Goal Formulation: Abstracting Dynamic Objectives
for Efficient On-chip Resource Allocation

Elham Shamsal, Anil Kanduri!, Amir M. Rahmani??, Pasi Liljebergl, Axel Jantsch?, and Nikil Dutt?

' Department of Future Technologies, University of Turku, Turku, Finland
2Department of Computer Science, University of California, Irvine, USA
3Institute of Computer Technology, TU Wien, Vienna, Austria
{elsham, spakan, pakrli}@utu.fi, {amirrl, dutt} @uci.edu, axel.jantsch@tuwien.ac.at

Abstract—Run-time resource management of mobile heteroge-
neous systems is challenging due to the limited energy budget
that has to be allocated among diverse workloads. User interac-
tion within these systems alter the performance requirements,
which often conflicts with concurrent applications’ objectives
and system constraints. Current resource allocation approaches
focus on optimizing fixed objectives, ignoring the variation in
system and applications’ constraints at run-time. For adaptive
resource allocation, it is necessary to abstract the applications’
and system’s requirements into goals, which can be dynamically
formulated as a weighted combination of different objectives.
We highlight the problem by illustrating the limitation of state-
of-the-art resource allocation approaches and motivate the need
of a goal management solution, which dynamically prioritizes
different objectives and switches between them to adapt to the
environment.

Index Terms—On-chip Resource Management, Heterogeneous
Multi-core Systems, Autonomous Systems

I. INTRODUCTION

Increasing usage of battery powered embedded systems
enhances the importance of run-time management to maximize
resource efficiency [1]. Considering system, application and
user constraints including power and energy budgets, on-chip
temperature, performance (latency and throughput), respon-
siveness and quality-of-service (QoS), often results in conflict-
ing resource allocation decisions [2]. Run-time management
policies dynamically allocate resources with the objective
of optimizing for one or more of these constraints. The
objective could be expressed as a linear cost function that
combines different constraints to satisfy a specific criteria [2].
Practically, different objectives could be overlapping, being in
conflict or orthogonal, making multi-objective resource man-
agement challenging. For example, under nominal conditions,
the objective of high performance results also in high power
consumption, which conflicts with the objective of low power
operation.

With concurrent applications, user activity patterns and
battery life over time, there is a variation in workload intensity,
power consumption, thermal profile, energy budget available
(battery life), and user requirements in terms of interaction and
satisfaction. Each instance of a change in above parameters
changes the requirements, which could be formulated possi-
bly as a different objective. Despite continuously changing

978-1-5386-7656-1/18/$31.00©2018] EEE

A Performance

Hominal

High perf. Power

Goal Switching

Nominal

High Perf.
10 I >

Time

User Activity

Fig. 1. Three dimensional space of requirements.

requirements, resource allocation policies strive to meet fixed
objectives which are determined at design time, while the
environment in which they operate is largely dynamic.
State-of-the-art resource management policies focus on sat-
isfying such fixed objectives, restricting their efficacy to a
fixed set of operating conditions. Figure. 1 shows the trinity of
major requirements viz., power, performance and QoS, along
with the Pareto-space of operating points with fixed objective
policies. For simplicity, we present three major classes of
policies, targeted at low power, nominal and high performance
operation. Each region (shown in different shades) illustrates
the possible operating points in terms of power, performance
and QoS mode with each specific policy, which are aimed
at optimizing a single objective. Each policy is efficient
under specific conditions and requirements, however their
efficiency is restricted to those specific modes of operation.
For instance, a system using low power policy is hard-wired
to minimize power consumption and thus cannot deliver a
higher performance in comparison with a high performance

policy. Depending on user activity patterns and available
energy budget (e.g., when the power saving mode is chosen
by a smartphone user to prolong battery life or when the high
performance mode is selected for 3D gaming), requirements
and thus objectives keep changing, where a specific policy
fails in allocating and utilizing resources efficiently. As shown
in Figure 1, user requirements evolve over time from high
performance through to low power. Choosing any of the three
specific policies would result in failing to satisfy at least one
of the key parameters among power, performance and QoS.
An ideal solution to this issue would be a design policy
that can navigate through different operation modes subject
to changing requirements. However, designing a dynamically
adaptive policy with conflicting objectives can be extremely
challenging. A more holistic solution is to abstract away the
requirements into goals which can be formulated as a weighted
combination of different objectives. Policies can be driven
by goals, which will qualitatively embed dynamic changes in
priorities of objectives and requirements. Goal formulation and
goal driven management provides the necessary autonomy and
adaptivity to current resource management techniques.

In the following sections, we elaborate on the problem with
fixed objective policies by showcasing the limitation of state-
of-the-art resource management approaches and present open
directions towards goal management solutions.

II. LIMITATIONS OF STATE-OF-THE-ART
FIXED-OBJECTIVE POLICIES

To motivate the need for goal formulation and goal driven
management, we present state-of-the-art resource management
policies which are focused on fixed objectives and highlight
their limitations. We consider three major classes of poli-
cies viz., low-power [3], high-performance [4], and
nominal [1], covering possible modes of operation. We
customize and implement these policies on the experimental
platform, detailed in the following.

Experimental Setup: We use a Hardkernel Odroid XU3 board
running Linux Ubuntu 15.04 as a platform to evaluate various
resource management policies. This board integrates an Octa-
core Exynos 5422 system-on-chip (SoC) as a heterogeneous
multi-processor (HMP) with two clusters (4 big (Al5) and
4 little (A7) CPU cores). Smartphones such as the Samsung
Galaxy series have used this SoC or a similar HMP as their
main processor [5]. The big cores provide higher performance
while the LITTLE cores are optimized for low power. For
thermal safety, we set the Thermal Design Power (TDP) to SW
in our experiments. The Odroid board has per-cluster power
sensors for power measurement. We use the Heartbeats API
[6] to monitor each application’s performance (the application
periodically issue heartbeats and informs the system about its
performance). The micro kernels used in our experiments are
least squares curve fitting, k-nearest neighbors classification,
k-means clustering and linear regression [4]. We chose these
machine learning kernels for their wide range of use cases in
several application domains [1].
The implemented policies are discussed in the following.

A. Low-power Policy

Objective: Minimizing power consumption with graceful
degradation of performance.

Problem Definition: Resource managers in HMPs need
to consider TDP constraint and performance efficiency while
avoiding task migration oscillation between different cores.
Therefore, the policy needs to satisfy the application require-
ments and conserve energy with respect to the TDP constraint
[3].

Solution: A representative approach presented in [3] de-
ploys several proportional-integral-derivative (PID) controllers
to track the desired reference values. The first controller
is a per-task resource share controller; the objective of the
resource share controller is to keep the measured heart rate
(Heartbeat per second) for each application in the specific
range by regulating the time slice considered for each task
in the scheduler. The second controller is a per-cluster DVFS
controller. This cluster-level PID controller actuates on the
frequency of each cluster to achieve the target utilization. The
third one is a per-task QoS controller. This controller decreases
the reference heart rate when thermal emergency occurs.

This policy is effective in providing low-power operation,
by deliberately degrading performance under power/thermal
emergency. For instance, if a user runs a compute-intensive
application, this policy may not meet the requirements as the
objective of the policy is fixed to conserve energy. Figure 2
(a) illustrates the chip power consumption when this policy is
executed on the Odroid board. As shown in the figure, when
the TDP is violated (red dotted line), the resource manager
actuates and conservatively reduces the power, which is re-
flected in performance degradation. Figure 3 (a) illustrates the
average performance of four running applications when this
policy is used. In the case of TDP violation, the performance
is significantly sacrificed to satisfy the low-power objective.

B. High-performance Policy

Objective: Maximizing performance by fully utilizing avail-
able power budget.

Problem Definition: Maximizing performance through
software approximation while considering power cap, work-
load intensity, and utilization metrics [4].

Solution: The authors in [4] use the combination of DVFES,
power gating, and approximation to perform power capping
while maximizing performance. When a power violation oc-
curs, in the first step, the policy applies DVFS to downscale
the voltage and frequency of running applications. In the next
step, if power violation persists, the power gating (PG) knob
is invoked to power off all the unoccupied cores. Finally, if
the performance requirements are violated due to DVFS/PG,
approximation knob is used to boost the performance of the
system via switching the mode of approximable applications
to the approximate mode.

Figure 2 (b) and Figure 3 (b) show the total power
consumption of the system and the average performance of
running applications, respectively, when using this policy

(c)

Power (W)

Power (W)

100 400 500 100

200

300 400 100 200 300 400 500

200 300 600
Time (s) Time (s) Time (s)
— Power -- TDP
Fig. 2. Power consumption with different policies. (a) Low power [3], (b) High performance [4], (c) Nominal mode[1]

1.0 , [,a) . . 1.0 , (f) . .
v o o 0.8 .
u o (¥}
c c c
© © ©
£ £ £ 06 |
o o o
k= T i
ol]]
£ £ £
=} =} =} ‘ 5 5 5 5
z Z 0.2} 1202 - B B

0.0 I i i i i 0.0 i i i i 0.0 I i i i i

100 200 300 400 500 600 100 200 300 400 500 100 200 300 400 500 600
Time (s) Time (s) Time (s)
Fig. 3. Average performance with variable workloads with different policies. (a) Low power [3], (b) High performance [4], (c) Nominal mode [1]

execute. As mentioned, the objective of this policy is to aggres-
sively maximize the performance, therefore, power violations
in this policy are more frequent than the low-power policy.
This policy over-boosts performance by sacrificing the QoS
(using approximation) which is a proper choice when a high
performance is needed, however, the policy is fixed and cannot
adapt to possible changes.

C. Nominal-mode Policy

Objective: Maximizing performance within minimal power
consumption.

Problem Definition: Resource managers in HMPs need
to consider unknown/dynamic workloads to meet power and
performance constraints in a coordinated way [1].

Solution: A representative approach is presented in [1]
deploying a coordinated actuation of approximation, DVFS,
CPU quota scaling, and task migration to satisfy both power
and performance constraints while considering system dy-
namics. This policy works in three phases: idle, decide, and
refine. The system is in idle phase when it is balanced and
power and performance requirements are satisfied. When an
application enters or leaves the system, or a power violation

occurs, the system state changes to decide. In this phase,
at first, the new application is mapped on a LITTLE (i.e.,
low-power) core. If the required performance is not met or a
power violation occurs then the controller will decide between
two combinations of knobs: approximate setting or accurate
configuration. This decision is made based on estimation
models. In other words, if the models predict that accurate
setting will be able to meet the requirements, the resource
manager will select it, otherwise the approximate mode will
be chosen to trade accuracy for power/performance. After the
decision making, refine phase will take place. In this phase,
the policy monitors power and performance and provides fine-
tune controls over resource allocation.

In this presented policy there is a co-optimization of power
and performance with a possible QoS degradation. Figure 2
(c) shows the total power consumption of the system when this
policy is used in our setup. As can be seen from the figure, the
power does not violate the TDP and the performance (Figure 3
(c)) is balanced. This policy is a suitable choice for a nominal
mode of operation when a user does not ask for energy saving
and no performance-intensive application is running on the
system.

Each of these three policies focuses on satisfying a fixed
objective and is optimal for a certain case. However, in a
dynamic environment, requirements and thus objectives keep
changing and using a fixed objective policy would fail to
allocate and utilize resources efficiently. While sometimes
these different objectives can be reconciled, very often one
has to be compromised for the benefit of another objective
through prioritization of different constraints w.r.t. changes in
the user preferences, environment, or system’s own state. A
more holistic solution is to abstract away the requirements into
goals which can be formulated as a weighted combination of
different objectives.

III. DYNAMIC GOAL FORMULATION

We argue that the state-of-the-art resource management
policies with fixed objective are not effective in a dynamic
environment. There is a growing need for a comprehensive
method that can monitor the environment and dynamically
determine the new objectives. Dynamic goal formulation
can prioritize objectives at run-time and reassign weights to
each objective based on the user, system and applications
requirements. It considers all the requirements with their
conflicts, then abstracts away the objectives into the goal.
Fig. 4 illustrates a high-level architecture of the run-time goal
driven management framework. The goal driven management
receives applications and user requirements, then the goal
formulation module formulates the goal according to the
priority of each required objective, based on the determined
priorities the resource allocation module run the best policy
for allocation. This framework has the following properties:

o Interact with user and applications that have different
requirements,

« Receive the user and applications requirements,

o Consider the system constraints,

o Formulate goals dynamically by assigning weights to
each individual objective based on the system priority
and inputs,

o Select one of the most effective policies based on the
goal.

In Section II, we discussed three different policies with fixed
objective which are determined at the design time. In the first
policy, power has priority over other system requirements. In
the second one, performance has higher priority and in the
third one, both power and performance have the same priority.
Goal formulation can abstract these objectives into the goal at
run-time and then switch between these three policies based
on the environment requests.

IV. CONCLUSION AND FUTURE WORK

In this paper, we illustrated limitation of the state-of-the-art
resource management policies. These policies strive to meet
the fixed objective and can not dynamically adapt to the envi-
ronment. To address this problem, we motivate the need for a
goal formulation which can abstract the different requirements
into the goal by a weighted combination of different objectives
at run-time. The presented framework can be a good solution

User Cmd Applications

Goal Driven Management

Resource Goal
Allocation Formulation
N)
A
-
OS kemnel

(Heterogeneous system)

Fig. 4. A high-level architecture of run-time goal driven management
framework.

for effective resource allocation by considering applications
requirements, user activity patterns, and system constraint
(e.g., battery life). We believe that there are some challenges
in implementing this goal formulation because of conflicting
objectives and system constraints. The proposed framework
can be a good initial point for goal formulation and goal
driven management but it needs to find a theoretical solution
that can formalize goals and switch between various policies
subsequently with considering implementation and verification
complexity. Therefore, there are some open problems for
future work.

REFERENCES

[1] A. Kanduri, A. Miele, A. M. Rahmani, P. Liljeberg, C. Bolchini, and
N. Dutt, “Approximation-aware Coordinated Power/Performance Man-
agement for Heterogeneous Multi-cores,” in Proc. of the 55th Annual
Design Automation Conference, 2018, pp. 68:1-68:6.

[2] A. M. Rahmani, A. Jantsch, and N. Dutt, “Hdgm: Hierarchical dynamic

goal management for many-core resource allocation,” IEEE Embedded

Systems letters, 2017.

T. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and

S. Vishin., “Hierarchical power management for asymmetric multi-core in

dark silicon era,” In Proceedings of the 50th Annual Design Automation

Conference, p. 174, 2013.

[4] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch,
N. Dutt, and H. Tenhunen, “Approximation knob: Power capping meets
energy efficiency,” In Computer-Aided Design (ICCAD), pp. 1-8, 2016.

[5S] N. Peters, D. Fii3, S. Park, and S. Chakraborty, ‘“Frame-based and
thread-based power management for mobile games on hmp platforms,”
in Computer Design (ICCD), 2016 IEEE 34th International Conference
on. IEEE, 2016, pp. 169-176.

[6] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agar-
wal, “Application heartbeats: a generic interface for specifying program
performance and goals in autonomous computing environments,” in
Proceedings of the 7th international conference on Autonomic computing.
ACM, 2010, pp. 79-88.

3

[t}

