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ABSTRACT
Increasing dynamic workloads running on NoC-based many-core
systems necessitates efficient runtime mapping strategies. With an
unpredictable nature of application profiles, selecting a rational re-
gion to map an incoming application is an NP-hard problem in view
of minimizing congestion and maximizing performance. In this pa-
per, we propose a proactive region selection strategy which prior-
itizes nodes that offer lower congestion and dispersion. Our pro-
posed strategy, MapPro, quantitatively represents the propagated
impact of spatial availability and dispersion on the network with
every new mapped application. This allows us to identify a suit-
able region to accommodate an incoming application that results
in minimal congestion and dispersion. We cluster the network into
squares of different radii to suit applications of different sizes and
proactively select a suitable square for a new application, eliminat-
ing the overhead caused with typical reactive mapping approaches.
We evaluated our proposed strategy over different traffic patterns
and observed gains of up to 41% in energy efficiency, 28% in con-
gestion and 21% dispersion when compared to the state-of-the-art
region selection methods.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design − Real-time
systems and embedded systems

General Terms
Algorithms, Performance, Management, Design

Keywords
On-chip many-core systems, Application mapping, Task allocation,
Proactive Runtime Mapping

1. INTRODUCTION
Networks-on-chip (NoC) based many-core systems have accel-

erated the performance of computationally intensive applications
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by providing a better communication infrastructure [8]. Applica-
tions running on a system are modelled as task graphs where tasks
are individual computational blocks that communicate with each
other [17]. Application mapping is the phase where a tile for a task
is chosen in order to maximize the cores’ and network’s perfor-
mance while minimizing latency and power consumption. Given
the un-predictable nature and sequence of incoming applications
[4] [5], mapping has to be performed dynamically rather than at
design time [7] [2] [10]. With a wide range of applications enter-
ing and leaving such a system, runtime application mapping poli-
cies become crucial factor in determining the chip’s performance,
power consumption and reliability [6]. We consider run-time map-
ping as one of the first steps in servicing an incoming application
as opposed to reactive steps like task migration. Mapping an entire
application consisting of several communicating tasks, satisfying
power and performance constraints is a complex process. Assum-
ing that there can be other applications running in parallel on the
chip, mapping a new application adds to the complexity and con-
sumes more execution time, degrading the expected performance
from a parallel system. Finding a preferable region to map an in-
coming application with least possible overhead is thus important
to ensure high performance of the chip.

Runtime mapping is split into two phases viz., finding a suit-
able region to map an application [7], followed by mapping tasks
of the application in the selected region [11]. Optimal region for
mapping an application is the one that results in lower congestion,
dispersion, power consumption and higher performance. An op-
timal region for an application can be found starting with an op-
timal node in the network, referred to as the first node, around
which an application can be mapped. First node should have un-
occupied nodes around it in a contiguous manner, forming a near
convex shape which will be ideal for lower congestion and dis-
persion. First node selection effects internal and external conges-
tion, dispersion and fragmentation of NoC-based systems, creating
a significant impact on performance [12]. For a network of size
n × n, finding the optimal first node and a region in the mesh for
an incoming application is of polynomial time complexity, of the
order O(n3) [9]. Adding the above mentioned constraints on con-
gestion and dispersion to the mapping issue makes it an NP-hard
problem [15]. Although first node selection is an important phase
that determines performance of the system, it is not desirable to
exhaustively search the network for an optimal first node. A near
exhaustive search might offer an optimal first node, however the
time spent in finding the first node nullifies any performance gains
that come with it. Keeping in view the growing computational de-
mands and scalability of networks, it is of critical importance to
design fast and adaptive first node finding strategies. Significant



work has been done so far on runtime mapping [11] [13] [7], yet
not many existing techniques have optimized the first node selec-
tion. Existing first node selection strategies either do not consider
the combination of spatial availability, congestion, dispersion [6]
[7] [16] or involve expensive computations to search the network
and find an optimal region [12].

In this paper, we propose a proactive first node selection strat-
egy that provides a near convex (square shaped) region with mini-
mal congestion and dispersion. We cluster the network into square
shaped regions of different radii to fit applications of different sizes,
and quantify spatial availability and probability for internal conges-
tion of each square. We minimize the search to only those squares
that can fit the size of a newly arrived application. We consider the
impact of currently mapped applications on remaining un-occupied
nodes by updating their availability and congestion metrics. This
helps our proactive strategy of finding a preferable region for the
next incoming application of any size with a single look-up for the
square that can accommodate it. Our idea is to map the application
in a suitable region up on its arrival itself, limiting the need for an
expensive task migration later. The contributions from our work
are:

• Quantification of spatial availability, internal congestion and
dispersion into a unified metric

• Modeling the of ripple effect of a newly mapped application
on remaining un-occupied nodes.

• Proactive first node selection for a generic NoC mesh running
dynamic workloads.

The rest of the paper is organized as follows. We formulate the
problem of first node selection and motivate its importance in Sec-
tion 2. Section 3 formally introduces the preliminaries of our first
node selection method and later details the proposed algorithm.
The evaluation platform and results in comparison to state-of-the-
art first node selection methods are presented in Section 4. Finally,
Section 5 concludes the paper and discusses possible future works.

2. MOTIVATION
First node selection has a significant effect on internal and ex-

ternal congestion, and dispersion of applications running, which
subsequently reflects in the chip’s performance [12]. It is neces-
sary to find an optimal first node that satisfies congestion and dis-
persion metrics, with minimal execution time. First node selection
not only effects the current application, but also on future incom-
ing applications. The effect of first node selection on current and
future incoming applications is explained through a motivational
example. Figure 1(a) shows the status of a network with three ap-
plications App1, App2 and App3 of sizes 6, 8 and 10 running on it.
With the arrival of a new application App4 with 9 tasks, a suitable
region has to be found such that all tasks of App4 are mapped with
minimal congestion and dispersion. A naive first node selection
allocates a random node located at (6,3) to App4 and subsequent
mapping is shown in Figure 1(b). All the tasks are spread around
the first node, which does not lead to a convex shape. Although it
is near convex, it leaves the nodes located at (5,3), (5,4) and (7,5)
fragmented. These three nodes do not form a convex shape are less
likely to be part of future incoming applications. They either stay
un-occupied resulting in poor resource utilization, or become part
of same application resulting in a higher communication penalty.
In addition, tasks of any application mapped onto these nodes in
the future would contend with packets of App4 leading to exter-
nal congestion. In contrast, a congestion, dispersion and spatial

availability aware first node selection is shown in Figure 1(c). The
node located at (1,4) is selected as first node and App4 is mapped
around it in a perforate convex shape. This mapping of App4 en-
sures that all of its tasks are at minimal communication distance,
and do not conflict with any other running applications. It causes
no fragmentation leaving convex shapes for future incoming appli-
cations which would also minimize dispersion.

2.1 Problem Formulation
The foremost requirement of a first node is the availability of

enough number of free nodes in its proximity on to which incom-
ing application’s tasks can be mapped. The next requirement is to
have lower internal congestion - the communication penalty that
arises from communicating tasks of an application that are mapped
far apart. Contiguous nodes are the nodes that are adjacent to each
other which ensure a minimal hop distance among communicating
tasks of an application. Mapping an application onto contiguous
nodes can minimize internal congestion. The other metric to be
considered during first node selection is dispersion - a case where
un-occupied nodes are far apart and spread out across the network
into concave and irregular geometric shapes, leading to poor re-
source utilization. This will also result in external congestion -
contention between packets belonging to different applications. A
square shaped region has a minimal radius among regular geomet-
ric shaped regions, making it a compact fit for an application. Ap-
plication mapped onto a square shaped (or almost square shaped)
regions is less likely to interfere with other applications, minimiz-
ing both the probability for dispersion and external congestion. In
view of these metrics, an optimal first node for a new application
thus has to be:

• Spatially available - enough number of free nodes around it
to map the application.

• Contiguous - free nodes that are contiguous to minimize in-
ternal congestion.

• Near Convex - free nodes forming a near convex geometrical
shape to minimize dispersion and external congestion.

Finding the appropriate first node is the key factor to find the
optimal region. However, all the aforementioned metrics have to
be quantified to prioritize one node over the other. In addition,
exhaustively searching for an optimal node has to be avoided. A
state-of-the-art first node selection through a hill climbing approach
is proposed in [12]. Three applications App1, App2 and App3 are
currently running and App4 is about to enter the system, as shown
in Figure 1(a). A hill climbing approach for first node selection
proposed in [12] defines an open direction, the direction in which
probability of finding free nodes is higher. Upon arrival of a new
application, it randomly chooses a free node, identifies the open di-
rection for the chosen node and expands the search space towards it
iteratively. The search stops when the number of free nodes around
a selected node is equal to the new application’s size. It tries to
walk through the mesh with the intention to find the smallest pos-
sible, contiguous region that can fit the new application. On an
average, complexity of this method is of the order O(

√
n), while

on a worst case, it is O(n2), where n × n is the network size. Al-
though this approach results in lower dispersion and higher conti-
guity, its random nature and scenario of other applications running
on the mesh affects its time complexity. While certain combina-
tion of occupied nodes on network favor hill climbing, some other
combination might result in a worst case time complexity. Most
importantly, with availability of contiguous free nodes being the
only criteria, this approach limits itself to finding only one suitable
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Figure 1: Impact of first node selection

first node, while there might exist a much better alternative. Figure
1(d) shows the possible open direction traversal of hill climbing ap-
proach in two Region-1 and Region-2. Randomly choosing a node
in one region will ignore other possible optimal nodes. In case
the random nature results in choosing a node from Region-2, hill
climbing gets confined or stuck at this region and is less likely to
find an optimal node. As mentioned in previous section, we cluster
the network into squares of different radii and assign a combinato-
rial value of availability and congestion to each square. Figure 1(c)
shows the mapping of App4 in square centered at (1,5), although
there are other possible squares, we choose the best possible region
for the new application so as to ensure contiguity with other appli-
cations. We have the bird-eye view of entire network, as opposed
to hill climbing approach that allows us to make rational decisions
for incoming applications. In the next section, we present our ap-
proach on quantifying these parameters and our proactive approach
that eliminates first node finding overhead.

3. PROACTIVE FIRST NODE SELECTION

3.1 Preliminaries
Each application in the system is represented by a directed graph

denoted as a task graph Ap = TG(T,E). Each vertex ti ∈ T rep-
resents one task of the application, while the edge ei,j ∈ E stands
for a communication between the source task ti, and the destina-
tion task tj . Task graph of a Gaussian Elimination application [3]
which is extracted using TGG [1] is shown in Figure 2(a). The wi,j

values, i.e. the amount of data transferred from ti to tj of edge
ei,j , is indicated on each edge. An architecture graph AG(N,L)
describes the communication infrastructure of the processing ele-
ments. Given its simplicity and popularity, we considered a 2D-
mesh NoC (Figure 2(b)) with XY deterministic wormhole routing.
Other network topologies can also use our first node selection strat-
egy, however it might lead to inconsistent square regions towards
the edges, as opposed to the center. The AG contains a set of nodes
nw,h ∈ N , connected together through unidirectional links lk ∈ L.
Each node is the combination of the Processing Element (PE) con-
nected to the router. Mapping of an application onto the system is
defined as a one-to-one function from the set of application tasks to
the set of nodes:

map : T → N, s.t.map(ti) = nw,h; ∀ti ∈ T, ∃nw,h ∈ N (1)

Figure 2(b) illustrates a possible mapping of the application in Fig-
ure 2(a), onto the described platform.To attain a near convex shape,
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Figure 2: Mesh-Based platform with an application mapped onto
it (the highlighted region.)

for simplicity and ease of application assignment, we cluster the
network into squares of different radii, intuitively to fit applications
of different sizes. A square region and its features are mentioned
below.
Square(Sr

ij): A square Sr
ij is a square shaped collection of nodes,

centered at node nij with r being its radius i.e., the distance from
the center of the square to any of its edges. A square region can
have both free and occupied nodes. The number of nodes in each
square shape region in the network ranges in 1, 9, 25, ... , (2i+1)2,
for radii 0, 1, 2, 3.... (

√
M − 1)/2 . There can be different squares

of same size, but with different centers. Figure 3 shows a squares
centered at two different nodes, n3,7 and n6,3, with radius 1 and
2. The node n3,7 is a center for the squares S1

3,7 and S2
3,7 and the

noden6,3 is a center for the squares S1
6,3 and S2

6,3. Note that each
node is a center for squares with radius 1, 2, 3, ... up to M/2. All
the squares of same size are grouped together into a square group,
SGr , where r is the radius of squares in the group. On the whole,
total number of square groups in the mesh is expressed as:

groups =

(
√

M−1)/2∑
i=1

(2i+ 1)2 =
k(2k + 3)2 + 2k

3
(2)

Where k = (
√
M − 1)/2. Searching for a square for an incoming

application among groups results in a time complexity of order



O(M3/2), where M × M is the size of the network. For appli-
cations of every size within the mesh limits, there exists a square
that has enough number of nodes to accommodate the application.
For instance, an incoming application of size 7 can fit in a square
of size 9 (radius 1). In general, an application of size size can be
fit in square with radius r such that size ∈ ((r − 2)2, r2]. We find
a perfect square even for applications that do not perfectly fit in a
square, leaving few cores un-occupied. In such cases, we consider
these un-occupied cores as available for mapping, but belonging
to squares with a different first node than the current square and
also with a different radius. With the arrival of a new application,
a square suitable for the application size is chosen. However, there
might be more than more than one square that can accommodate
the new application. We resolve this by quantifying spatial avail-
ability and congestion of a square by assigning weighted parameter
called Vicinity Counter to the center of a square.

Definition: Vicinity counter, V Cr
ij , for a node located at (i,j) is

the weighted sum of number of free nodes in the square centered at
(i,j) with radius r. We assign the weights to a node ni,j as:

Wni,j =

{
1 if ni,j is unoccupied
−1 if ni,j is occupied

A free node has a weight 1 while an occupied node has a weight -1.
Further, we consider the impact of occupied nodes in the square on
congestion. A node that is occupied in the inner most proximity,
close to the first node has more affect on internal congestion than
the ones that are occupied, far from the first node. We quantify this
by pegging the weight of an occupied node with its distance from
the central node by assigning a higher penalty to occupied nodes
closer to central node and relatively lower penalty to the ones that
are far. The vicinity count for a node (i,j) is expressed as:

V Cr
i,j =

∑
Wni,j × (r − d+ 1) (3)

Where r is radius of square and d is the distance from occupied
node to the center. The VC of a node (i,j) qualitatively represents
the dispersion, internal congestion, and contiguity of the node (i,j)
and thus of the selected square centered at (i,j). This makes it easier
to choose a first node and thus the region for mapping an incoming
application minimizing congestion.
DistanceFactor(Dij): Distance Factor of a node located at (i,j)
is the sum of distance of the node from all the other occupied nodes
of the network. Distance Factor is expressed as:

Dij =

X,Y∑
x,y

| (i− x) | + | (j − y) | (4)

where Dij is the Distance Factor of the node located at (i,j),
(x,y)∈ (X,Y) are occupied nodes of the network. We use the Dis-
tance Factor to represent the contiguity of the chosen first node lo-
cated (i,j) with respect to all the current occupied nodes. A higher
D indicates that the chosen node is far from existing applications
and is likely to violate contiguity metric. In contrast, a node with
lower D value is nearer to existing applications and is more likely
to be contiguous with them. For different first nodes with same V C
value, we use the Distance Factor to prioritize nodes that result in a
contiguous mapping.

Figure 4 shows the vicinity count values for two different scenar-
ios of occupied nodes. In case of square centred at tile t37, number
of occupied nodes in the square are 2, with both the nodes being
in the inner most square close to the first node. The VC for t37 =
25-(1*2 + 1*2) = 21. The other scenario presented is the square
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centred at node t63, with 3 nodes occupied, all being in outer most
square far from the central node. The VC for this square = 25-(1*1
+ 1*1 + 1*1) = 22. Square centred at t63 has a better VC value and
would be the preferred despite having more number of occupied
nodes than that of square centred at t37. This can be attributed to
the fact that t37 has occupied nodes closer which would result in
higher congestion and dispersion. The fact that tasks with higher
communication volume will be mapped onto the central node and
its neighbours, makes the impact of occupied nodes in inner squares
more significant.

3.2 Ripple Effect of Mapping
When a new application has arrived and gets mapped onto the

system, it effects its neighboring un-occupied nodes in terms of
probability of congestion and dispersion. This propagates similar
to the ripple effect of stone in water such that the impact decreases
with distance from point of impact. We model this effect by updat-
ing the V C value for each node (thus squares) in the network once
a new application is mapped. When a node gets occupied, other
nodes surrounding it gets assigned a lower V C (as in Equation 3),
subject to the distance from occupied node. When the system is
initialized, all the nodes are assumed to be un-occupied. Figure 5
shows the Vicinity Counter values for square groups 1 to 4(SG-1 -
SG-4) with radii 1 to 4 under initial conditions. Nodes on the edges
have lesser neighbors reflecting in lower V C values and hence
lower the chance of being prioritized. Nodes towards the center
of the network tend to have higher V C values due to abundance
of neighbors. Although for squares with lower radius V C value
is almost even throughout the network, except for the edges. With
increase in radius, resulting in squares that can fit applications of
higher size, V C value increases towards the center of the network.
Figure 5 shows the top view of the network which distinguishes be-



Algorithm 1 First Node Selection
Inputs: appSize: Size of the entering application, newMapped: Incom-
ing application; newReleased: Released application;
Outputs: Cfn: The selected first node for the mapping;
Constants: M : Size of the network;
groupLength: Number of square groups equal to [(

√
M − 1)/2];

Global Variables: V C[M ][groupLength]: Vicinity counter array;
maxV C[groupLength]: Maximum vicinity counter in each group;

Body:
1: Cfn ← maxV C[(

√
appSize−1)/2]

2: if newMapped then
3: for each Cxy ∈ newMapped do
4: addCore(Cxy);
5: end for
6: end if
7: if newReleased then
8: for eachCxy ∈ newReleased do
9: releaseCore(Cxy);

10: end for
11: end if

Algorithm 2 Updating VC Values
Inputs: nxy : Input core located in Row x and Column y;
Variables: V C: Vicinity counter for each node in a square; maxV C:
Node with the maximum vicinity counter in square; D: Distance variable;
Constants: maxRadius: The maximum radius length of the square
((
√
M − 1)/2); //M is the network size;

Outputs: Updating the global variables defined in Algorithm 1;

Body:
1: for each core nij located in Row i and Column j do
2: r′ = maximum(|i− x|, |j − y|);
3: Dij+ = r′;
4: for r = 1 to maxRadius do
5: if r − r′ ≥ 0 then
6: V Cr

ij -= r - r′;
7: if V Cr

ij > maxV Cr then
8: maxV Cr ← V Cr

ij ;
9: else

10: if V Cr
ij = maxV Cr and Dij < DmaxV Cr then

11: maxV Cr ← V Cr
ij ;

12: end if
13: end if
14: end if
15: end for
16: end for

tween optimal and non-optimal regions for incoming application of
any size. This approach makes it simpler to choose preferable first
node by prioritizing nodes with higher V C. With every new appli-
cation mapped onto the system, the V C values for all correspond-
ing un-occupied nodes gets updated accordingly. Figure 6 shows
the updated VC values after 3 applications App1, App2 and App3
being mapped for square groups of radius 1 to 4 (SG-1 - SG-4).
Nodes in the proximity of mapped regions gets assigned to a lower
VC value , while this impact lessens as we move away from occu-
pied regions. Since SG-3 and SG-4 can fit applications of higher
sizes compared to that of SG-1 and SG-2, the degradation of VC is
much higher for SG-3 and SG-4. The network’s status gets updated
and once again is ready to choose preferable first nodes for next
incoming applications of any size based on updated V C values.
Figure 7 shows the updated V C values for square groups 1 to 4,
after another application App4 enters the system. The updated val-
ues show a further deterioration in VC, making it easier to classify
preferable regions for future incoming applications. The proce-

dure for handling requests of incoming and exiting applications is
shown in Algorithm 1. When an application of size appSize enters
the system, the first node that can fit the new application has to be
selected. The node which centers the square that can fit appSize
with best possible V C value, maxV C[(

√
appSize−1)/2] is chosen

(line 1). Application is then mapped onto the system around the
selected first node and all the nodes onto which application is be-
ing mapped are marked as occupied (lines 2-5). If an application
finishes its execution and leaves the system, all the nodes on which
the exiting application ran are now marked as un-occupied. Every
time an application enters or leaves the system, status of nodes gets
changes. This reflects in changing V C values of all the remain-
ing nodes, which is updated as shown in Algorithm 2. For every
node, the effective distance from the node to the center of square(s)
it belongs to is calculated (line 2). These values accumulated as a
sum to compute distance factor for each node (line 3). The V C
value for the node is updated based on the node status (Wnij) and
its distance from center (r − r′) (line 5). When an application has
entered the system, the V C value is computed as a subtraction of
node status, while it is computed as addition in case an application
has exited (line 5). The node with highest V C value in the group of
squares with radius r and with lowest Distance Factor is chosen as
the maxV Cr , which in turn will be the first node for any incoming
application that fits in square with radius r (line 7).

V C values get updated progressively node by node starting from
a recently occupied first node. So, the complexity of the algorithm
would be O(appSize × M). This latency consumed in updating
VC values may affect a newly arriving applicationâĂŹs through-
put, if it arrives while the VC values are still being updated. In
case a new application arrives later, the first node can be calculated
immediately as the VC values are already updated, proactively. In
practice, the algorithm is much faster than the worst case and ter-
minates in a constant time, subject to arrival of new applications.
Therefore, the speedup of the algorithm depends on the probabil-
ity of application arrival in time. If the application queue is full,
calculating first node is of O(appSize × N) complexity, as V C
values should be updated with exit of an application and arrival of
a new application. When the application queue is empty (not full)
and also in case of time gap between the arrival of two consecutive
applications, the first node for the next application can be proac-
tively calculated. For example if App1 arrives at t=0 and the next
application App2 arrives at t=1ms, there would be 1ms time for the
algorithm to calculate the first node for App2, and this time con-
sumed will not reflect in App2’s throughput.

4. EXPERIMENTAL RESULTS AND EVAL-
UATION

To evaluate our proposed first node selection approach (Map-
Pro), we compare it against state-of-the-art first node selection through
hill climbing (SHiC) proposed in [12], along with other relevant
first node selection strategies of Nearest neighbor (NN) [6] and In-
cremental selection (INC) [7]. In order to gain insight on impact
of first node selection strategies, we employed the same contiguous
mapping approach proposed in [11], CoNA, for all cases. The eval-
uation is consolidated to four NoC-based systems that use MapPro,
SHiC, INC and NN as first node selection methods followed by
CoNA for mapping around selected first node.

4.1 Evaluation Metrics
We evaluate all the first node selection strategies over different

metrics that indicate network efficiency in terms of performance,
energy efficiency, dispersion, internal and external congestion. The
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Table 1: AMD, MRD and APL of first node selection strategies
over 12×12 NoC

Method AMD MRD Avg. Latency
MapPro 2.38 2.81 22.96
SHiC 3.08 3.39 23.33
INC 3.76 3.14 23.51
NN 3.71 3.96 23.59

Table 2: AMD, MRD and APL of first node selection strategies
over 14×14 NoC

Method AMD MRD Avg. Latency
MapPro 2.23 2.66 21.40
SHiC 2.31 2.76 21.48
INC 3.16 3.50 23.99
NN 2.46 2.81 21.73

evaluation metrics used are listed below.
AMD and AWMD: Manhattan distance (MD) is the number of hops
to be traversed by a packet from its source node to destination node.
Average Manhattan Distance (AMD) is the average of hops tra-
versed (MD) by all the communicating nodes in a mapped applica-
tion. A lower AMD indicates fewer number of hops traversed by
packets indicting lower energy consumption. Average Weighted
Manhattan Distance (AWMD) represents the volume of packets
that traverse each hop as opposed to hop count alone. AWMD rep-
resents energy consumption of the network, as it is directly related
to number of packets and number of hops each packet traverses.

APL: The time taken by a packet injected into the network from

Table 3: AMD, MRD and APL of first node selection strategies
over 16×16 NoC

Method AMD MRD Avg. Latency
MapPro 2.30 2.65 21.25
SHiC 2.74 3.13 22.50
INC 3.74 4.09 25.44
NN 2.98 3.41 23.26

Table 4: AMD, MRD and APL of first node selection strategies
over 18×18 NoC

Method AMD MRD Avg. Latency
MapPro 2.38 2.71 21.34
SHiC 2.53 2.81 22.26
INC 2.95 3.41 22.95
NN 2.52 2.79 21.81

a source node till it is received at the destination node is traced as
packet latency. Average of latencies of all the plackets in the net-
work is reported as Average Packet Latency (APL). APL represents
networks’s performance in terms of total time consumed to route all
packets.

External Congestion: Number of contended packets belonging
to different applications is the external congestion. We trace the
packets congested from different applications as a metric represent-
ing the interference of one application’s traffic on another.

MRD and NMRD: Mapped region dispersion (MRD) is the av-
erage of pairwise Manhattan distances of all communicating nodes
of a mapped application. Higher MRD indicates longer distance
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Figure 8: Performance, Congestion and Dispersion of first node selection strategies over different network sizes

Table 5: AMD, MRD and APL of first node selection strategies
over 20×20 NoC

Method AMD MRD Avg. Latency
MapPro 2.24 2.60 21.37
SHiC 2.31 2.68 21.14
INC 2.49 2.82 21.86
NN 2.42 2.70 21.65

among communicating nodes and hence more probability of inter-
fering with mapped regions of other applications. The Normal-
ized MRD (NMRD) is a metric that evaluates the squareness of the
mapped region, independent of the size of the application such that
NMRD for a perfect square region is 1 [12]. A dispersed map-
ping results in NMRD higher than 1, indicating more fragmented
regions.

4.2 Experiment Setup
We evaluate our proposed approach against other relevant peer

works on a cycle-accurate many-core platform implemented in Sys-
temC. We used a pruned version of Noxim [14] to provide the com-
munication architecture between Processing Element modules. Dy-
namic application mapping is handled through a central manager
(CM) assigned to the node n0,0, which is responsible for servic-
ing incoming application requests by finding a suitable first node.
It behaves as a master core that implements software routines for
fist node selection, task allocation and updating VC values of other
nodes. Since it holds information regarding mapping decisions and
task allocation, it automatically updates VC values of nodes with
arrival of a new application without any communication overhead.
Applications of different sizes in the range of 4 tasks up to 20 tasks
with synthetic traffic patterns are generated from [1] for evalua-
tion. The communication volume of each application is distributed
as gaussian variation. In addition to the synthetic traffic, we also
used soft real-time applications of MPEG4 and VOPD in our eval-



uation. Applications arriving the system enter the schedule’s FIFO
like buffer and are serviced in first-come-first-serve basis. The CM
services incoming application’s request by finding a suitable first
node, subject to spatial availability of the network. Applications
that finish execution are released from the network, making space
for new applications to enter.

4.3 Results
We simulated first node selection methods of MapPro, SHiC,

INC and NN over a same sequence of 200 applications that entered,
executed and released from the system. We collected AWMD, ex-
ternal congested packets and NMRD metrics to evaluate perfor-
mance, congestion and dispersion of the approaches respectively
over network sizes ranging from 12× 12 up to 20× 20. Figure 8
shows these evaluation metrics over different network sizes. Map-
Pro has better AWMD, NMRD and external congestion in compar-
ison with all the other first node selection strategies. It performs
particularly well in minimizing external congestion and dispersion
due to allocation of square shaped regions and selection of contigu-
ous regions for every new application. The turn around time of an
application is the time elapsed between its arrival at the scheduler
until it exits the system, while execution time is the time elapsed
from the task allocation till the end of execution. MapPro provides
a turn around time that is same as execution time unlike the other
strategists which spend considerable amount of time in calculating
an optimal region. The other metrics of AMD, MRD and Average
packet latency (APL) for different network sizes are presented in
Table 1 - 5. MapPro has a better MRD attributed to its favoring
of square shaped regions. A square has the least possible radius
among convex regions and thus the maximum hop distance in a
square is limited (as opposed to a rectangle). This also reflects on
AMD, although AMD and APL can be influenced by the chosen
mapping algorithm CoNA to a large extent.

5. CONCLUSIONS
A proactive region selection strategy (MapPro) for mapping ap-

plications onto NoC-based many-core systems at runtime was pro-
posed. Our strategy proactively calculates the propagated impact
of spatial availability and dispersion on the network with every new
mapped application. We exploited the idle time between two con-
secutive mapping requests to perform quantitative analysis on the
network and find rational candidate regions to accommodate an in-
coming application that results in minimal congestion and disper-
sion. Our approach eliminates the overhead caused with typical
reactive mapping approaches. The performance, congestion and
dispersion metrics are used to compare MapPro against other re-
cently proposed first node selection methods. Simulations of differ-
ent traffic patterns over different sizes of networks showed consid-
erable improvement in terms of higher network performance, lower
congestion and dispersion, at a minimal execution time. First node
selection based on power constraints and thermal issues is planned
for future work.
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