

Extending Platform-Based Design to Network on Chip Systems

Juha-Pekka Soininen1, Axel Jantsch2, Martti Forsell1,
Antti Pelkonen1, Jari Kreku1, and Shashi Kumar2

1 VTT Electronics (Technical Research Center of Finland), P.O. Box 1100, 90571, Oulu, FINLAND
2 Laboratory of Electronics and Computer Systems, Department of Microelectronics and Information

Technology, Royal Institute of Technology, 164 40, Kista, Stockholm, SWEDEN
E-mail: Juha-Pekka.Soininen@vtt.fi

Abstract

Exploitation of silicon capacity will require
improvements in design productivity and more scalable
system paradigms. Asynchronous message passing
networks on chip (NOC) have been proposed as
backbones for billion-transistor ASICs. We present a
novel layered backbone-platform-system (BPS) design
methodology for development of network-on-chip based
products. It combines and extends the distributed,
parallel, embedded and platform-based design concepts
in order to manage the diversity and complexity of NOC-
based systems. The reuse of communication principles in
various platforms, the reuse of platforms in product
differentiation, and system-level decision-support
methods are the cornerstones of our methodology. The
presented mappability estimation and workload
simulations demonstrate the feasibility of such methods.

1. Introduction

Rapid technology development is expected to continue

even without any revolutionary inventions [1]. It will be
possible to put about one hundred embedded computer
systems on a single chip within ten years. Those
embedded systems may have multiple processor cores and
coprocessors totaling to almost one thousand computing
architectures. The computational capacity of such a
system could reach 1000 GOPS even with moderate clock
frequencies and reasonable power consumption.
Applications would consist of tens of thousands of
functions that would further need billions of operations
when executed.

Platform based design is a proposed solution for
system on chip (SOC) complexity problems. The existing
design or model is used as a platform for the development
of next abstraction level. Different types of platforms
ranging from tool environments to implemented product
platforms have been proposed [2]. Recently, the focus has

been on providing a solid basis for system configuration
and software development [3, 4]. In the platform based
design approaches, the target has been a complex
embedded system with one or few processor cores.
However, instead of a single system, an integrated
network of more or less autonomous systems will be
needed [5, 6, 7, 8]. Physical limitations, asynchronous
solutions and message passing based on-chip
communication will be in important role.

Two principal approaches for using available silicon
capacity are following.

1. Parallel, general-purpose computer has a simple
programming model. It provides superior
performance in case the application characteristics
vary a lot or if there is lot of communication
between different system functions.

2. Application specific computation engine results to
benefits in energy optimization and subsystem
performance in case the application can be
distributed to more optimal subsystems. This is a
valid assumption in telecommunication and
multimedia applications.

We present a network on chip (NOC) design
methodology that extends the platform based design
approaches to the systems with on-chip networks and
heterogeneous computing resources. We claim that the
future system development methodology has to integrate
existing design methods and to provide means for dealing
with different types of models and subsystems. The
novelty in our approach are in emphasizing the role of
decision-making support especially on early design phases
and in tight integration with physical level and
architecture level issues. The methodology partitions the
development work into abstraction layers, application
domains, and design activities. The partitioning is made
possible by the structural approach to the NOC
architecture. The main challenge is the complexity that
requires using more abstract models in decision-making.

The performance analysis and evaluation is the
essential part of computing system design [9]. Techniques
that are faster than traditional processor simulations are

needed for exploring the feasibility of system components
[10, 11]. Two examples of methods are presented in this
paper in order to demonstrate the type of methods needed
in our approach. A novel mappability estimation method
introduces a new measure of goodness for the evaluation
of the quality of processor core and algorithm pair. The
method can be used in the very initial phases of system
development because it does not require executable
specification or simulation model of the processor. The
performance validation approach for multiprocessor
system presented in the paper uses workload models and
abstract architecture models resembling the ones used in
processor performance simulations.

Structure of the paper is following. Chapter 2
introduces the NOC concept, and its quality criteria.
Chapter 3 introduces our design methodology for NOC
platforms and systems. Decision support methods for
NOC are described in more detail in Chapter 4. Chapter 5
gives our conclusions.

2. Network on chip

Network on chip (NOC) is a new paradigm for large

SOCs trying to solve the design productivity, usability and
architectural problems related to future SOCs. A uniform
communication network connecting on-chip resources and
providing much better bandwidth scalability than buses
differentiates NOCs from SOCs. The main problems of
NOC are area and performance overheads in respect to
optimized dedicated hardware solutions.

2.1. Quality characteristics of NOC based

systems

As any other electronic system, NOC based systems

have to meet a variety of requirements, including correct
functionality, sufficient throughput, latency and memory,
high energy efficiency, maintainability and fault tolerance.
In the sequel we sometimes denote all these various
characteristics with the term "performance". However, in
a NOC based approach we distinguish between
responsibilities between the NOC platform and the
application designer to meet given requirements. A major
advantage of any platform-based approach is the provision
of guaranteed performance characteristics formulated at
an abstract level, which can be conveniently used by
application designers. For instance, a traditional CPU
would guarantee that any sequence of instructions could
be executed with a particular frequency. This simple and
general assurance can be easily used by application
programmers and compilers without worrying about wire
delays, noise margins and specific corner cases.
Correspondingly, a NOC based platform should guarantee

performance figures for communication, reliability levels
of the communication, and power efficiency levels of the
communication.

Thus, we have to distinguish between the quality
characteristics provided by the NOC platform and the
quality characteristics achievable by an application
designer when utilizing the platform. In defining the NOC
platform quality characteristics we have to consider three
main directions:

 Communication infrastructure: It has to be
provided together with performance guarantees for delay,
bandwidth, power consumption, and communication
reliability. The basic communication functionality has to
be accompanied by performance figures to allow
application engineers to build reliable applications with
predictable performance. The performance figures may
sometimes be expressed in stochastic terms and may vary
between application and traffic types, but altogether they
must be sufficiently transparent and simple to be usable at
higher levels.

Flexibility: Since the main point of a platform is to
support a variety of concrete products and applications,
flexibility is a major concern. Hence, the platform has to
support different traffic types with widely varying
requirements. Safety critical systems will put higher
demands on predictability than multi-media applications.
Power management and efficiency is of highest concern in
hand-held devices. The matter is complicated further by
the prospect, that various application types will coexist in
future NOC based products. Thus, a NOC platform has to
be careful at offering a sufficient range of choices to
application engineers.

System integration: A methodology has to provide
sophisticated means to for system analysis. Since the final
product will contain a large number of different resources
it will be a formidable task to integrate the performance
assessments of the resources with the performance
guarantees provided by the network into a reliable system
performance assessment. Most of this paper focuses on
this particular issue.

2.2. NOCARC approach

Our approach for NOC is a scalable application area

specific computer network providing packet switched
platform for future SOC [12]. The architecture is an m x n
mesh of switches and resources are placed on the slots
formed by the switches. The diameter of the slot is limited
by the clock cycle. So, each resource forms a synchronous
clock domain, but the communication between resources
is implemented with asynchronous messages. Each switch
is connected to one resource and four neighboring
switches, and each resource is connected to one switch. A
resource can be a processor core, memory, an FPGA, a

custom hardware block or any other intellectual property
(IP) block, which fits into the available slot and complies
with the network interface. The architecture essentially is
the on-chip communication infrastructure comprising the
physical layer, the data link layer and the network layer of
the OSI protocol stack. We define the concept of a region,
which occupies an area of any number of resources and
switches. This concept allows the NOC to accommodate
large resources such as large memory banks, FPGA areas,
or special purpose computation resources such as high
performance multiprocessors.

Many architectural solutions in our NOC are results
from physical-level issues. These physical-level and
architecture issues affect also to our design methodology.
On the other hand, the design productivity requirements
and product functionality requirements that have been set
to design methodology affect to architectural solutions.
Our NOC can be seen as an integrated distributed
embedded system. It is integrated because it is
implemented on a single chip. Its application functionality
is distributed to resources and each resource is an
embedded system type of SOC. Software development
resembles embedded system software development and
the resource design is a SOC design type of a problem.

Our approach provides improvements to simple on-
chip computer network via the region concept, the layered
communication and the possibility to dedicate resources
(such as embedded FPGA or memory or reconfigurable
fabric of processing elements). The main benefits are
power saving possibilities, locally optimal execution of
functions, relatively simple programming model and reuse
of existing IP blocks.

3. NOC Platform Methodology

The success of a NOC depends on how effectively it

can satisfy the often-contradictory requirements of
applicability and performance. Applicability requires
flexibility and generality, simple programming models,
and simple development of final functionality.
Performance requires efficiency, power awareness,
dedicated structures, and optimal combinations of
resources and functions.

It is obvious that a NOC design methodology must be
based on heavy reuse of existing designs, reuse of
software systems and reuse of platforms. The whole NOC
concept is based on this idea of encapsulating embedded
systems into a network, computers, reconfigurable fabrics,
or embedded memories into resources, and intellectual
property blocks, virtual components and software into
embedded computer systems. The hierarchical
encapsulation introduces well-defined interfaces between

different layers of NOC system and allows constructing
the complete system from black-box type of units.

Design methodology means partitioning of the
problem to manageable tasks and definition of tools and
design practices for those tasks. We have partitioned our
design methodology in three different ways. Firstly, we
have divided the NOC system development in three main
abstraction layers that are backbone, platform and system
development. Secondly, we have divided the methodology
into application domains according to what kind of a
subsystem we are developing. Thirdly, we have divided
each design activity into phases according to the purposes
of those phases. Every design activity should compose of
analysis, estimation, decision and validation activities.

3.1. Layers in NOC development

The motivation for layered NOC development is to

separate technology specific e.g. backbone issues,
application area specific e.g. product platform issues and
product instance specific e.g. system issues from each
other. The main layers and how they relate to NOC system
development are shown in Figure 1.

NOC backbone layer: The NOC backbone consist of
physical components required for communication such as
channels, switches, and network interfaces, and basic
services required by the communication such as physical
and data link layer protocols. The focus is in the network
communication resources, e.g. switches and interfaces,
and NOC system services and performance of different
region topologies. The physical design issues have an
important role in the design of the communication
channels and switches because the system-level
communication challenges the technological limits. The
wires, wire lengths, synchronization, and buffering are
constrained with physical layout and implementation.

NOC platform layer: The platform is a computation
platform for target application area. Platform design
requires the understanding of how the target systems
operate and what kind of computation they have. Scaling
of the network, definition or regions, design of the
resource nodes, and definition of the system control are
the activities that must be based on abstract models of
applications. The platform encapsulates the hardware
design problems and serves as a manufacturing integration
platform for system developers.

NOC system layer: The NOC system is programmed
chip in the final product. The resource allocation,
optimisation of network usage and verification of
performance and correctness are the main problems that
are basically similar to what distributed and parallel
system designers have to face.

3.2. Design methods for NOC resources

The proposed integrated distributed embedded system

concept says very little about the contents of embedded
resources. There are some obvious constraints. They must
be implementable with backbone technology. They must
implement the system services required by the platform
such as power management, diagnostic and testability
functions. Otherwise, the platform designer can use all his
creativity to improve the applicability of the platform in
the application area domain.

Freedom of choices is a challenge for design
methodology. Consistent methodology must provide tools
and techniques that allow designing and modifying
everything that are not fixed. The resources in our
approach are almost autonomous subsystems and there
exists lot of methodologies that can be used during their
design. Therefore, we have organized our methodology as
a hierarchy of subsystem specific methodologies. The
lower level methodologies can be used in implementing
the subsystems of upper levels, as long as upper level
constraints are fulfilled. So, we can reuse existing and
widely used methods and tools. The methods at each level
are following:

1. System-level design and networked system’s
design methods. System-level design deals with
application modeling and analysis, while network
design methods are applied for mapping and load
balancing.

2. Parallel computer system design methods,
distributed computer system methods, embedded

system design methods, etc. The selection of used
method depends on the type of region that we are
developing.

3. Computer system design, software system design,
codesign, or configuration design depending on
the resource, are examples.

4. Basic software, logic and synthesis methods and
design flows.

The feasibility of such a hierarchical methodology
depends on how easy it is to model and present the
constraints for lower levels and how much these
constraints actually effect on the final system. Platform
based design, the reuse of intellectual property,
standardized interfaces such as application program
interfaces and virtual component interfaces are essential
elements of successful implementation of the complete
methodology. Integration of design information has
become easier because of the achievements in SOC
research community and in co-operation of main
companies and EDA vendors. Virtual Socket Interface
Alliance, Virtual Component Exchange and Open
SystemC Initiative are good examples of efforts that
increase the design productivity.

3.3. Design phases in NOC

Our methodology divides all design activities into four

phases that are analysis, estimation, decision, and
validation.

Analysis phase is needed for understanding what we
have as input for our design decision. For example, when

Resource development

Fu
nc

tio
n

de
ve

lo
pm

en
t

NOC System

System
does
not exist

Platform
Backbone

Architecture
design

Application
mapping

System Services

Operation principles

Communication
channels

Non-configurable
hardware

Product differentiation

Product area specialisation

Figure 1. NOC design flow with backbone, platform and system phases.

Backbone encapsulates communication resources and operation principles.
Platform contains the non-configurable hardware resources and system services.

software system is designed the first task is requirement
analysis, where the objective is to find out what are the
user needs that should be implemented but
implementation considerations are strictly forbidden.

Estimation is part of design space exploration where to
objective is to forecast the outcome of possible decision
without putting too much effort into the modeling of the
decision.

Decision is the phase when selections are implemented
as a new system model. Decision includes the creation of
a new model, which includes the refinements and
transformations.

In the validation phase the effects of decisions are
measured using the new system model as input. The
simulation or formal verification is part of the problem,
but the validation should consider all the quality
characteristics of the system

The actual content of each phase naturally depends on
the NOC method and layer. Table 1 lists the most
important issues that must be considered in main layers
and phases in NOC system design.

Table 1. Important issues at different
NOC design phases and layers.

 Backbone
layer

Platform
layer

System
layer

Analysis
phase

Silicon char-
acteristics

Application
workload

System
modeling

Estimation
phase

Yield
Power
Area

Capacity
Efficiency
Performance

Feasibility
Utilization
Performance

Decision
phase

Channels
Switches
Protocols

Resources
Services

Mapping
Design

Validation
phase

Performance
analysis

Performance
simulation

System
Simulation

The partitioning in our methodology gives plenty of

possibilities for NOC-based system designers. Physical
partitioning to regions and resources allows reusing even
complete computer systems as long as they follow the
interfacing rules. It is also possible to allocate some
resource slots to highly optimized architectures or
subsystems, and the domains allow to design them using
most appropriate methods. Optimized subsystem
architectures result to power saving and performance
benefits, and the network structure even allows dynamic
controlling of the activities of resources. The partitioning
of design phases enables separation of concerns and
makes problems manageable.

4. Decision support methods for NOC

Advanced decision support methods and tools are

necessity for NOC development. Both platform and
application development have large number of alternative

solutions, which can not be studied in detail. We have to
limit the design space very rapidly without excluding
potentially good alternatives, which means that we have to
use coarse-grained evaluations and estimated figures of
merits (FOMs). Attractive choices for FOMs are the
quality characteristics presented earlier, but the number of
possibilities is large, and it is not feasible to spend too
much time and resources on estimations either. The most
essential estimations from the NOC perspective are
related to mappings between physical objects and
functionality, and to the performance of the system.

4.1. Mappability estimation

The mapping of functionality into resources has huge

impact on performance, power consumption, functionality,
cost and variability of the system. In NOC systems the
mappings are done in several abstraction layers.

First the functionality is mapped into a NOC region. It
may be necessary to identify sets of applications that are
effectively implemented with a specific type of
architecture such as parallel computer or dedicated
memory organization. The evaluation of such mappings is
closely related to complexity estimations of different
application characteristics, but the estimations must take
into account the characteristics of region also.

Secondly, the functionality must be mapped to
resources e.g. SOCs in the NOC. The problem is the same
as with distributed systems, with the exception that
distribution is not caused by physical constraints, but
because of efficiency, power consumption, performance,
etc. reasons.

Thirdly, the smaller parts of functionality must be
mapped to the functional units in SOC e.g. processors and
coprocessors. SW/HW or function/architecture codesign
deals with this problem and there are some solutions
especially if functionality and target architecture are
known. In the NOC platform development the
applications are not known in detail and the target is not to
find optimal combination but to specify suitable resources
for variety of applications. During the NOC system design
the objective is to find most optimal processor from fixed
set of alternatives and designer’s freedom is limited to a
modification of algorithm.

The evaluation of the quality of processor core and
algorithm pair supports rapid exploration of design space
and it can serve as a basis estimations at upper layers of
NOC too. We have developed a mappability estimation
method, in which we create a set of estimates on both
algorithm and core characteristics and compare them in
order to see how well the correlate [13]. An abstract
control-data flow graph CFDG with branch probabilities
and data value bounds is generated from C-model using
SUIF2 compiler and profiling tools. The architecture

model consists of basic architecture parameters such as
superpipelining degree, number of parallel execution
paths, number of registers and buses, performance
parameters such as branch prediction efficiency and data
bypassing efficiency, and an instruction set model.

The correlation is divided into six parts that consider
separate aspects of program execution. Instruction set
correlation examines how effectively and extensively the
core instructions are used. In data flow continuity
correlation we study how much data dependencies cause
data hazards and degrade the pipeline efficiency. Control
flow continuity correlation depends on the number of
branch instruction and superpipelining degree. Taken
branches decrease the overlapping possibilities provided
by architecture. The execution unit availability correlation
compares operation level parallelism to the number of
parallel execution units. The parallelism of algorithm is
constrained by the data dependencies and it can be studied
from the number of operations in each step in the
unconstrained ASAP schedule. Data availability
correlation expresses how effectively registers and buses
can be used. The number data dependencies inside basic
blocks should correlate with the number of available
registers and the number of data dependencies across
basic boundaries should correlate to bus capacity.

We have done experiments with processor core
selection for Hiperlan/2 modem. The problem is similar to
what we face during NOC platform development. We
wrote C models for 13 baseband functions of HiperLan/2
modem. Viterbi encoder and some trivial functions were
excluded from the study because the hardware
implementation was obvious. C models were converted to
CFDG presentations and mappability estimates were
calculated. The database of possible processor core
architectures had 10800 different architectures that were
generated by varying the architecture parameters. The
instruction sets were not considered in the evaluation.
140400 mappability estimates were analyzed in order to
find the best architectures for individual functions and for
feasible software implementation. As a results we had
mappings that are relatively close to best possible
mappings with three core architectures. The architecture
for parallel functions had longer superpipelining degree
and more registers. Two architectures for more control-
dominated functions were simpler. Their main difference
was in bus capacity. [13]

Our mappability estimation makes simplifications that
may effect on absolute values of estimates. It also ignores
some of the issues that are very important at the SOC
level, such as cache memories and block level parallelism.
But it is very fast and powerful. Its mappability metric
combines performance, resource utilization, execution
efficiency, and power consumption. It also considers the
algorithm and architecture as a combination as they are in

the final product. When the models were ready, the
estimation of all 140400 mappings took only few minutes
in a single PC-workstation. This kind of estimation
performance is necessity with systems comprised of
hundreds of processors and it cannot be achieved with
simulation-based approaches.

4.2. Performance validation

The rising of NRE and design costs force us to design

more versatile systems, and the time-to-market pressures
demand us to design systems implementing
communication and multimedia standards which are not
yet finalized. Current implementation of basic GSM
phone for example is very different from the first version,
and in GPRS and EDGE evolution versions the
complexity increases further. To validate design decisions,
methods for analyzing and simulating system performance
and behavior at various levels of abstraction are needed.
Three different simulation levels are identified for NOC
system as illustrated in Figure 2.

Workload
modeling

Simulation

Architecture
modeling

Software
development

Simulation

Architecture
modeling

Workload
modeling and

mapping

Simulation

Architecture
modeling

Requirements
and

restrictions

Network-level

SoC-level

Processor-level

Decision
support

Figure 2. High abstraction level quality validation
flow

The performance of the network topology and
communication must be validated at network level with
network simulation. The main parts in network simulator
for NOC are resource model, switch model and model of
the network structure. Our region concept can be
implemented as a separate communicating network
simulation, or as a resource model, if we can assume that
the messaging behavior is known.

The resource model is an abstraction of the SOC. Its
functions are to emulate SOC behavior, generate messages
into network and to collect statistics of the messages. In

order to support all NOC layers, it must be possible to link
different types of functional models of SOCs as workload
generators. For example, at backbone layer very simple
message generator for signals is enough, at platform layer
statistical model or very abstract functional model for
message generation is applicable, and at system layer it
may be necessary to execute even the final code.

The switch model implements the buffering and
routing functions. At the design phase exploration phase it
is important to be able to rapidly modify the messaging
protocols, physical dimensions such as number of wires
and queue sizes, and routing algorithms.

Commercial and public domain network simulators
can be used for evaluating also NOC systems. We have
used Matlab and NS-2 for buffer sizing, for example [12].
The tools are mostly targeted for the simulation of Internet
or other standardized protocol based communication. The
network simulation needed for NOC development needs
more versatility and support for NOC specific monitors
and analyzes that are not only network dependent.
Therefore we have started to develop our own network
simulator.

At resource or SOC level the computation capacities of
processors, communication capacities of buses and
storage capacities of memories must be checked.
Workload modeling and transaction level simulation at
SOC level is most attractive solution. Transaction level
modeling means that communication of architectural units
happen in transactions such as read, write or burst-read,
instead of pin-level events. Simulation speed is
significantly faster than with traditional coverification
tools and it is also easier to integrate software models and
monitors into the simulation.

We have used SystemC 2.0 that provides constructs
for transaction-level modeling in form of interfaces and
channels. The actual processing elements are implemented
as communication shells and the functionality of
applications as workload models. Initially, the purpose of
the simulations is to validate the architecture but in further
iterations, it can be used for balancing the utilization of
architectural units.

We have experimented the SOC level simulations with
a multiprocessor SOC consisting of 4 DSP processor
cores, a RISC core and FFT and Viterbi-decoding co-
processors. The SOC architecture was modeled and
simulated with workload models of Hiperlan/2 modem
transceiver [14]. The functional complexity was analyzed
and resulting workload models were mapped into platform
resources. Utilization of processing elements and the
utilization and simultaneous memory references of shared
memory bus were measured using SystemC monitors. The
utilization of main elements of SOC with slowest bit-rate
of Hiperlan/2 modem are presented in Table 2. As it can
be seen the target architecture is not optimal for the

application. For example, the memory buses are oversized
and the Viterbi coprocessor is under used, since it can
handle the full-bit-rate for Hiperlan/2. These simulations
demonstrate the power of transaction level modeling that
is a necessity in NOC system design. The simulation of
100 000 clock cycles with SystemC took less than two
minutes with SunBlade 1000 workstation with two 900
MHz Ultrasparc III processors. This is significantly less
than with instruction set simulation or RTL-VHDL
simulation. The reliability of results depends mostly on
the accuracy of workload models and it has little effect to
simulation time. So, it is possible to make fast evaluations
of alternatives. The SystemC model may also be re-used
as test-bench when advancing to actual RTL HW design
or SW design. The benefit of this approach is to have an
intermediate level of abstraction between formal models
and register transfer level. The software and
communication design can also be started early with
workload models.

Table 2. Utilization of processing elements and
buses in 6Mbit/s Hiperlan/2 WLAN application

 Busy Wait Idle
RISC core 48% 10% 42%
DSP1 core 38% 57% 6%
DSP2 core 83% 17% 0%
DSP3 core 50% 29% 21%
DSP4 core 63% 33% 4%
FFT coprocessor 50% 0% 50%
Viterbi coprocessor 3% 0% 97%
X1_Bus 23% 4% 73%
X2_Bus 17% 1% 82%
X3_Bus 12% 0% 88%
X4_Bus 30% 1% 69%
Y1_Bus 15% 1% 85%
Y2_Bus 0% 0% 100%
Y3_Bus 3% 0% 97%
Y4_Bus 23% 2% 75%

Transaction level simulations do not validate

instruction, signal, and clock level details that are needed
at processor level. Instead of workload models, the
processing element shells will be used to connect
instruction set simulators (ISS) or similar to the model for
being able to run actual target software in simulation
model. The SOC-level SystemC model may also be used
as test-bench when refining the transaction level models in
to RTL hardware, since the same language can be used in
simulation of RTL and higher abstraction level models.
There is already limited commercial tool support for
automating the building of co-simulation environment.

The described method of quality validation approaches
the problem of architecture design with defining the used
abstraction levels and set of tasks that must be executed
when moving from one abstraction level to another. Since
the design flow is iterative, first results may be generated
very quickly and architecture and workload models may

be improved when needed. The gap of architecture design
and RTL design is narrowed, as is the gap between
software and hardware design and debug environment
with this approach.

5. Conclusions

When we enter the billion-transistor area, the basic

structures in ASICs have to be reconsidered. The systems
have to be built on the top of network concepts and
extensive reuse must be exploited. Application area
specific NoC is a viable alternative, because it provides
higher performance with lower power consumption and
cost for targeted applications.

We have presented a new design methodology for
NOC system development. The methodology reuses the
established design practices and extends them with
network specific methods and tools. We have presented an
approach that takes into account the optimization of
network behavior in all design stages and abstraction
layers. Our approach also exploits the best parts of
platform based design e.g. the reuse of tested and
validated designs and standardized interfaces to
application development.

We believe that the cornerstones of the development
of extremely complex integrated systems are the efficient
estimation and validation methods that aim at decision
support. We have done work with the estimation of
mapping quality at processor core-algorithm level. The
results so far are promising and we are convinced that
same principles can be applied to more complex objects
as well. The combination of network simulation,
transaction-level modeling and coverification seems as a
feasible approach for quality validation of networked
systems. Our experiences are that valid results can be
achieved also with abstract models and fast simulations as
long as the principles and objectives of modeling are
correct.

6. Acknowledgements

This work is a part of the joint Finnish-Swedish

EXSITE (Explorative System Integrated Technologies)
research program. This work was sponsored by TEKES
(The National Technology Agency of Finland),
VINNOVA (Swedish Agency for Innovation Systems),
Nokia Oyj, Ericsson Radio Systems AB, and Spirea AB
Kista.

7. References

[1] Allan, A. et al, “2001 Technology Roadmap for

Semiconductors”, Computer, Vol. 35., No. 1, 2002, pp. 42-
53

[2] Chang, H., et al, Survining the SOC Revolution – A Guide
to Platform-Based Design, Kluwer Academic Publishers,
1999, 235 pp.

[3] Keutzer, K. et al, “System Level Design: Orthogonalization
of Concerns and Platform-Based Design”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Volume 19, Issue 12, December
2000. pages 1523 –1543

[4] Sangiovanni-Vincentelli, A. & Martin, G., “Platform-Based
Design and Software Design Methodology for Embedded
Systems”, IEEE Design and Test of Computers, November-
December, 2001, pp. 23-33

[5] Guerrier, P. & Greiner, A., “A Generic Architecture for
On-Chip Packet-Switched Interconnections”, Proc. of
Design, Automation and Test in Europe, 2000, pp. 250-256

[6] Dally, W. J. & Towles, B., “Route Packets, Not Wires: On-
Chip Interconnection Networks”, Proc. of Design
Automation Conference, 2001, pp. 684-689

[7] Benini, L. & De Micheli, G., “Networks on Chips: A New
SoC Paradigm”, IEEE Computer, Vol. 35, No.1, 2002, pp.
70-78

[8] Mai, K. et al, “Smart Memories: a modular reconfigurable
architecture”, Proc. of Int. Symposium on Computer
Architecture, 2000, pp. 161-171

[9] Bose, P. and Conte, T. .M., “Performance Analysis and Its

Impact on Design”, IEEE Computer, Vol. 31, Issue 5,
1998, pp. 41-49

[10] Krishnaswamy, U. and Scherson, I.D, “ A Framework for
Computer Performance Evaluation Using Benchmark Sets”
IEEE Transaction on Computers, Vol. 49, No. 12, 2000,
pp. 1325-1338

[11] Gupta, T.V.K, et al., “Processor Evaluation in an
Embedded Systems Design Environment”, Proc. VLSI
Design, 2000, pp. 98-103

[12] Kumar, S., et al, “A Network on Chip Architecture and
Design Methodology”, Proc. of 2002 IEEE Computer
Society Annual Symposium on VLSI, 2002, pp. 117-124

[13] Soininen, J-P., et al, “Fast Processor Core Selection for
WLAN Modem using Mappability Estimation”, Proc. of
the 10th International Symposium on Hardware/Software
Codesign, 2002, pp. 61-66

[14] Soininen, J-P., et al, “Configurable Memory Organisation
for Communication Systems”, Proc. of Euromicro
Symposium on Digital System Design, 2002, pp. 86-93

