
1

Custom Microcoded Dynamic Memory Management
for Distributed On-Chip Memory Organizations

Iraklis Anagnostopoulos1, Sotirios Xydis1, Alexandros Bartzas1, Zhonghai Lu2, Dimitrios Soudris1, Axel Jantsch2
1 School of Electrical and Computer Engineering, National Technical University of Athens, Greece

2 Royal Institute of Technology-KTH, Dep. of Electronic, Communication and Software Systems, Sweden

Abstract—Multi-Processor System-on-Chip (MPSoCs) have at-
tracted significant attention since they are recognized as a
scalable paradigm to interconnect and organize a high number
of cores. Current multi-core embedded systems exhibit increased
levels of dynamic behavior, leading to unexpected memory
footprint variations unknown at design time. Dynamic Memory
Management (DMM) is a promising solution for such types
of dynamic systems. Although some efficient dynamic memory
managers have been proposed for conventional bus-based MPSoC
platforms, there are no DMM solutions regarding the constraints
and the opportunities delivered by the physical distribution of
multiple memory nodes of the platform. In this work, we address
the problem of providing customized microcoded DMM on MPSoC
platforms with distributed memory organization. Customization
is enabled at application- and platform-level. Results show that
customized microcoded DMM can serve approximately 7× more
allocation requests compared to pure distributed memory plat-
forms and perform 25% faster than the corresponding high-level
implementation in C language.

Index Terms—Multiprocessor System-on-Chip, Dynamic Mem-
ory Management, Network-on-Chip

I. INTRODUCTION AND RELATED WORK

High-performance single-chip computing devices evolve
from single- to multi- and even many-core architectures [1].
The embedded memory content in System-on-Chips increased
from 20% ten years ago to 85% of the chip area today and will
continue to increase in the future. Memories are preferably
distributed for medium and large scale system sizes, since
centralized memory has already become the bottleneck of
performance, power and cost [2]. Adopting the MPSoC ar-
chitectural template, multi-threaded applications are becoming
increasingly prevalent for next generation embedded systems.
Traditional memory optimization uses compile-time informa-
tion and focuses on static allocation in respect to memory
hierarchy [2]. For modern dynamic applications this is no
longer possible since there is a lot of memory unpredictability,
which cannot be captured by source code analysis alone.
However, the increased dynamism in data storage leads to
unexpected memory footprint variations unknown at design
time. Dynamic Memory (DM) managers are responsible for
organizing the dynamically allocated data in memory and
servicing the application memory requests at run-time. As il-
lustrated in [3] simple Dynamic Memory Management (DMM)
implementations often form a performance and scalability
bottleneck in the case of multi-threaded applications, affecting
the memory and energy consumption of the overall system.

Software-only DMM solutions have been extensively in-
vestigated and form the current practice, being flexible but

This work is partially supported by the E.C. funded FP7-215244 MOSART
Project, www.mosart-project.org

consuming many processor cycles, limiting system perfor-
mance [3], [4]. In the field of embedded computing, a set of
systematic exploration methodologies for single- and multi-
threaded customization on DMM have been proposed in [5],
[6] respectively, aiming to move from general-purpose to
application-specific solutions. Hardware acceleration regard-
ing memory management has been proposed by many re-
searchers [7], [8], [9], [10]. A hardware memory manage-
ment unit (SoCDMMU), responsible for dynamic memory
allocation and de-allocation is presented in [8]. However, this
is a centralized unit and could be a potential bottleneck in
MPSoCs. Furthermore, SoCDMMU is able to allocate only
complete global memory pages and the management of the
data (de)allocation of the local (or private) memories is left
out to the processors. A hardware MMU for NoC architec-
tures, is presented in [10], offering general-purpose DMM
for shared memory with a granularity of complete memory
pages. Dedicated hardware DMM solutions can achieve high
performance, but any small change in functionality leads to
re-design of the entire module. Thus, we focus on the mi-
crocoded approach as a promising alternative to overcome the
performance-flexibility dilemma, offering a programmable and
flexible solution to accelerate a wide range of applications.

In this work, we employ a hardware dual-microcoded con-
troller (DMC) [9] offering full support for dynamic mem-
ory (de)allocation (malloc() and free() functions) in a
Distributed Shared Memory (DSM) environment. We adopt
the microcoded approach to address DMM issues on MPSoC
platforms, aiming for hardware performance but maintain-
ing flexibility of software implementations. The main con-
tribution of this work is the design and implementation of
a microcoded, platform-dependent and memory distribution
aware customized DMM for MPSoC platforms. In order to
guarantee high performance, the proposed DMM services
are developed on top of DMC [9] that a) is responsible
for handling distributed memory requests and b) mitigates
processor’s workload.

II. PROPOSED METHODOLOGY FLOW

The proposed methodology framework for supporting cus-
tom DMM on MPSoC platforms with distributed memories is
showed in Fig. 1. Given the source code of a multi-threaded
dynamic application, we perform: (i) Application-dependent
and (ii) Platform-dependent DMM customization. First, the
application-dependent DMM customization is performed by
generating a set of Pareto configurations. Having as inputs
these configurations, the platform dependent DMM customiza-
tion is initiated, where the selected DMM is translated to

2

Profiled C/C++ code

MTh-DMM
Explorer tool

Microcode
topology aware
customization

Selected DMM

Pareto
points

DMM to DMC porting

DMM C++
Library

DMC

Leon3
processor

Bus

Local Memory

HW
NIF

HW
MMU

void main () {
Object *prev=&head;
while (&prev=&tail){

malloc(ch);}
return ptr;

free(ch);}

DMM Pareto
Configurations

MPSoC abstract model

NIF

T1

NIF

T2

NIF

T3

Interconnection
Network

NIF
M

NIF
M

NIF
M

T

M NIF

Processor with
mapped thread

Memory Network
Interface

DMM microcode
translation

Fig. 1. Proposed methodology

microcode, enhanced with platform’s aware information and
uploaded to DMC’s instruction memory.
A. Application-dependent DMM customization

In this step, we generate a set of Pareto customized Multi-
Threaded Dynamic Memory Managers (MTh-DMM), tailored
to the designer’s constraints and the application’s specific
needs. MTh-DMM Explorer tool [6] was used to generate the
application specific MTh-DMMs. This works on a platform-
independent level searching among inter- and intra-thread
DMM decision trees [6]. Exploration is performed based on
a constraint-orthogonal partition methodology. The Pareto di-
mensions for extracting the application-specific memory allo-
cators are: a) memory footprint and b) number of accesses. The
MTh-DMM explorer tool generates application-specific C++
allocators, and these allocators are the Pareto configurations.
Specifically, inter-thread exploration produces a first set of
Pareto configurations which are propagated as constraints for
further refinement during the intra-thread exploration phase.
An automated code generator module produces the source
code of the final DMM Pareto configurations, based on a C++
library containing modular and parameterizable MTh-DMM
software implementations.

In this work, we focus on platform-dependent customization
of DMM services rather than application-dependent ones.
Thus, we use and extend work on multi-threaded dynamic
memory management towards platform-specific customization.

B. Platform-dependent DMM customization

The main goal of this step is to move from platform-
independent to platform-dependent DMM customization in
order to increase performance and exploit platform’s features.
This is done through porting the application-specific DMM
to DMC microcode. Two steps are required. At first, the
high-level DMM configurations in C++ (platform-independent
level) are translated to DMC’s microcode. Second, the mi-
crocode is extended to take into consideration topology-aware
features, such as memory distribution and communication cost.

DMM Microcode Translation: Having as input the C++
DMM Pareto configurations, our tool transforms the high-
level code to equivalent microcode functions. We have built
generic and fully configurable microcode templates based on
the extracted C++ allocators and exploit platform’s features.
More specifically, according to platform characteristics the
designer can generate a large number of Heap organizations
by configuring different architecture-dependent DMM parame-
ters, such as: (a) Number, type and size of Fixed List Heaps,
(b) Heap size and (c) Heap positioning (local or global Heap).
Also, the inter- and intra-thread allocation policies (i.e. First
Fit, FIFO etc) from the DMM decision trees presented in [6]
have been translated to equivalent microcoded functions.

Customization according to memory distribution: In
order to achieve platform-dependent customization, the last
step is to perform topology-aware refinement. As mentioned,
the C++ DMM implementations work at a high abstraction
level, thus leaving to the host operating system the decision of
which (part of) physical memory is accessed during allocation
requests. However, the management of accessing physical
memory becomes dominant in MPSoC architectures due to
memory distribution over the platform. For a given memory
distribution, we further increase performance of the selected
DMM by implementing microcoded functions instructing
DMC: i) which (neighboring) Local Heap is more appropriate
to ask for a (remote) allocation request and ii) which Global
Heap is closer. At design time, based on topology criteria, we
build priority tables PTs,d, (s, d ∈ N) for each node N of the
MPSoC platform. P ∈ N represents the processing nodes of
the MPSoC and M ∈ N represents the memory ones. PTs,d

describes the priority weight of source s accessing destination
d. PTs,d priorities are exploited at run-time guiding DMC to
try allocation to (neighboring) nodes according to PTs,d table,
starting from the node with the highest priority. The PTs,d

value is defined in Equation 1.
PTs,d =

w1Ps,d + (1 − w1)(w2MLd + (1 − w2)(w3MPd + (1 − w3Ds,d)))

(i6=d)∑
∀i

{w1Ps.i + (1 − w1)(w2MLi + (1 − w2)(w3MPi + (1 − w3Ds,i)))}

(1)

where i ∈ M , Ps,d and Ds,d are the power consumption and
delay of the (s, d) link respectively. MLd and MPd are the
memory latency and memory power consumption per access

of the d memory respectively. Also,
3∑

i=1

wi = 1, wi ≥ 0, are

the weights for configuring the cost function. The microcode
functions responsible for triggering remote Heaps (local or
global) are totally independent and transparent to DMM’s
code. They are placed at the end of the microcode templates
and they are automatically triggered when the local DMC asks
for a remote (de)allocation request. DMC uses the message
passing policy to propagate information to neighboring nodes.
In that way, the execution of microcode to a different node is
allowed even if the remote DMC has not received any signal
from its own local core.

III. EXPERIMENTAL RESULTS

We used the platform presented in [9] that offers base
distributed shared memory (DSM) services such as virtual-
to-physical (V2P) address translation, shared memory access,

3

synchronization, cache coherency and memory consistency.
DMM works transparently on top of these low-level base
services. All shared memories are globally visible to all nodes
and organized as a single virtual addressing space using virtual
addressing and V2P translation. The used memory architecture
is NUMA (Non-Uniform Memory Architecture) and the dy-
namic data structures used by the application are allocated in
SDRAM memories. The control store where the microcode
resides during initialization and execution phases is a scratch-
pad memory. This microcode is an instruction sequence that
implements the allocator functions (malloc()/free()).
The system is composed of Processor-Memory (PM) nodes
interconnected via a packet-switched mesh network (Fig. 1).
A node can also be a memory node without a processor, pure
logic or an interface node to off-chip memory. Each PM node
contains a LEON3 processor, hardware modules connected
to the local bus, and a local memory. The DMC connects
the processor, the local memory and the network, and serves
requests from the local processor and the remote processors
via the network concurrently [9].

A simplified network subsystem is used as the driver ap-
plication [11]. The application consists of five kernels which
are triggered by wireless streams. Each kernel corresponds
to a thread and communicates with the other threads through
asynchronous FIFO queues: the output of one thread is the
input for another one. The application is organized into threads
that perform: packet injection, packet formation, encryption
(DES), TCP checksum, scheduling (DRR) and quality-of-
service management. The application threads use dynamic
data structures, and especially a) the list of nodes in the
DRR algorithm and b) the queue of pending packets for
each of the nodes. Through systematic application profiling
we captured the allocation behavior of the application [11].
This information contains the block size distribution of the
memory allocation requests. The application performs a big
number of small-size continuous allocation requests (40 to
80 bytes) that correspond to network headers combined with
bigger allocation requests (1200 - 1500 bytes) that correspond
to actual network packets.

Based on the allocation behavior, the MTh-DMM Explorer
tool generated the Pareto set of application specific DMM.
Fig. 2 shows the two selected DMM Pareto configurations
for the specific application. Column 2 depicts the per-thread
Heap organization. The topology used for the evaluation
of our approach is a 2 × 2 NoC. According to mapping
decisions [12], nodes (0, 0), (0, 1), (1, 0) are processing nodes
with their own Local Heap while node (1, 1) is the Global
Heap. For local memories the Heap size is 4KB and Global
Heap size (node (1, 1)) is 32KB. For the presented topology
we implemented four different DMM configurations, depicted
in Fig. 3, depending on memory distribution over the platform.

Configuration 1: Pure Distributed Memory. In this con-
figuration (Fig. 3a), each node sends allocation requests for
dynamic data to its Local Heap. There is no Global Heap.
Configuration 2: Centralized single Heap. In this config-
uration (Fig. 3b), each node sends allocation requests for
dynamic data only to Global Heap (node (1, 1)). There are
no Local Heaps. Configuration 3: Distributed multiple-Heap

Fig. 2. Description of the selected DMM configurations

(0,1) (1,0)(0,0)

(1,1)

0 0 0

Configuration 1

a)

(0,1) (1,0)(0,0)

(1,1)

0
0 0

b)

Configuration 2

c)
0

(0,1) (1,0)(0,0)

(1,1)

0 0

1
1

1

Configuration 3

(0,1) (1,0)(0,0)

(1,1)

0 0 0

1
1

3
2 1

2 2

d)

Configuration 4

Fig. 3. a) Configuration 1 b) Configuration 2 c) Configuration 3 d)
Configuration 4. Directed edges present the priority of choosing the destination
node (0=highest priority, 3=lowest priority).

with Global Heap. In this configuration (Fig. 3c), each node
first sends allocation requests to its Local Heap. If Local
Heap is not able (due to lack of space) to serve any more
allocation requests, the request then is sent to Global Heap.
Configuration 4: Memory distribution-aware multiple-Heap
with Global Heap. In this configuration (Fig. 3d), each node
first sends allocation requests to its Local Heap. If Local Heap
is not able (due to lack of space) to serve any more allocation
requests, then, according to priorities, the Global Heap or the
Local Heap of another node is selected in order to serve the
allocation request.

For the two selected DMMs and for each of the four
aforementioned configurations, Fig. 4 shows: i) the cycles
performed until a Heap memory overflow event appears, ii) the
DMM event distribution and iii) the microcode performance
compared to the equivalent C implementation on the LEON3
processor. Above each bar the actual count of served DMM
events (Local Heap/ Global Heap) is presented until Heap
memory overflow appears and this number of served DMM
events is the same whether we follow the C or the microcode
implementation for the same configuration (of the same DMM
allocator). Heap memory overflow is the time (counted in
cycles) when Heap was unable, due to lack of space, to serve
any more allocation requests. According to Fig. 4, when DMM
is aware of the memory distribution, the time in which Heap
overflow appears, increases. Specifically, configuration 4 per-
forms 7× more cycles for DMM 2 compared to configuration
1. Also, when DMM is aware of the memory distribution,
the number of served DMM requests increases. For example,
configuration 4 achieved to serve approximately 7× more
DMM events for both DMM 1 and DMM 2 compared to
configuration 1 verifying also the first result of Heap’s lifetime
increase. Additionally, according to Fig. 4, DMC serves the
same number of DMM events in fewer cycles, performing
faster than its corresponding C implementation (for the same

4

Performance comparison and DMM event distribution

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
yc

le
s

0

50000

100000

150000

200000

250000

264/0 264/0
0/438 0/438

1210/216

700/90

1456/248 1020/620DMM 1 Microcode on DMC
DMM 1 C code on Leon3
DMM 2 Microcode on DMC
DMM 2 C code on Leon3

DMM events on
Local Heap/Global HeapLH/GH

Fig. 4. Performance comparison and DMM event distribution.

configuration). Specifically, DMM events performed by DMC
(microcode) are on average 25% faster than LEON3 (C code).
This happens because DMC is responsible for handling dis-
tributed memory requests and so every time LEON3 wants to
access the memory, DMC is responsible for establishing the
communication.

Fig. 5 shows: i) the average accelerator cycles, ii) the cycles
spent due to memory stall and iii) the average energy con-
sumption (pJoule) consumed per DMM event for DMM 1 and
2. Configuration 1 appears to be the fastest one, however it is
the one that first exhibits Heap memory overflow. As expected,
configuration 2 is the slowest among all. It needs more cycles
since all processing nodes access the same global Heap for
each (de)allocation and they are stalled due to memory syn-
chronization (safe-lock) mechanisms. Configuration 3 offers
good performance and additionally being more resilient in
comparison to configurations 1 and 2. Configuration 4 requires
a little more cycles than configuration 3 but it is a small penalty
compared to the fact that it is the best solution regarding Heap
memory overflow and served DMM events. We accounted
energy consumed from the execution of the DMM microcode
(based on post synthesis estimations at 0.09 um2 of the
DMC [9]) and the memory accessing pattern to the local and
global heaps (based on Cacti [13] estimations). Configuration 2
consumes 6% more energy compared to configuration 1, since
all its DMM events occur on the global Heap and the local
controllers use their message passing instructions to guide the
global Heap. Configuration 3, consumes approximately 18%
and 19%, for DMM 1 and DMM 2 respectively, more energy in
comparison to Configuration 1. This is caused by the fact that
Configuration 3 consists of more microcode instructions (Fig.
2) and thus energy consumption is increased. Configuration 4,
consumes approximately 25% more energy in comparison to
Configuration 1. Also it consumes the highest energy amount
due to the augmented code size and the often communication
for detecting the most available Heap to use.

Experimental results show that the proposed approach for
designing customized microcoded memory distribution-aware
DMM (configuration 4): a) can serve more DMM events by
using all available Heaps of the platform, b) increases Heap
lifetime, c) is fully configurable and easy to use (offering mi-
crocoded templates), d) achieves better performance exploiting
the presence of the DMC for handling distributed memory
requests, thus mitigating processor’s workload and e) has a
negligible penalty regarding energy consumption.

Configuration 1 Configuration 2 Configuration 3 Configuration 4

C
yc

le
s

0

200

400

600

800

1000

1200

1400

8500

9000

9500

10000

10500

11000

11500 Energy consum
ption (pJoule)

Average cycles and energy consumption per DMM event

DMM 1 energy DMM 2 energy

DMM 1 Microcode on DMC DMM 1 C code on Leon3 DMM 2 Microcode on DMC
DMM 2 C code on Leon3 Cycles spent due to memory stall

Fig. 5. Average cycles and energy consumption per DMM event
IV. CONCLUSIONS

This paper presented a methodology for enabling cus-
tom DMM services for distributed shared memory MPSoC
platforms. Experimental results showed that in the proposed
memory distribution-aware DMMs the Heap overflow chance
is reduced, while the served allocation requests increase with
a small penalty in average cycles and energy per DMM
event. Specifically for the presented application, the gain was
approximately 7× for served allocation requests with a small
increase of approximately 14% to average energy consumption
per allocation compared to the Pure Distributed Memory
organization. Also, the microcode approach is on average
25% faster than the C implementation enhancing the reason
for choosing a hardware controller for handling distributed
memory requests.

REFERENCES

[1] S. Borkar, “Thousand core chips: A technology perspective,” in Proc.
of DAC, 2007, pp. 746–749.

[2] F. Catthoor et al., Data access and storage management for embedded
programmable processors. Kluwer Academic Publishers, 2002.

[3] E. D. Berger et al., “Hoard: a scalable memory allocator for multi-
threaded applications,” in Proc. of ASPLOS, vol. 35, no. 11. ACM,
2000, pp. 117–128.

[4] P. R. Wilson et al., “Dynamic storage allocation: A survey and critical
review,” in Proc. of IWMM. Springer-Verlag, 1995, pp. 1–116.

[5] D. Atienza et al., “Systematic dynamic memory management design
methodology for reduced memory footprint,” ACM TODAES, vol. 11,
no. 2, pp. 465–489, 2006.

[6] S. Xydis et al., “Custom mutli-threaded dynamic memory management
for multiprocessor system-on-chip platforms,” in Proc. of ICSAMOS, jul.
2010, pp. 102–109.

[7] J. M. Chang and E. F. Gehringer, “A high-performance memory allocator
for object-oriented systems,” IEEE Trans. Comput., vol. 45, no. 3, pp.
357–366, 1996.

[8] M. Shalan and V. J. Mooney, “Hardware support for real-time embedded
multiprocessor system-on-a-chip memory management,” in Proc. of
CODES. ACM, 2002, pp. 79–84.

[9] X. Chen et al., “Supporting distributed shared memory on multi-core
network-on-chips using a dual microcoded controller,” in Proc. of DATE,
2010, pp. 39–44.

[10] M. Monchiero et al., “Exploration of distributed shared memory ar-
chitectures for NoC-based multiprocessors,” JSA, vol. 53, no. 10, pp.
719–732, 2007.

[11] A. Bartzas et al., “Software metadata: Systematic characterization of
the memory behaviour of dynamic applications,” JSS, vol. 83, no. 6, pp.
1051 – 1075, 2010, Software Architecture and Mobility.

[12] S. Murali and G. D. Micheli, “Bandwidth-constrained mapping of cores
onto noc architectures,” Proc. of DATE, vol. 2, p. 20896, 2004.

[13] S. Thoziyoor and N. Muralimanohar, “Cacti 5.0, technical report hpl-
2007-167, hp labs,” 2007.

