
Flit Ejection in On-chip Wormhole-switched Networks with Virtual Channels

Zhonghai Lu and Axel Jantsch
Laboratory of Electronics and Computer Systems

Royal Institute of Technology, Sweden
fzhonghai,axelg@imit.kth.se

Abstract

An ideal flit-ejection model is typically assumed in the
literature for wormhole switches with virtual channels. With
such a model, flits are ejected from the network immedi-
ately upon reaching their destinations. This achieves opti-
mal performance but is very costly. The required number of
sink queues of a switch for absorbing flits isp � v, wherep
is the number of physical channels (PCs) of the switch;v

the number of lanes per PC. To achieve cheap silicon im-
plementations, flit-ejection solutions must be cost-effective.
We present a novel flit-ejection model and a variant of it
where the required number of sink queues of a switch isp,
i.e., independent ofv. We evaluate the flit-ejection mod-
els with uniformly distributed random traffic in a 2D mesh
network. Experimental results show that they exhibit good
performance in latency and throughput.

1 Introduction

Chip design is increasingly becoming communication-
bound other than computation-bound with the steady tech-
nology scaling [1]. Network-on-Chip (NoC) [5, 6, 8, 11]
addresses the design challenge by proposing networks to
replace buses as a scalable global communication platform.
In a NoC, heterogeneous resources such as processor cores,
DSPs, FPGAs/ASICs, and memories are interconnected by
switches, which route packets to enable communication be-
tween resources.

Network flow control governs how a packet is forwarded
in a network, concerning shared resource allocation and
contention handling. Wormhole switching [4] is a net-
work flow control scheme that allocates buffers and physical
channels (PCs) to flits instead of packets. A packet is de-
composed into one or more flits. A flit, the smallest unit on
which flow control is performed, can advance once buffer-
ing in the next hop is available to hold the flit. This results
in that the flits of a packet are delivered in a pipeline fash-
ion. For the same amount of storage, it achieves lower la-

tency and greater throughput. However, wormhole switch-
ing uses channels inefficiently because a PC is held for the
duration of a packet. If a packet is blocked, all PCs held by
this packet are left idle. To mitigate this problem, worm-
hole switching adoptsvirtual channels(lanes) to make ef-
ficient use of the PCs [3]. Several parallel lanes, each of
which is a flit buffer queue, share a PC. Therefore, if a
packet is blocked, other packets can still traverse the PC via
other lanes, leading to higher throughput. Because of these
advantages, namely, better performance, smaller buffering
requirement and greater throughput, wormhole switching
with lanes is being advocated for on-chip networks [6, 11].

The ejection of flits in a wormhole-switched network
concerns when and how the flits reaching destinations are
ejected from the network and stored in flit sink queues
(sinks) before being composed back into packets. An
ideal ejection model has been assumed for wormhole lane
switches. With such an ideal model, flits are ejected into
sink queues instantly once they reach destinations (after
routing). Also, ejecting flits does not interfere with advanc-
ing flits. Such a model is optimal for performance, but it is
too costly to be suitable for silicon implementations. Given
the number of PCs of a switch isp, the number of lanes per
PC isv, the required number of sink queues of the switch is
proportional top andv in order to realize the ideal model.

In this paper, we present a novelflit-ejection or sink
model and a variant of it for wormhole lane switches. Our
models sharply reduce the required number of sink queues
from p � v to p without compromising much performance.
In the sequel, Section 2 discusses related work. In Section 3
we describe a canonical wormhole lane switch and the ideal
flit-ejection model. We present our flit-ejection models in
Section 3, followed by experimental results in Section 4.
Finally, we conclude the paper in Section 5.

2 Related Work

The performance model of a wormhole switch that con-
siders implementation complexity was first noted by Chien
[2]. A more efficient canonical wormhole lane switch archi-



tecture and its performance model was presented in [10]. In
general, the design complexity of a wormhole lane switch
is the function ofp andv. To gain further performance,
flit-reservation flow control [9] was proposed which utilizes
control flits to reserve bandwidth and buffers before trans-
ferring data flits. All of these works assume an ideal flit-
ejection model while evaluating the network performance.

To our knowledge, no prior work discussing flit-ejection
models other than an ideal model was reported. Our mo-
tivation is to reduce the switch complexity to achieve cost-
effective designs on silicon. In line with this idea, Goossens
et al. proposed to customize the lane buffers as dedi-
cated hardware FIFOs instead of register-based or RAM-
based FIFOs to reduce the area and thus achieve reason-
able buffering cost [11]. Recently, cost-effective flit admis-
sion approaches for virtual-channel wormhole switches are
discussed in [7]. To reduce the control complexity of the
switches, deterministic routing is favored against adaptive
routing. This may also be justified by exploiting the traffic
predictability of specific applications [6], which NoCs tar-
get. Moreover, regular low-dimension topologies are con-
sidered for NoCs to further simplify the control [5, 8].

3 The Ideal Sink Model

mux

Flits out
(1...p)

mux

Flits in
(1...p)

Credits out (1...p)

node
Resource Packets

p−by−p crossbar

Packet source queue

Packet sink queue

Routing

Flit FIFOs

Lanes (1...v)

states

states
(1...v)

(1...v)

(1...v)

states

Lane allocator
(p,v)

Forward
Lane status

(p,v)

(p,v)
Switch allocator

Credits in (1...p)

mux

Figure 1. A canonical wormhole lane switch

Figure 1 shows a canonical wormhole switch architec-
ture with virtual channels at inputs [3, 10, 11], connecting
to a resource node. It hasp physical channels (PCs) andv
lanes per PC. A packet passes the switch through four states:
routing, lane allocation, flit scheduling, andswitch arbitra-
tion. In the routing state, the routing logic determines the
routing path a packet advances. In the state of lane alloca-
tion, the lane allocatorassociatesthe lane the packet occu-
pies with an available lane on its routing path in the next

hop. If the lane allocation succeeds, the packet enters into
the scheduling state. If there is a buffer available in the
associated lane, the lane enters into the switch arbitration.
The first level of arbitration is performed on the lanes shar-
ing the same PC. The second level of arbitration is for the
crossbar traversal. If the lane wins the two levels of arbi-
tration, the flit situated at the head of the lane is switched
out. Otherwise, the lane returns back to the scheduling state.
The lane association is released after the tail flit is switched
out. Credits are passed between adjacent switches in order
to keep track of the status of lanes. Note that a lane is al-
located at the packet level, i.e., packet-by-packet while the
PC bandwidth is assigned at the flit level, i.e. flit-by-flit. In
addition, flits from different lanes can not be interleaved in
a lane since flits other than head flits do not contain routing
and sequencing information. To guarantee this, a lane-to-
lane association must be unique at a time.

(1...v)

(1...v)

Packet sink

Flits
(1� � � p)

(1...v)

(1...v)

D: Demux
(1...v)Lanes(1...v)

To resource

To p-by-p crossbar

Flit sinks (p�v)

The ideal sink model

Flit FIFOs

D

D

D

D

D

D

D

D

D

Figure 2. The ideal sink model

In a traditional wormhole switch design, an ideal sink
model is assumed, as shown in Figure 2. The lane state is
extended with areceptionstate. If the routing determines
that the head flit of a packet reaches its destination, the lane
enters the reception state immediately. Since flits from dif-
ferent packets can not interleave in a sink queue, there must
bep � v sink queues, each of them corresponding to a lane,
in order to realize an immediate transition to the reception
state. The length of a sink is the maximum number of flits
of a packet. After the lane transitting to the reception state,
the head flit bypasses the crossbar and enters into its sink.
The subsequent flits of the packet are ejected into the sink
immediately upon arriving at the switch. When the tail flit
is ejected, the lane is freed. This model is beneficial in both
time and space. A non-head flit reaching its destination nei-
ther waits to be ejected nor occupies a flit buffer. Moreover,
it does not interfere with flits buffered in other lanes from
advancing to next hops. Upon receiving all the flits of a
packet, the packet is composed and delivered into the packet
sink. If the packet sink is not empty, the switch outputs one
packet per cycle from the sink in a FIFO manner.



4 Proposed Sink Models

4.1 A p-sink model

Our objective is to simplify the ideal sink model with
small performance penalty. We observe that the maximum
number of flits entering a switch per cycle isp. This means
that at maximump flits may need to be ejected from a
switch per cycle. This number is independent ofv. By this
observation, we can usep sink queues instead ofp � v sink
queues. The length of a sink is still the maximum number of
flits of a packet. Besides, in order to have a more structured
design, we could connect thep sink queues to the crossbar,
as illustrated in the dashed box of Figure 3.

(1...v)

(1...v)

(1...v)

states

Lanes (1...v)

Flits out
(1...p)

(p, v)

The sink model

To resource

Packet sink

Flit sinks (p)

(1...p)
Flits in

p−by−2p

Switch allocator
Routing

crossbar

Flit FIFOs

states

states
mux

mux

mux

mux

mux

mux

Figure 3. A p-sink flit ejection model

To enable ejecting flits by thep-sink model, we now ex-
tend the lane state to aarriving and areceptionstate. If
a head flit reaches its destination, the lane the flit occupies
transits from the routing to the arriving state. Then it will
try to associate with an empty sink, i.e., to establish alane-
to-sinkassociation. If the association is successful, the lane
enters thereceptionstate. Subsequently the other flits of the
packet follow this association exactly like flits advancing in
the network. Upon the tail flit entering into the sink, the
association is torn down. If the association fails, the head
flit is blocked in place holding the lane buffer. To speed up
flit ejection, the contentions for the crossbar input channels
and crossbar are arbitrated on priority. A lane in a reception
state has a higher priority than a lane in a state for forward-
ing flits. The drawback due to this sink model is the increase
of blocking time when flits reach their destinations. First,
the lane-to-sink association may fail since all sink queues
might be in use. Second, only one lane per PC can win ar-
bitration to a crossbar input channel. In case of more than
one lane of a PC are in an ejection state, only one can use
the channel.

To implement this model, the crossbar must double its
capacity from p-by-p (p p � 1 multiplexers) to p-by-2p

(2p p � 1 multiplexers). The number of control ports of
the crossbar is doubled proportionally.

4.2 A coupling scheme

To further simplify the switch, we could modify thep-
sink model by using a coupling scheme in which the flits
from a PC are dedicated to a sink. In other words, lane(i,
j), wherei (i 2 [1; p]) is the PC identifier andj (j 2 [1; v])
the lane identifier, is dedicated to sink(i). In this way, thep
p � 1 multiplexers for sinking flits can be replaced withp
1� 2 demultiplexers, as shown in Figure 4.

(1...v)

(1...v)

states

Lanes (1...v)

Flits out
(1...p)

(p, v)

The sink model with coupling

Switch allocator

Flits in
(1...p)

Packet sink

To resource

(1...v)

Crossbar

D: Demux

Flit sinks (p)

Routing

Flit FIFOs

states

states

mux

mux

mux

D

D

D

Figure 4. The coupled p-sink model

Due to this coupling, lane(i, j) is not allowed to use a
sink(k), wherek 6= i, even if it is empty. This potentially in-
creases the blocking time of flits and the sink queues might
be under-utilized.

p� 1 Mux 1� 2 Demux Sink queue
Ideal model - p � v p � v

Decoupled model p - p

Coupled model - p p

Table 1. Cost of the sink models

Table 1 summarizes the number of each component to
implement the sink models.

5 Experiments

We developed a simulator in SystemC comprising the
input-queuing wormhole switch model and other support-
ing objects. The switch is a single-cycle, flit-level model.
The simulator is programmable as to network size, packet
injection rate, sink model, etc. We construct a 2D4 � 4
mesh network with bidirectional channels. The network
does dimension-orderX-Y routing, which is deadlock-free
and deterministic. The purpose of our experiments is to ex-
amine the performance (latency and throughput) of thep



sink model in Figure 3 and its coupled counterpart in Fig-
ure 4. The baseline is the ideal sink model in Figure 2.

The simulations were run with uniformly distributed
traffic. Resources injected 4-flit packets to random desti-
nations except for themselves at a constant rate. Except
otherwise noted, contentions for lanes and channel band-
width were resolved randomly. Each simulation was run
until the network reached steady state, i.e., increasing simu-
lated network cycles did not change the results appreciably.
We investigate the average latency of packets and the net-
work throughput. Latency of a packet is calculated from
the instant the packet’s flits are created to that the packet is
output to its destination resource, including source queuing
time and packet queuing time at the destination. Through-
put� is the number of packets received per cycle per node.

Numberv of lanes per physical channel 3
Length of a lane 2 flits

Length of a sink queue 4 flits

Table 2. Simulation parameters

Simulation parameters are listed in Table 2. To minimize
buffering cost, the lane length was two, which is the min-
imal depth requirement of a lane in order to pipeline flits
since sending and receiving credits take two cycles.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Link utilization ρ

Av
er

ag
e 

lat
en

cy
 [c

yc
le]

Coupled_p_sink
Decoupled_p_sink
Ideal_sink

0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Offered_traffic [packet/cycle/node]

Th
ro

ug
pu

t [p
ac

ke
t/c

yc
le/

no
de

]

Coupled_p_sink
Decoupled_p_sink
Ideal_sink

Figure 5. Performance comparison

Figure 5 compares the performance of the proposed sink
models with that of the ideal model. The left figure gives the
average latency in the function of link utilization (network
load). Compared with the ideal model, the decoupledp-sink
model achieves equivalent performance below link utiliza-
tion � = 0.5. When� is higher than 0.5, the latency with
the ideal model is better. This is because slower ejection of
flits results in higher congestion thus higher latency when
the network is nearly saturated. As can be expected, the
performance of the coupledp sink model is worse than that
of its decoupled counterpart. However, the penalty is not
significant. Specifically, when the link utilization is below
0.4, the latency difference is about 0.5 cycle. The right fig-
ure reports the throughput versus the offered traffic, which

is measured in terms of the number of packets injected per
cycle per node. The saturation throughput for the coupled,
decoupled, and ideal model is 0.165, 0.178, and 0.186, re-
spectively. Normalized with the ideal model, the relative
throughput is 0.96, 0.89, and 1, respectively.

6 Conclusions

Cost-effective flit-ejection models for wormhole
switches are desired for chip implementations. We have
presented a novel sink model that achieves approximate
performance with the ideal model when the network is
reasonably loaded (below 0.5 capacity). By coupling a
physical channel with a sink queue, the switch complexity
is further reduced with small performance penalty. Al-
though our discussions are equally applicable to macro
wormhole-switched networks in parallel computing, the
experiments were designed for a NoC that employs a
low-dimension topology, deterministic routing, and smaller
buffering cost.

Future work will combine flit ejection together with flit
admission in order to achieve practically cost-effective flit
admission/ejection solutions. Such a combination is essen-
tial for evaluating the performance of an on-chip network.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock
rate versus IPC: the end of the road for conventional microarchitec-
tures. InProceedings of the 27th annual international symposium on
Computer architecture, pages 248 – 259, 2000.

[2] A. A. Chien. A cost and speed model for k-ary n-cube wormhole
routers. IEEE Transactions on Parallel and Distributed Systems,
9(2):150–162, Feb. 1998.

[3] W. J. Dally. Virtual-channel flow control. IEEE Transactions on
Parallel and Distributed Systems, 3(2):194–204, March 1992.

[4] W. J. Dally and C. L. Seitz. The torus routing chip.Journal of
Distributed Computing, 1(3):187–196, 1986.

[5] W. J. Dally and B. Towles. Route packets, not wires: On-chip inter-
connection networks. InDAC, 2001.

[6] J. Hu and R. Marculescu. Exploiting the routing flexibility for en-
ergy/performance aware mapping of regular NoC architectures. In
DATE, 2003.

[7] Z. Lu and A. Jantsch. Flit admission in on-chip wormhole-switched
networks with virtual channels. InProceedings of International Sym-
posium on System-on-Chip, 2004.

[8] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed band-
width using looped containers in temporally disjoint networks within
the Nostrum network on chip. InDATE, 2004.

[9] L. S. Peh and W. J. Dally. Flit-reservation flow control. InProceed-
ings of High Performance Computer Architecture, pages 73–84, Jan.
2000.

[10] L. S. Peh and W. J. Dally. A delay model for router microarchitec-
tures.IEEE Micro, pages 26–34, Jan.-Feb. 2001.

[11] E. Rijpkema, K. Goossens, et al. Trade offs in the design of a router
with both guaranteed and best-effort services for networks on chip.
In DATE, 2003.


