Transferring

Input port and VC number

Reuse of the position

calculation part

Fig. 2 Block diagram of the fault detection

Fig. 3 The fault detection algorithm

B. Classifying Faults into Ignorable and Severe

We classify faults into two groups as ignorable faults and
severe faults depending on whether the turn taken by a packet
is among the allowable turns or not.

The ignorable fault is the fault that can be tolerated by our
proposed mechanism. When faults occur in the control path,
one of the most obvious cases is that a packet is sent to a wrong
port which eventually may lead to deadlock and livelock in
NoC platforms. Fortunately, by applying the proposed
mechanism, some illegal turns in the network are still
supported. It means that the packet experiences a wrong turn(s)
but eventually arrives at the right destination node by taking
advantage of the flexibility of the non-minimal routing
algorithm.

The severe fault is the fault that cannot be supported by
our mechanism because of the rules of the non-minimal routing
in which some turns are illegal. Under this circumstance, faults
cannot be tolerated and the affected packet must be dropped in
order to avoid deadlock or livelock.

In general, DMT introduces a new perspective to non-
minimal routing algorithms. In traditional approaches, non-
minimal routing algorithms are used to reroute packets around
the faulty router or region. Thereby, the basic assumption is
that the whole router is disabled due to faults. However, in
DMT, the flexibility of non-minimal routing is used to avoid
disabling the faulty router. The non-minimal algorithm in this
paper is used as a case study while more flexible algorithms
can be designed such that to eliminate more types of faults
even those of classified as severe in the proposed solution.

V. RESULT AND DISCUSSION

We evaluate the proposed mechanism in terms of average
latency and reliability. The average latency is defined as the
average time takes for packets to reach from a source node to a

destination node. When faults occur in the control path, turns
may be illegal and some packets may never reach the
destination. Therefore, the survival rate is a vital factor to
measure the fault-tolerant capability, which defined as the ratio
of the number of packets successfully reach the destinations
over the total number of packets. These experiments are
performed on a 2D 8×8 mesh network using wormhole
switching with a constant packet size of 4 flits and different
packet injection rates. The simulator is cycle-accurate
implemented with VHDL. It is able to generate different traffic
patterns such as Uniform, Transpose1, Transpose2, and Bit-
Reversal traffic. The difference between Transpose1 and
Transpose2 is in the orientation of choosing source and
destination nodes. DMT introduces an innovative way of
tolerating faults at the control paths of the routers. It implies
that the fault injection method is also different from other
approaches. In traditional methods, faults are injected directly
to the routers by disabling them while in DMT faults are
injected in the form of taking a wrong turn inside a router to
simulate faults expressed as illegal turns. In DMT, for example
fault injection rate of 5% means that at every router in the
network 5% of all turns are chosen differently as decided by
the routing unit. This assumption is pessimistic and faults may
happen with a lower probability. Since the nature of the DMT
approach is unique and the form of injecting faults is specific,
there is no equivalent fault-tolerant method to be compared
with. In simulations, DMT is compared with DyXY which is a
fully adaptive routing algorithm using the same number of
virtual channels but supporting only the minimal

directions ‎[14].

A. Performance Evaluation

The performance of DMT and DyXY methods are
compared with each other from Fig. 4 to Fig. 6 under 4 traffic
patterns. The packet injection rates are indicated along the X
axis while the Y dimension shows the average latency.

The performance comparison is shown in Fig. 4 when there
is no fault in the whole network. As can be seen in this figure,
the average latency of the proposed mechanism is nearly the
same as those using DyXY. The reason is that, in fault-free
conditions, both methods follow the minimal paths.

Fig. 5 shows the performance results when 3% of turns are
faulty in all the routers of the network. By comparing the
equivalent curves of Fig. 4 and Fig. 5, it can be observed that
the saturation point of the DMT method remains almost the
same in both figures. However, the saturation point of DyXY
improves in Fig. 5. This can be explained that DyXY cannot
tolerate faults and thus packets are dropped from the network.
It results in less congestion and thus a better performance. Even
though the DyXY apparently seems to work better than DMT
in Fig. 5. The latency of DMT and DyXY methods with the
fault but in reality it is because of its inability to tolerate faults.

In order to observe the impact of a higher injection rate, we
increase the injection rate to 5% in Fig. 6. The results show that
the performance of the network is still at the same level in
DMT even though many turns are taken wrongly due to faults.
On the other hand, the performance of DyXY keeps growing,
implying that more and more packets are dropped in the
network.

(Xc,Yc): X and Y coordinate of the current router;

IF InCh (Xc,Yc) = {E}

 IF InCh (Xc+1,Yc) = {L,N1,S1,E} THEN

 “Fault is Ignorable” ELSE “Severe”;

IF InCh (Xc,Yc) = {W}

 IF InCh (Xc-1,Yc) /= {E} AND Pos((Xc-1,Yc) and (Xd,Yd))=

 {E,NE,SE} THEN

 “Fault is Ignorable” ELSE “Severe”;

IF InCh (Xc,Yc) = {N1}

 IF InCh (Xc,Yc+1) = {L,S1,E} THEN

 “Fault is Ignorable” ELSE “Severe”;

IF InCh (Xc,Yc) = {N2}

 IF InCh (Xc,Yc+1) /= {S2} AND Pos((Xc,Yc+1) and (Xd,Yd))=

 {N,E,NE,SE} THEN

 “Fault is Ignorable” ELSE “Severe”;

IF InCh (Xc,Yc) = {S1}

 IF InCh (Xc,Yc-1) = {L,N1,E,S1} THEN

 “Fault is Ignorable” ELSE “Severe”;

IF InCh (Xc,Yc) = {S2}

 IF InCh (Xc,Yc-1) /= {N2} AND Pos((Xc,Yc-1) and (Xd,Yd))=

 {S,E,NE,SE} THEN

 “Fault is Ignorable” ELSE “Severe”;

(a) (b)

(c) (d)

Fig. 4. The latency of DMT and DyXY methods in fault-free cases

and under four traffic patterns as (a) Uniform, (b) Transpose1, (c)

Transpose2 and (d) Bit-Reversal

(a) (b)

(c) (d)

Fig. 5 The latency of DMT and DyXY methods with the fault

injection of 3% and under four traffic patterns as (a) Uniform Traffic,

(b) Transpose1 Traffic, (c) Transpose2 Traffic (c) and Bit-Reversal

Traffic (d))

(a) (b)

(c) (d)

Fig. 6 The latency of DMT and DyXY methods with the fault

injection of 5% and under four traffic patterns as (a) Uniform Traffic,

(b) Transpose1 Traffic, (c) Transpose2 Traffic (c) and Bit-Reversal

Traffic (d))

Table 1. Area overhead and power consumption

 Proposed

Mechanism

Router with

DyXY

Additional

Overhead

cell area 31255 29502 5.9%

cell power 444.967uW 416.525uW 6.8%

B. Fault-Tolerant Capability

In order to evaluate the reliability of DMT, we simulate the
faults which occur in the control path of a router. Thereby, we
force packets to take a random turns despite the decision of the
routing computation unit. This operation is similar to the
behaviours when a fault occurs in the circuit level of routers
such as stuck-at-1 and stuck-at-0 and eventually faults lead to
illegal turns.

In this set of experiment, we evaluate the reliability of the
network for different fault injection percentage and for
different traffic patterns. The fault injection percentages are
selected to be 0%, 0.5%, 1%, 1.5% and 2%. Since the number
of dropped packets exceeds 10% of the total number of
packets, we stop the fault injection percentage at 2%. The
results are shown from Fig. 7 to Fig. 10. The statistical
information in these experiments includes the total number of
packets which can be successfully received by the destination
(shown along y-axis) and the fault injection percentages (from
0% to 2% along x-axis). DMT has the capability to tolerate
faults in the control path without the prior knowledge on where
and why a fault has happened. As can be seen from Fig. 7 to
Fig. 10, DMT is able to survive about 2839, 2291, 3276, and
2987 packets, respectively, more than the DyXY algorithm
with 2% fault injections. Although in this paper we introduce a
new way of utilizing non-minimal routing, there are several
ways for more improvement as 1- designing a more flexible
non-minimal algorithm 2- combining this method with ordinary
way of using the non-minimal algorithm so that if a router is
detected as creating severe faults repeatedly, it can be disabled.

C. Hardware Overhead

To assess the area overhead and power consumption, an on-
chip network router with the proposed mechanism and a
general one using DyXY routing algorithm are synthesized
using Synopsys Design Compiler. We compared the area
overhead and power consumption of a router in both models.
For synthesizing, we use the TSMC45nm technology at the
operating frequency of 1GHz and supply voltage of 0.9V. As
indicated in Table 1, the power consumption and area overhead
of the router with the proposed mechanism and the general one
are comparable. With a negligible hardware overhead, the
proposed algorithm can offer a more reliable no-chip network.

VI. CONCLUSION

We proposed a mechanism to tolerate faults which can be
expressed as illegal turns in the control path, called DMT. It is
an efficient process with low latency and hardware overhead
including fault detection, non-minimal routing, fault
classification and fault tolerance. DMT introduces a new way
of employing non-minimal algorithms in NoCs and taking a
better advantage of them. By applying the proposed mechanism,
a router is not necessary disabled when faults occur. The extra
hardware resources to implement the algorithm do not affect
the critical path of the router. According to the experimental
results, the average latency of transmission in the proposed
mechanism is almost the same as DyXY routing when no faults
occur. The algorithm leads to less packet drops as illegal turn
faults will be supported by the non-minimal algorithm.

Fig. 7 Fault-tolerant capability under uniform traffic

Fig. 8 Fault-tolerant capability under Transpose1 Traffic

Fig. 9 Fault-tolerant capability under Transpose2 Traffic

Fig. 10 Fault-tolerant capability under Bit-Reversal Traffic

ACKNOWLEDGMENT

This work was supported by the NSFC under grant
No.61176025 and No.61006027.

REFERENCES

[1] Jantsch, Axel, and Hannu Tenhunen, eds. “Networks on chip”.

Vol. 396. Dordrecht: Kluwer Academic Publishers, 2003.

[2] M. Daneshtalab et al., “A Low-Latency and Memory-Efficient

On-hip Network,” in Proceedings of 4th International

Symposium on Network-on-Chip (NOCS), pp. 99-106, May

2010, France.

[3] A. Prodromou, A. Panteli, C. Nicopoulos, and Y. Sazeides,

“NoCAlert: An On-Line and Real-Time Fault Detection

Mechanism for Network-on-Chip Architectures,” in Proc. of

Micro, pp. 60-71, 2012.

[4] Suwen Yang, M. Greenstreet, “Noise margin analysis for

dynamic logic circuits,” iccad, pp.406-412, 2005 International

Conference on Computer Aided Design (ICCAD'05), 2005

[5] Erdin, Ihsan, Michel S. Nakhla, and Ramachandra Achar.

“Circuit analysis of electromagnetic radiation and field coupling

effects for networks with embedded full-wave

modules.” Electromagnetic Compatibility, IEEE Transactions

on 42.4 (2000): 449-460.

[6] Aniket, Ravishankar Arunachalam, “Novel Algorithm for

Testing Crosstalk Induced Delay Faults in VLSI Circuits,” vlsid,

pp.479-484, 18th International Conference on VLSI Design held

jointly with 4th International Conference on Embedded Systems

Design (VLSID'05), 2005

[7] L. Benini and G. De Micheli, “Networks on Chips: Technology

and Tools,” Morgan Kauffmann, 2006.

[8] Z. Zhen, A. Greiner, S. Taktak, “A reconfigurable routing

algorithm for a fault-tolerant 2D-Mesh Network-on-Chip,” in

Proc. DAC, pp. 441-446, 2008.

[9] M. Koibuchi, H. Matsutani, H. Amano, T.M. Pinkston, “A

Lightweight Fault-Tolerant Mechanism for Network-on-Chip,”

in Proc. of NoCS, pp. 13-22, 2008.

[10] F. Chaix, et al., “A fault-tolerant deadlock-free adaptive routing

for On Chip interconnects,” Proc. DATE, pp. 1-4, 2011.

[11] M. Valinataj, et al., “A reconfigurable and adaptive routing

method for fault-tolerant mesh-based networks-on-chip,” AEU-

International Journal of Electronics and Communications, v. 65,

I. 7, pp.630-640, 2011.

[12] M. Ebrahimi, M. Daneshtalab, J. Plosila, “High Performance

Fault-Tolerant Routing Algorithm for NoC-based Many-Core

Systems”, in Proc. PDP, pp. 462-469, 2013.

[13] M. Pirretti, G. M. Link, et al., “Fault tolerant algorithm for

network-on-chip interconnect,” Symposium on VLSI, 2004

[14] M. Li, Q.A. Zeng, et al., “DyXY – a proximity congestion-aware

deadlockfree dynamic routing method for network on chip,”

Proc. DAC, pp. 849-852, 2006.

[15] M. Ebrahimi, M. Daneshtalab, P. Liljeberg, J. Plosila, and H.

Tenhunen, “LEAR – A Low-weight and Highly Adaptive

Routing Method for Distributing Congestions in On-Chip

Networks,” in Proc. of PDP, pp. 520-524, 2012

0% 0,5% 1% 1,5% 2%

9

9,5

10
P

ac
ke

ts
 x

 1
0

0
0

0

Proposed Mechanism DyXY

0% 0,5% 1% 1,5% 2%

7,8

8,3

8,8

P
ac

ke
ts

 x
 1

0
0

0
0

Proposed Mechanism DyXY

0% 0,5% 1% 1,5% 2%

7,8

8,3

8,8

P
ac

ke
ts

 x
 1

0
0

0
0

Proposed Mechanism DyXY

0% 0,5% 1% 1,5% 2%

7,8

8,3

8,8

P
ac

ke
ts

x

1
0

0
0

0

Proposed Mechanism DyXY

