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Abstract—Partial Reconfiguration (PR) offers the possibility
to adaptively change part of the FPGA design without stopping
the remaining system. In this paper, we present a compre-
hensive framework for adaptive computing, in which design
key points of hardware processes, system interconnections,
Operating Systems (OS), device drivers, scheduler software
as well as context switching are respectively concerned in
different hardware/software layers. A case study is discussed
to demonstrate an example of swapping a Flash memory
controller and an SRAM controller in response to diverse
memory access needs. Result analysis reveals a more efficient
resource utilization of 52.1% I/O pads, 86.5% LUTs and 81.3%
Flip-Flops, when compared to the static design with same
functionalities. A small reconfiguration overhead of context
switching is measured within the range from hundreds of
microseconds to milliseconds. Moreover, technical perspectives
are analyzed and it is foreseen to obtain great benefits with the
proposed design framework in object applications of particle
physics experiments.

Keywords-adaptive computing, partial reconfiguration, hard-
ware process scheduling, hardware context switching.

I. INTRODUCTION

Adaptive computing is the paradigm in which compu-
tation algorithms may vary and be adapted to ambient
conditions during system run-time. Typically an adaptive
system changes the processing behavior according to its
workloads, computation interests, or other environmental
situations. As a consequence, benefits including higher
computation performance, lower power consumption and
multitasking on limited computing resources may be ob-
tained by dynamically changing the system architecture or
adjusting important parameters. One major precondition of
FPGA-based adaptive computing, is the reconfigurability of
the computer systems. It denotes the capability to change
customized designs by loading different configware [1].
In contrast to the static reconfigurability, a more flexible
technology so-called Partial Reconfiguration (PR), is able to
dynamically enable the reconfiguration process on a partic-
ular section of an FPGA design while the remaining part is
still operating. The PR feature provides much convenience
in adaptive computing scenarios, where basic functions are
to be maintained while specific algorithms or algorithm steps
are stopped and adjusted. Normally partial reconfiguration is
achieved by loading a new partial bitstream into the FPGA
configuration memory and overwriting the current one. Thus
the reconfigurable part will change its behavior according to
the newly loaded configuration.

The paper will be organized as follows: In Section II,
related work is addressed with respect to adaptive computing
and hardware resource management on reconfigurable de-
vices. Based on the PR technology, a comprehensive design
framework for adaptive computing is presented in Section
III. Design key points in different hardware/software layers
are respectively concerned in this part. In Section IV, a case
study is discussed to demonstrate an example of adapting a
Flash memory controller and an SRAM controller on top of
the Linux OS. Targeting our object applications of particle
physics experiments, we analyze the technical perspectives
in Section V. Finally we conclude and propose our future
work in Section VI.

II. RELATED WORK

There exist contributions concerning adaptive computing
and hardware resource management on dynamically recon-
figurable devices. For instance in [2] a resource allocation
model is presented for load-balancing processing of mul-
titasks. Nevertheless the complicated hardware architecture
consisting of hierarchical Upper Management Units (UMU),
Management Units (MU), Processing Units (PU) and Re-
ordering Units (RU), makes it difficult and impractical for
implementation. In [3], the single processor scheduling al-
gorithm is investigated and applied to task hardware module
reconfigurations. The proposed Earliest Due Date (EDD)
model for synchronous tasks and the Earliest Deadline
First (EDF) model for asynchronous tasks can improve the
module response time when multiple designs are being alter-
natively loaded into multiple reconfigurable slots. Additional
scheduling mechanisms and task management studies can be
found in [4], [5] and [6]. However, most of the above cited
investigations concentrate only on the modeling level and do
not take into account practical constraints of reconfigurable
designs. In [7], a practical hardware/software environment
is implemented and tested to manage hardware processes
(reconfigurable modules) on FPGAs, using a modified Linux
kernel called BORPH. Their main contribution is to enhance
the OS kernel to support hardware processes and schedule
them altogether with normal software processes. Neverthe-
less the modification work in the OS kernel space is error
prone and makes the reconfigurable platform dependent on
the customized OS. It generates many difficulties to port
the schedulable system for different computing scenarios.
In this paper, we will present a practical and systematic



Figure 1. Hardware/software layers of the adaptive reconfigurable system

framework for reconfigurable adaptive computing, covering
design issues in both hardware and software layers.

III. PR FRAMEWORK FOR ADAPTIVE COMPUTING

In FPGA-based adaptive computing, different algorithm
modules are individually designed according to different
computation requirements. Analogous to software processes
running on top of OSes, each algorithm instance can be
treated as a hardware process [7] which is loaded into the
PR region and runs on the FPGA fabric rather than a general-
purpose processor. All hardware processes multiplex the
FPGA resources in the PR region, and are scheduled to start
according to certain types of disciplines on environmental
conditions. Context switching happens when the current
hardware process of an algorithm is being overwritten and
a new algorithm is to be loaded to work. All these key
issues in the adaptive computing framework are classified
into and addressed within certain layers in hardware or soft-
ware. Figure 1 demonstrates the layered hardware/software
architecture and details in different aspects are presented in
the following sub-sections respectively.

A. Hardware Infrastructure

We investigate adaptive designs using Xilinx Virtex-4
FX FPGA. The framework can also be extended on other
dynamically reconfigurable FPGAs. As shown in Figure 2,
the fundamental computer architecture is static, consisting of
the on-chip processor (PowerPC 405 or Microblaze), Multi-
Port Memory Controller (MPMC), and other peripherals on
the system PLB bus. Different computation or acceleration
requirements may be achieved by connecting application-
specific algorithm processors, which are reconfigurable dur-
ing system run-time. To be dynamically loaded with different
designs, PR Regions (PRR) are reserved in the system. In
the figure we show only one to demonstrate the principle.
Since communications exist between PR Modules (PRM)
and the static base design, specifically PLB, MPMC and
I/O buffers to external channels, Bus Macros (BM) must
be inserted to straddle the PR region and the base design
to lock the implementation routing between them [8][9].

Figure 2. The PR infrastructure on Virtex-4 FX FPGA

Therefore PLB interface and pin interface in which BM
collections are instantiated bridge all signals between PRMs
and the static design. Considering the output signals from
a PRM may toggle unpredictably during active reconfigura-
tion, enable ports for BM outputs (BM out en) are required
to disable PRM outputs and isolate unpredictable signals
for the static design from being interfered. Furthermore, a
separate reset signal is imported to solely reset the newly
loaded module after the partial reconfiguration. It is ORed
with the system PLB slave reset (SPLB RST) and the
outcoming is the actual reset applying to PRMs. Both the
BM output enable and the separate reset ports are driven by
a General-Purpose I/O (GPIO) core.

One significant advantage of the BM interface designs, is
that they do not change the communication protocols (PLB
or device-specific I/O protocols). Hence normal algorithm
cores which are supposed to be used in non-PR designs,
can be easily fitted in the PR region and communicate with
the base design without any modification effort.

The PLB protocol consists of both the master and the slave
interface. PR modules can either be entirely connected on the
system PLB bus (shown in Figure 2 as connection style 1),
or interface the master device directly to one port of MPMC
(connection style 2) for more efficient data movement. In the
latter case, the slave interface is still on the system PLB to
receive controls from the processor.

B. Runtime Reconfiguration Technical Support

Run-time partial reconfiguration is the process to write
partial bitstreams into the FPGA configuration memory.
On Xilinx dynamically reconfigurable FPGAs, an Internal
Configuration Access Port (ICAP) primitive is integrated on-
chip to access the reconfiguration memory. The ICAP design
in which the ICAP primitive is instantiated, interfaces to the
system interconnection and transports bitstream data from
memory devices (e.g. DDR in Figure 2) to load PR modules.
In our previous work of [10], there are detailed descriptions
on different ICAP designs with regard to their architectural



analysis and performance comparison. We choose the most
practical module MST HWICAP with a high reconfigu-
ration throughput of 235 MB/s. Thus a typical design of
hundred KiloBytes requires hundreds of microseconds (µs)
for reconfiguration, which are comparable to the normal
context switching overhead of software processes running on
CPUs with OSes [11]. The reconfiguration time is linearly
proportional to the sizes of partial bitstreams.

C. OS and Device Drivers

All hardware modules in the system infrastructure can
be managed by the processor with or without OS support.
In a standalone design without OS, the processor controls
reconfigurable algorithm modules with low-level register
accesses in application programs. While in OSes, device
drivers are to be customized respectively. In a Unix-like OS,
common file operations are programmed to access devices,
including “open”, “close”, “read”, “write”, “ioctl”, etc..
Interrupt handlers should also be implemented if there is
the interrupt function in the hardware design. Drivers are
either entirely incorporated in the OS kernel when compiled,
or built into modules which can be inserted or removed
according to the presence of hardware devices.

D. Scheduler Software

The scheduler of hardware processes is implemented as
application programs with or without OS support. It detects
ambient events and decides which algorithm to be configured
next. All hardware processes are preemptable and they must
comply with the management from the scheduler. Unlike
the kernel space scheduling in [7] and the management unit
design in hardware in [2], we manage hardware processes
entirely with user space software. Major advantages include
convenient portability to other platforms, avoidance of OS
kernel modification, and flexibility to optimize scheduling
disciplines. For example in Figure 3, a simplified sched-
uler program in C is demonstrated to reduce the context
switching frequency and efficiently utilize computing re-
sources. It is well suited to throughput-aware applications
such as stream processing. While in realtime applications,
scheduling and context switching must happen immediately,
configuring the needed hardware process to respond as soon
as possible. A simplified realtime scheduler example is
shown in Figure 4.

E. Contextless Switching and Context Saving/Restoring

The context of hardware processes refers to buffered
incoming raw data, intermediate calculation results and
control variables in registers or on-chip memory blocks
in PR regions. In some streaming calculations, it becomes
contextless when the buffered raw data are completely
digested and no intermediate state is needed to be recorded.
Thus the scheduler may simply swap out the active process,
and a reset will be sufficient to re-initialize it for successive

Figure 3. Simplified scheduler example in C for stream processing

Figure 4. Simplified scheduler example in C for realtime applications

work when it resumes. By contrast when needed, the con-
text saving and restoring mechanisms are very specific to
concrete designs. Generally speaking, two approaches can
be used to address this issue: In case of small amounts
of intermediate results, register readout and writein can
efficiently save the context in external memories and restore
it when the corresponding hardware module resumes; When
there are large quantities of data buffered in on-chip memory
blocks, the ICAP interface can be employed to readout the
bitstream and extract the storage values for context saving.
Discussions on context saving and restoring can be referred
to in [12] and [13].

IV. A CASE STUDY WITH OS SUPPORT

We detail a case study in this section to verify our pro-
posed reconfigurable framework for adaptive uses. Instead of
real algorithms for specific applications, we multiplex one
asynchronous NOR Flash controller and one synchronous
SRAM controller in a PR region. They share the FPGA
programmable resources as well as the same set of I/O
buses to external devices. These two peripheral controllers
are adaptively switched according to the system requirement
of accessing the SRAM or the Flash memory. There exist
reasons why we do not start the study from real applica-
tion algorithms: 1. Our application-specific algorithms are
complicated and prone to be erroneous in the hardware
design. By contrast the SRAM and the Flash controllers
are commercial cores and have been proved to be reliable;
2. No matter whether we use real algorithm processors or
peripheral controllers for investigation, they feature the same
connection interfaces to the base design (PLB) and external



Figure 5. Flash/SRAM PR design structure

channels (IOs); 3. Multiplexing two device controllers has
also practical benefits in the application design, alleviating
heavy constraints from the I/O pin and other programmable
resource consumption on the FPGA. In summary, it is rea-
sonable to start from the simple and understandable memory
controllers in framework verification for further adapting real
algorithms.

In our FPGA design, the NOR Flash memory stores the
embedded Linux kernel. It is loaded by a bootloader program
into the DDR memory for CPU execution after the system
power-on and the FPGA full configuration. From then on,
the Flash memory will be rarely accessed only when there
are external commands of upgrading the OS kernel online.
For the rest of time, the IO bandwidth and the on-chip
resources can be reutilized by the SRAM controller, which
takes over the PR region by replacing the initial Flash
controller. The SRAM targets mainly the Look-Up Table
(LUT) storage usage for application-specific computation.
Thus the PR region is expected to be adaptively loaded with
different controller cores to react on external events, such
as success of starting the OS, needs to get LUT data, or
commands to upgrade the OS kernel.

A. The Flash/SRAM Reconfigurable Design

The system infrastructure on the Virtex-4 FPGA is re-
ferred to in Figure 2. The Flash/SRAM PR design is
focalized in the block diagram of Figure 5. On the left side,
we observe that an off-chip NOR Flash memory and a ZBT
(Zero Bus Turnaround) SRAM share the same data, address
and control bus I/O pins of the FPGA. These two chips
are exclusively enabled by the “CE” pin. PLB interface
and pin interface do not change their respective interface
protocols. Hence the normal design of the Flash/SRAM
controller can be directly implemented for reconfiguration.
Since two controllers are both slave devices on the bus,
master interface signals in PLB interface are kept floating
in fact. The BM output enable ports as well as the exter-
nal reset for PR modules are controlled by a GPIO core
on PLB. During the reconfiguration process, the system
processor schedules the disable signals to isolate the PR

region from the static design, configures the PR module,
resets the newly loaded module and then re-enables BM
outputs to recover the channels between PR modules and the
static design. Dynamic reconfiguration work is realized by
MST HWICAP [10] loading partial bitstreams from DDR
to the FPGA configuration memory during system run-time.

B. Linux OS and Device Drivers
An open-source Linux 2.6 kernel runs on the PowerPC

405 embedded platform as shown in Figure 2. To manage
reconfigurable operations in Linux, device drivers for hard-
ware IP cores have been customized to provide programming
interfaces to application programs. There are respective ones
for the Flash memory, the LUT block in SRAM, PLB GPIO
and MST HWICAP. With drivers loaded, all device nodes
will show up in the “/dev” directory of the Linux file
system, and can be accessed by pre-defined file operations.
Drivers are built into modules. They will be inserted into the
kernel when the corresponding hardware IP is configured, or
removed when not needed any longer.

C. Adaptive Context Switching
The scheduler program is implemented in C. Figure 6

shows the flow chart, in which the Flash memory and the
SRAM controller are alternately loaded without stopping
the running Linux OS and the remaining system. In this
figure, steps labeled with “a - g” are used to dynamically
reconfigure the SRAM controller, and the ones labeled with
“A - G” are to load the Flash memory controller. Events
pointed by the symbol “¿” are detected by the scheduler to
trigger hardware context switching. Main module switching
steps before device operations include:

1) To save the register context of the to-be-unloaded
module in DDR variables;

2) To remove the driver module before unloading the
current hardware IP. This step is absent during the
first-time system booting;

3) To disable the bus macro outputs for isolating the PR
region from the base design;

4) To dynamically load the partial bitstream of the ex-
pected controller by writing its storage base address
and the size to the ICAP design;

5) To reset the newly loaded controller and recover its
register context;

6) To re-enable the bus macro outputs, restoring the
communication between the PR region and the base
design;

7) To insert the corresponding device driver module,
for the processor access with high-level application
software.

D. Benefit and Overhead Analysis
Multitasking features the benefit of an efficient utilization

of computing resources. One obvious advantage of multi-
plexing IP cores in the case study, is the reduced FPGA I/O



Figure 6. Flow chart of multiplexing Flash/SRAM in Linux

Resources on
Virtex4-FX20

Static Flash con-
troller (L1, F1)

Static SRAM con-
troller (L2, F2)

BM (LBM ) Reserved resources in
PRR (LP RR, FP RR)

PR resource utiliza-
tion (LP R, FP R)

PR vs. static resource con-
sumption ( LP R

Lstatic
,

FP R
Fstatic

)

4-input LUTs
(in total 17088)

923 (5.4%) 954 (5.6%) 656 (3.8%) 1296 (7.6%) 1624 (9.5%) 1624
923+954 = 86.5%

Slice Flip-Flops
(in total 17088)

867 (5.1%) 728 (4.3%) 0 1296 (7.6%) 1296 (7.6%) 1296
867+728 = 81.3%

Table I
RESOURCE UTILIZATION OF THE STATIC/RECONFIGURABLE FLASH/SRAM DESIGNS

pin count for peripheral connections, providing the possibil-
ity to connect more devices on a small FPGA with limited
I/Os. Assuming a static design with both devices, the Flash
memory needs 56 I/O pins and the SRAM needs 61 for data
bus, address bus and control signals. In the reconfigurable
design, both controllers share 61 pins. It implies only 52.1%
I/O consumption compared to the ordinary non-PR design
and the saving of 17.5% out of the total 320 I/O pads
on Virtex-4 FX20. As a consequence, the PCB layout is
simplified as well.

Comparing the traditional static design with the PR tech-
nology, the LUT and the Flip-Flop utilization on FPGAs can
be analyzed as follows: For static placements of n algorithm
cores, the overall resource consumption is the sum of all
modules as shown in Equation (1) and (2) with L for LUTs
and F for Flip-Flops:

Lstatic = L1 + L2 + ... + Ln (1)
Fstatic = F1 + F2 + ... + Fn (2)

For multiple modules sharing the same PR region, the
resource consumption is respectively represented as:

LPR = LPRR +
1
2
LBM (3)

FPR = FPRR (4)

In Equation (3) and (4), LPRR and FPRR are the re-
sources reserved in the PR region for run-time reconfigurable

modules. Taking into account the BM implementation with
LUTs [9], half of the BM LUT utilization (LBM ) should
be added into the overall result, since BMs straddle the PR
region boundary and half LUT consumption is out of the
PR region. The reserved resources in the PR region can be
calculated with Equation (5):

LPRR = FPRR =

Max[(L1+
1

2
LBM ), ...(Ln+

1

2
LBM ), F1, ...Fn]+Rmargin (5)

LPRR is equal to FPRR, since there are equivalent number
(both two) of LUTs and Flip-Flops in each FPGA slice. We
explain Equation (5) in the way that the PR region must
be regulated large enough to contain the maximum LUT
(including the other half of BM LUTs inside the PR region)
or Flip-Flop utilization among all reconfigurable modules.
To restrict the PR region in a rectangular shape on the
FPGA, a little more resources may be retained as the margin
represented by Rmargin in the equation.

In the Flash/SRAM case study, resource consumption
statistics are summarized in Table I. The first two columns
list the static resource consumption of both controller de-
signs. And the next three columns are results of the PR
design. The size of the PR region is derived from the
calculation using Equation (5). Considering the resource
utilization of the reserved PR region and BM interfaces,
we conclude that the reconfigurable infrastructure uses only



86.5% LUTs and 81.3% Flip-Flops of the static design for
same functionalities. Even larger resource savings can be
foreseen in practical designs, in which complex and more
algorithm processors multiplex the PR region and counteract
the fixed overhead of inserting BMs.

The major overhead introduced by dynamic reconfigura-
tion is the context switching time of hardware processes.
One fundamental constituent is the part that ICAP uses to
download partial bitstreams and dynamically reconfigures
PR modules. We measured the reconfiguration time of the
Flash/SRAM controller using the MST HWICAP core [10]
and obtained the result of 299 µs for the 71.3 KBytes
bitstreams. Further added by the software overhead including
system calls and inserting drivers, the context switching time
ranges from milliseconds (with OS support) to even within
hundreds of microseconds (standalone). Fast IP switching
guarantees an efficient utilization of FPGA computing re-
sources, and promotes the PR framework applicable for
applications with tight realtime requirements.

V. TECHNICAL PERSPECTIVES IN APPLICATIONS

The discussed reconfigurable framework is expected to be
adopted in large-scale computation platforms, for instance
our aimed application of data acquisition (DAQ) and trigger
systems in particle physics experiments [14]. The following
benefits are foreseen with the adaptive architecture:

1) Easy design management. Traditionally different al-
gorithm modules are allocated and incorporated in
computer systems statically by designers. The offline
allocation is complex and error prone, especially in
massive processing systems with hundreds of FPGAs.
By contrast in a self-reconfigurable platform, the
system architecture for all FPGAs becomes uniform
by reserving PR regions as blackboxes. According
to data signatures, different algorithm processors are
adaptively loaded from the design database during
system run-time. Adapting algorithms on the fly not
only simplifies the design management work, but also
makes it flexible and accurate.

2) Reduced FPGA size/count requirements. By dy-
namically loading different algorithms, multitasking
is realized within the same reconfigurable region. It
alleviates the chip size or count requirements, which
should otherwise be large enough to contain all pro-
cessing modules in traditional static designs.

3) More efficient utilization of computing resources.
Flexible scheduling disciplines select computation
modules according to ambient conditions. FPGA re-
sources are less frequently kept idle and more effi-
ciently utilized for multitasking.

VI. CONCLUSION AND FUTURE WORK

We have presented a comprehensive framework for FPGA
adaptive computing using the partial reconfiguration tech-

nology. Design key points are systematically concerned in
different hardware/software layers. As a case study, a Flash
memory controller and an SRAM controller are dynamically
adapted according to different memory access requirements.
Result analysis reveals a more efficient resource utilization
and a small reconfiguration overhead of context switching.
Finally technical perspectives in target applications are dis-
cussed: It is foreseen to obtain great benefits with adaptively
reconfigurable computing in particle physics experiments
and other large-scale processing applications.

In the future work, we will develop real algorithm
processors and dynamically adapt them for experimental
data processing. Sophisticated hardware context saving and
restoring mechanisms are also to be investigated in depth.
Moreover, inter-process communications must be efficiently
regulated regarding reconfigurable modules with mutual
communication requirements.
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