
Energy Profiling of DNN Accelerators
Matthias Wess, Dominik Dallinger, Daniel Schnöll, Matthias Bittner,

Maximilian Götzinger and Axel Jantsch
Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology

TU Wien, 1040 Vienna, Austria
{firstname}.{lastname}@tuwien.ac.at

Abstract—This paper introduces a novel methodology for
assessing the energy efficiency of neural network accelerators
at both layer and network granularity. The approach involves
extracting per-layer timing reports from recorded power profiles.
The power and energy consumption of three prominent neural
network accelerators, namely the Intel Neural Compute Stick 2,
the Coral Edge TPU, and the NXP i.MX8M Plus is evaluated for
three different Deep Neural Networks (DNNs) using this method.

The study investigates the relationship between decreasing
sampling frequencies and the average error, as well as the detailed
energy consumption of individual DNN layers and layer types.
The findings reveal that latency outperforms the number of
operations per layer as a predictor for both overall and dynamic
energy, with errors of 10% and 100% respectively.

The main conclusions are: a sampling frequency of 200 kHz
is necessary to achieve an average error of 5%; the number of
operations is an inadequate predictor of energy consumption;
and specific hardware settings significantly influence power and
energy consumption, emphasizing the need for their consideration
in estimation.

Index Terms—Power analysis, Deep Neural Networks, Hard-
ware accelerators

I. INTRODUCTION

Along with the increasing usage of Machine Learning (ML)
for solving complex tasks such as computer vision, there has
been plenty of research on hardware architectures to execute
such algorithms at reduced power and energy budgets. These
hardware accelerators reduce the overall power consumption
and allow integration of the data processing into the edge
devices. Specifically, the inference of ML algorithms on em-
bedded devices has proven efficient in terms of performance
and energy. Among several one-board solutions, hardware
vendors also provide external USB and PCI-based inference
accelerators to support the processing system for ML work-
loads [1]–[3].

Assessing the power and energy requirements of the var-
ious embedded devices is crucial for understanding their
performance and optimizing their use in various applications.
Obtaining precise measurements that reveal the energy con-
sumption of individual DNN layers is challenging, primarily
due to their short execution time. This task becomes even more
difficult in the presence of other power consumers in connected
electronics, which can obscure the relevant figures.

This work was supported in part by the Austrian Federal Ministry for
Digital and Economic Affairs, in part by the National Foundation for Research,
Technology and Development, and in part by the Christian Doppler Research
Association.

Our interest is the power consumption of specific DNNs as
well as their specific layers to analyze the energy efficiency of
different layer types. Moreover, we attempt to understand the
accuracy of proxy metrics for estimating power and energy
consumption.

This paper makes the following key contributions:

• We perform experiments on the required measurement
frequency to achieve accurate single-layer measurements.

• We propose a method to extract layer times from the
measured power profiles by iteratively removing the last
layer of the DNN.

• We profile DNNs on Neural Compute Stick 2 (NCS2) and
Coral Edge TPU (edge TPU) at single-layer granularity,
gaining insights about the execution efficiency of different
layer types on different devices.

Our primary focus is to investigate the energy efficiency
of three distinct DNN accelerator architectures. We achieve
this by monitoring power consumption at a high sampling
frequency. Furthermore, we develop a methodology that en-
ables us to automatically capture the power behavior during
the inference phase of DNNs on these accelerators. This
methodology also allows us to extract valuable information
concerning the power consumption of individual layers within
the Neural Network (NN). We accomplish this by correlating
detailed latency reports from the accelerators with the recorded
power profiles. In cases where detailed latency reports are un-
available, we employ an iterative approach where we remove
the last executed layer of the network. To extract layer-specific
power consumption data, we then compare the resulting power
profiles. Lastly, we conduct an extensive analysis on the
inference options available on the NCS2, edge TPU, and NXP
i.MX8M Plus Development Kit (i.MX8M+).

II. RELATED WORK

In response to the growing need to execute machine learning
algorithms on embedded hardware platforms, numerous efforts
have been made to compare the performance of different hard-
ware platforms. Cantero et al. [4] compare the performance
of the edge TPU Coral Dev Board and the Variscite i.MX8M
PLUS Board across five distinct model architectures in various
resolution settings. The results revealed that the Coral Dev
Board, with 4 Tera Operations per Second (TOPS), achieved
faster computation than the i.MX8M Board, which reaches
up to 2.3. However, the i.MX8M demonstrates more efficient



resource utilization and closely approaches the performance
level of the Coral Dev Board.

Several benchmarks have been developed to enable a
fair and extensive comparison of compute capabilities [5],
[6]. These benchmarks rely on a diverse set of workloads.
Notably, the MLCommons consortium1 offers the MLPerf
benchmarks [7] for inference and training across diverse
domains such as object detection, medical imaging, speech-to-
text, and natural language processing. These benchmarks are
categorized into data center, edge, mobile, and tiny platforms,
representing the broad spectrum of hardware used in machine
learning.

Highlighting the importance of comparing power consump-
tion for specific hardware platforms on certain benchmark
applications is the fact that the MLCommons consortium
released the MLPerf Tiny benchmark [6], which also focuses
on power consumption. MLPerf Tiny [6] includes several
benchmark tasks: Keyword Spotting, Visual Wake Words,
Image Classification, and Anomaly Detection. By providing
standardized evaluation criteria, researchers can compare and
analyze the energy efficiency of different DNN accelerators
and architectures. However, one limitation is that the bench-
mark results are presented in a summarized form, which
provides a broad overview but may lack detailed insights. To
conduct these evaluations, the EnergyRunner2 framework is
employed.

Furthermore, leveraging the MLPerf benchmark set, Libutti
et al. [8] have measured the power consumption and perfor-
mance of the edge TPU (adopted from [9]) and Intel NCS2 [1].
They explored various inference modes and settings, yet their
findings were limited to reporting overall energy consumption
per network without providing detailed insights at a more
granular level.

Blott et al. [10] measure the latency and power consumption
of many devices, including FPGA, GPU, edge TPU, and
VLIW processors for inference of diverse DNNs they focus
on gaining a better understanding of the design space with
regards to pruning and quantization.

Finally, there have been efforts to estimate the energy
consumption of hardware platforms execution NNs. Reif et al.
present Precious [11], an approach for estimating the energy
consumption of ML models based on linear and random
forest regressors. In particular, their implementation estimates
execution times as well as the power draw of Convolutional
Neural Networks (CNNs) on embedded accelerator hardware
for NNs (i.e., Google Coral edge TPU [2]). However, it
is restricted to a few layertypes and limited layer settings.
Other more accurate approaches [12], [13] require in-depth
knowledge of the accelerator design and target the hardware
design space exploration domain.

In contrast to other works which report the lump latency,
power, and energy for inference, we aim to gain a deeper
understanding of the energy efficiency of single layers to

1https://mlcommons.org, accessed: 2023-05-25
2https://github.com/eembc/energyrunner, accessed: 2023-05-25

   Host +
   Power Supply

0.1Ω 

   DAQ
   Card   

Embedded   
Device   

CH1

CH2

Ushunt

Ishunt
Iload

V+out

GND

DATA

V+in

GND

DATA

USB Connection

Fig. 1: Power Measurement Circuit. The shunt resistance
Rshunt = 0.1Ω. Ushunt and Ishunt are voltage drop and current
at the shunt, respectively.

provide the basis for energy-efficient neural architecture search
and layer energy estimation. We, therefore, analyze the power
consumption at much finer granularity to obtain latency, power,
and energy measurements for individual layers. To do so, we
develop a methodology to extract layer times based on the
gathered power profiles. This granularity resolution allows us
to relate latency and energy of specific layer types and draw
conclusions about their efficiency of execution on the given
architecture.

III. EXPERIMENTAL SETUP

The measurements are performed on a host computer with
an Intel-i7-8565U at 1.80 GHz with 16 GB of RAM and an
NCS2 as well as an edge TPU, both connected as ML co-
processors connected via USB3.0. For the i.MX8M+, which
is also powered via USB 3.0, we measure the power of
the entire system. For the measurement setup, we select a
USB-1608GX Data Acquisition (DAQ) card due to the good
programmability, high sampling rate and flexible measurement
ranges. To gather the voltage drop across a shunt resistor was
placed on the power line of the Device Under Test (DUT) (see
Fig. 1) with a maximum sampling frequency of 500 kHz.

We then compute the power consumption of the DUT as

Ptotal = (Usupply − Ushunt) · (Ushunt/Rshunt), (1)

where Rshunt is the shunt resistance, and Ushunt is the voltage
drop at the shunt. Due to the high input resistance, we can
neglect the current through the DAQ card and assume Ishunt =
Iload. Important to note is that the power supply lines of the
USB cable from the host to the DUT have been cut, and the
DUT is powered exclusively by the dedicated power supply.

A. Intel NCS2

The NCS2 USB 3.0 ML accelerator implements a MYRIAD
X Visual Processing Unit (VPU) with 16 Streaming Hybrid
Architecture Vector Engine (SHAVE) processors operating at
700 MHz. For the computation of a DNN, the NCS2 provides
a maximum nominal performance of 1 TOPS in Floating-Point
16 (FP16) format. Inference on the accelerator is performed
via the OpenVino toolkit, supporting up to 4 parallel inference
requests (see section V-E).

https://mlcommons.org
https://github.com/eembc/energyrunner


B. Coral Edge TPU

The Google Coral machine-learning accelerator co-
processor is a USB device embedding the Google Edge
edge TPU ASIC. The Coral accelerator performs inference
operations on TensorFlow Lite3 models with a peak current
of 900 mA at 5 V. The accelerator maintains a computational
throughput of 4 TOPS at a computational efficiency of 2 TOPS
per Watt [2]. The edge TPU supports two operational modes:
the standard mode and the maximum frequency, which are
discussed in section V-E.

C. I.MX8M Plus

The i.MX8M+ processor is a heterogeneous multi-core
processor developed by NXP. The processor incorporates an
embedded Vivante VIP8000 Neural Processing Unit (NPU)
that provides 2.3 TOPS of computing power. To optimize
the data exchange between the computing units, the NPU
shares the high-speed internal memory bus with the Central
Processing Units (CPUs). Similar to the edge TPU, the Vivante
VIP8000 performs 8-bit Integer (INT8) operations, accelerat-
ing the TensorFlow Lite execution.

D. Software

For the measurements of the NCS2, we make use of
the OpenVino toolkit [14], which offers many convenient
tools for converting, optimizing, benchmarking, and analyzing
neural networks. The model optimization and conversion tools
support networks generated in popular deep learning frame-
works/formats such as PyTorch4, TensorFlow5, and ONNX6

as source workloads. Performance metrics such as latency and
throughput of individual layers can be extracted with the help
of the API benchmark application.
For the measurements of the edge TPU and the i.MX8M+, the
models are converted into TensorFlow Lite format and post-
training quantized to INT8 format. The inference on the edge
TPU and the i.MX8M+ is driven through the TensorFlow Lite
inference engine, offloading the workload to the accelerators
via the delegate functionality. Both, the edge TPU and the
i.MX8M+ only support fully-quantized 8-bit TensorFlow Lite
models. For the edge TPU the models need to be specifi-
cally compiled (using the edge TPU Compiler) [15]. For the
i.MX8M+ no compilation is necessary prior to the execution.
To access the DAQ card, we use the MCC Universal Library7.

E. The workload

As workload for the measurements, we selected three differ-
ent DNNs for image classification and object detection, namely
MobileNetV2 [16], YOLOv3, and YOLOv3-tiny [17].

3https://www.tensorflow.org/lite, accessed: 2023-05-25
4https://pytorch.org, accessed: 2023-05-25
5https://www.tensorflow.org, accessed: 2023-05-25
6https://onnx.ai/, accessed: 2023-05-25
7https://github.com/mccdaq/uldaq, accessed: 2023-05-25

Execution Isolation

Alignment and Selection

Filtering

Deconvolution

Alignment

Longest Common Subsequence

Mean

Preprocessing

Layer Time Extraction

Power Profile

rem
ove last layer

Fig. 2: The signal processing pipeline used for the power
profile extraction and layer time extraction

IV. METHODOLOGY

This section describes the proposed methodology and signal
processing pipeline designed to facilitate precise benchmark-
ing and profiling. We provide a detailed description of the
pipeline, which enables the semi-automatic annotation of
power and energy consumption for each executed DNN on
the hardware platform.

When per-layer timing reports are available on the hardware
platforms, the times can be annotated into the power profile.
In that case, the major challenge is to identify the start of
the first layer. Alternatively, we can retrieve the per-layer
timing information by iteratively removing the network layers
one by one and comparing the recorded power profiles of
the modified and the original network. This approach ensures
synchronization between the layer latency annotations and the
power profile. Also, some devices operate less efficiently when
in profiling mode, which we can avoid. Our method, can
generate layer-wise execution time reports for potentially any
hardware with a characteristic per-layer power profile.

Fig. 2 depicts the implemented signal processing pipeline.
The pipeline consists of two sub-pipelines: pre-processing and
layer-profile extraction. For the benchmarking, we also record
the power profile of the initialization, the warm-up phase, and
multiple iterations of the DNN executed on the target device.

The pre-processing is critical to isolate a single execution
power profile from the recorded data. To reach this target,
we first detect the single executions by applying a sliding
window with the width according to the execution time of
the DNN. To ensure the correct cutout of the actual execution

https://www.tensorflow.org/lite
https://pytorch.org
https://www.tensorflow.org
https://onnx.ai/
https://github.com/mccdaq/uldaq


90 92 94 96 98 100
Time [ms]

3

4

5

6

7

Po
we

r [
W

]

Power
Deconvolved Power

Fig. 3: The recorded power profile for the i.MX8M+ exhibits
smoothing effects in comparison to the deconvolved power
profile

profiles, we compute the maxima and minima of the filtered
signal and select the detected peaks with similar inter-peak
distances as center points for the cutouts. Additional adaptive
thresholds and edge detection ensure clean cutouts of the
execution profiles. Next, the cutouts are pairwise iteratively
aligned by minimizing the Euclidean distance between the
cutout signals. We use the isolation forest algorithm [18] to
filter out anomalies in the cutouts. In an optional next step, we
compute the means of the remaining cutouts to reduce noise
on the measured signal. To obtain accurate power profiles of
the DNN executed on a target device, we need to address
the effect of the capacitors within the power supply circuit.
Capacitors act as short-term energy storage devices, smoothing
the signal but distorting the actual power consumption in the
time domain. to the device during the execution of the DNN.
These distortions can introduce measurement inaccuracies,
potentially leading to the misattribution of energy consumed
by a previous layer to the next layer. To solve this problem,
we perform a deconvolution with the impulse response of
the normalized capacitor discharge curve. The value of τ of
the discharge curve is empirically determined as part of the
pre-processing step, and the deconvolution is applied to each
recorded power profile. The effect of this deconvolution step
is shown in Fig. 3.

For our semi-automated layer time extraction, we iteratively
remove the last layer of the network and record the profile of
the resulting network. The resulting profile usually exhibits
a shorter execution time and possibly visible artifacts in the
power profile after the output layer (which can be denoted
to reading the output data). To neglect these artifacts, we
determine the longest common sub-sequence between the
aligned power profiles of the current sub-network and the
previously measured networks. Computing the differences
between the identified longest common sub-sequences we
retrieve the execution times of each layer.

Fig. 4 shows the layer times extracted with our pipeline
compared to the reports generated by OpenVino for the NCS2.
Based on this method, we achieve an average error of 42µs
for the execution of MobileNetV2 on the NCS2. At an average
layer time of 311µs, this means that we have to consider that
for short layers, the error of the extracted layer times is rather
large. However, since we are mainly interested in the efficiency

0 0.5 1 1.5 2 2.5
0

1

2

extracted [ms]

re
al

[m
s]

Fig. 4: Comparison of the extracted layer times vs. measured
layer times for MobileNetV2 on NCS2

0 2 4 6 8 10 12
Time [ms]

1.25

1.50

1.75

2.00

2.25

2.50

Po
we

r [
W

]

Power
Network Start
Layer Transition

Fig. 5: The power profile of MobileNetV2 executed on NCS2
with annotated layer transitions

of the large layers which make up for most of the energy
consumption, we proceed with this approach.

To verify the method, we first visualize the recorded mea-
surements to analyze the power profile at 500 kHz sampling
frequency. We can now visualize the timestamps of the tran-
sitions between the layers. Fig. 5 shows excerpts of such
measurements of MobileNetV2 executed with batch size one
on the NCS2 in synchronous mode.

Based on our observations, we find that both the NCS2 with
Pbase ∼ 1.4W and the edge TPU with Pbase ∼ 1.1W exhibit
a relatively high base power consumption after the network
is loaded in comparison to the dynamic power Pdyn which is
consumed additionally during the execution of the DNNs. The
i.MX8M+ has an even higher idle power consumption with a
Pbase ∼ 2.9W. As in this case we are not only measuring the
NPU but also the CPU and memory components

Therefore, we denote the total power consumption as

Ptotal = Pbase + Pdyn (2)

for the further experiments. We approximate the energy con-
sumption of the entire network and the single layers with

E ≈ t · P , (3)

where t is the reported execution time and P is the mean
power consumption of the executed layers and the entire
network. With (2) and (3), we can compute the energies
consumed due to base power Pbase and dynamic power Pdyn.

V. RESULTS

This section summarizes the results of applying the power
profiling methodology presented in section IV.



102 103 104 105 106

Sampling Frequency [Hz]

0

5

10

15

20

25

30
Av

er
ag

e 
Er

ro
r [

%
]

per layer Etotal

per layer Edyn

Etotal

Edyn

dropped layers

(a) NCS2

102 103 104 105 106

Sampling Frequency [Hz]

0

10

20

30

40

50

Av
er

ag
e 

Er
ro

r [
%

]

per layer Etotal

per layer Edyn

Etotal

Edyn

dropped layers

(b) edge TPU

Fig. 6: The error of measured energy and percentage of
dropped layers in % for MobileNetV2 on the NCS2 and edge
TPU with respect to 500 kHz sampling frequency

A. Sampling frequency

We first study the influence of the sampling frequency on the
resulting errors with regards to the number of profiled layers,
the energy consumption per layer, and the energy consumption
for the entire network to gain an understanding for the required
measurements frequencies for future devices.

Fig. 6a shows the error at a given sampling frequency
compared to the results obtained with a sampling frequency
of 500 kHz for the NCS2. The error of the total energy
Etotal is below 5% at sampling rates above 100Hz because
the base power is a relatively major component. The error
for the dynamic energy Edyn grows faster with decreasing
sampling frequency. The results show that a fine-grained
understanding of the per-layer energy consumption requires
a 10 kHz sampling frequency or higher for the NCS2. The
denoted error per layer considers only the layers actually
recorded during measurement. Notably, with decreasing sam-
pling frequency, the number of dropped layers (layers with
execution time shorter than the sampling window) quickly
grows and amounts to 15% at 10 kHz sampling frequency.The
results for repeating the same measurements on the edge TPU
are depicted in Fig. 6b. Compared with the NCS2, the edge
TPU executes MobileNetV2 7 × faster, which leads to higher
relative errors at the same sampling frequency. As expected the
average network and per-layer error scales with the compute
performance of the device and the latency of the network
layers.

0 5 10 15 20 25 30 35 40
[Mops]

0

1

2

3

E t
ot

al
 [m

J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(a) NCS2

0 5 10 15 20 25 30 35 40
[Mops]

0.0

0.1

0.2

0.3

0.4

E t
ot

al
 [m

J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(b) edge TPU

Fig. 7: Total energy vs. number of operations for MobileNetV2
on the NCS2 and edge TPU

B. Energy versus the number of operations

Comparing the measured energy consumption of the layers
with the number of operations, we note that for both accelera-
tors, not all layers are computed with equal energy efficiency.

Fig. 7 shows the energy consumed for specific numbers of
operations of different layers in MobileNetV2. Naturally, more
operations lead to higher energy consumption, but the slope
differs quite for different layer types. Depth-wise convolution
layers (DepthwiseConv) have fewer operations but consume 4-
6 times more energy per operation than ordinary convolutions.
This behavior is explainable by the lower computational ef-
ficiency and the longer layer execution times of the NCS2
as well as the edge TPU computing depth-wise separable
convolution layers. Moreover, within a layer type, there are
significant differences. The energy efficiency difference be-
tween different convolution layers is up to 3× for the edge
TPU and 4× for the NCS2. Thus, the number of operations
is a poor proxy for estimating energy consumption for both
accelerators.

C. Energy versus the number of activations

Considering the number of activations (Fig. 8), we see
similar patterns for the NCS2 and the edge TPU, as the
depth-wise convolution layers are computed with lower energy
efficiency. Again, not only between different layer types but
also within a layer type, there are significant differences in
terms of energy efficiency per activation.

D. Energy versus latency

Fig. 9a and 9c depict the total energy and the dynamic
vs. the runtime for the layers in MobileNetV2 on the NCS2.
The total energy consumption correlates well with the runtime



0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
[activations] 1e6

0

1

2

3

E t
ot

al
 [m

J]
Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(a) NCS2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
[activations] 1e6

0.0

0.1

0.2

0.3

0.4

E t
ot

al
 [m

J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(b) edge TPU

Fig. 8: Total energy vs. number of activations (output feature
map size) for MobileNetV2 on the NCS2 and edge TPU

per layer (see Fig. 9a and 9b). One of the main reasons for
this is the relatively high base power consumption of the
NCS2 and the edge TPU compared to the dynamic power.
When increasing the number of parallel inference requests for
the NCS2 up to 4, the relation between dynamic and base
energy shifts more towards dynamic energy. Thus, we also
investigate the correlation between the dynamic energy per
layer and the runtime. We find that the correlation is still
fairly good; a layer that needs more time also needs more
dynamic energy. However, the data points in Fig. 9c and 9d
are not lined up on a straight line with a constant slope, which
means the correlation is imperfect. Some layers consume up
to 2 times more dynamic energy per time unit (more dynamic
power) than others. Interestingly, on the NCS2, depth-wise
separable convolution layers tend to consume less power than
convolution layers.

Combining this observation with what we see in Fig. 7,
depth-wise separable convolution layers are less efficiently
executed by the hardware than convolution layers: they have
fewer operations and require relatively more time but less
power. It seems that they cannot keep the hardware as busy
as ordinary convolution layers. One possible explanation is
that depth-wise convolution layers are limited by the memory
hierarchy rather than the computational capabilities of the
NCS2 and the edge TPU. We found that the remaining
layer types used in MobileNetV2 generally consume a higher
amount of energy per operation than convolutional layers but
are only responsible for an almost negligible portion of the
total energy consumed per network.

E. Hardware settings
The NCS2 can be operated in two different modes,

synchronous and asynchronous. In summary, synchronous
means purely sequential execution while asynchronous allows
pipelined execution. The nireq factor in Table I gives the
number of requested parallel inferences. The inference la-
tency slightly increases when pipelining inference requests.
In contrast, the throughput, measured in frames per second,
improves fairly significantly: between 33% and 77% when
moving from sync to async-2 mode and between 5% and 25%
when moving from async-2 to async-3. No improvement is
found for the async-4 mode because the maximal amount of
nireq has already been reached at async-3.

A better hardware utilization in the async-2 and async-
3 modes, compared to sync-1, is reflected in the increased
average power consumption, increasing by 17% to 43%.

While the async modes increase the hardware utilization
and power consumption, the total energy per inference is
reduced, which reflects an overall better usage of hardware and
energy resources. Comparing the energy values for the base
and dynamic energy for the different execution modes, we can
see that the total energy reduction per inference comes mostly
from amortizing the high base energy over several inferences.
For example, the dynamic energy per inference for executing
YOLOv3 with 4 inference requests is almost twice as high as
the base energy.

In contrast to the NCS2, the edge TPU does not allow
multiple parallel inference requests but can be operated at two
different clock frequency settings. Table I lists the frequency
settings standard (std) and maximum (max).

The three test networks gain a speedup of between 10% and
50% when switching from std to max frequency mode. Due
to the lower execution time with maximum frequency the base
energy decreases while the dynamic energy increases for all
three networks. On the other hand, with maximum frequency,
the total energy decreases for all three networks while the
mean power consumption increases by up to 15%.

Depending on the selected hardware settings and the net-
work architecture, the edge TPU is 2-10 times more efficient
regarding total energy consumed per parameter and operation
than the NCS2. This difference can be explained by the
difference in data types the two operators are operating on
(INT8 and FP16).

Lastly, the i.MX8M+ NPU also only supports INT8 ex-
ecution. For comparison we also provide the numbers for
execution on the CPU. As the measurements for the i.MX8M+
also include the power consumption of the CPU and other
components, the base power consumption is significantly
higher for the i.MX8M+ than for the edge TPU and the NCS2.
Interestingly, for YOLOv3 and YOLOv3-tiny the i.MX8M+
outperforms the edge TPU in terms of latency. However, even
though the execution time is smaller Etotal and Edyn are still
higher than for the edge TPU. Additionally, we can see that
for MobileNetV2 the edge TPU outperforms the i.MX8M+.
We assume that this is due to the fact that the edge TPU is a
better fit for depthwise convolution.



0.0 0.5 1.0 1.5 2.0 2.5
Layer Runtime [ms]

0

1

2

3

E t
ot

al
 [m

J]
Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(a) Etotal per layer on NCS2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Layer Runtime [ms]

0.0

0.1

0.2

0.3

0.4

E t
ot

al
 [m

J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(b) Etotal per layer on edge TPU

0.0 0.5 1.0 1.5 2.0
Layer Runtime [ms]

0.0

0.1

0.2

0.3

0.4

0.5

E d
yn

 [m
J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(c) Edyn per layer on NCS2

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Layer Runtime [ms]

0.00

0.02

0.04

0.06

0.08

E d
yn

 [m
J]

Convolution
Pooling
Addition
DepthwiseConv
FullyConnected

(d) Edyn per layer on edge TPU

Fig. 9: Total and dynamic energy for the layers of MobileNetV2; the blue line denotes the base energy consumed by the edge
TPU during the layer runtime

VI. CONCLUSION

We presented a methodology on how to perform power
measurements an how to extract additional information of the
power profiles. The method allows to gain additional insights
with reduced additional development effort per platform. How-
ever, the method has some limitations regarding accuracy of
the extracted data. It has to be considered, that the shorter the
execution time of a NN the less accurate this method works.
Therefore, we expect difficulties of applying this method for
too powerful platforms or for small networks.

From our experiments with three networks and the acceler-
ator platforms, we draw the following main conclusions, some
expected and others less conspicuous.

• To obtain an average power measurement error lower
than 15%, a sampling frequency of 10 kHz or higher is
required. For an error below 5%, a sampling frequency of
200 kHz is recommended for the two USB accelerators.

• The number of operations is a poor predictor of energy
consumption. Latency is a much better predictor with,
in our experiments, an expected error margin of around
10%. However, the correlation between latency and en-
ergy usage for individual layers can vary by up to 2× for
dynamic energy, which means dynamic energy estimation
based only on latency may be off by up to 100%. Which
means that for correctly predicting dynamic energy, ad-
ditional factors would have to be considered.

• Settings of the hardware can significantly influence la-
tency, throughput, and energy consumption. Specifically,
the async-3 mode on NCS2 improves throughput by up
to 100% and energy per inference by up to 35%, at a
cost of increasing latency by up to 48%.

• On the NCS2, increasing the number of parallel inference
requests shifts the relation between base power and dy-
namic power towards the latter. As a further consequence,
this aggravates the task of estimating the total energy due
to the non-linear nature of the relationship between layer
runtime and dynamic energy.

• For both USB accelerators, we can adjust the relation-
ship between power consumption and energy per image
through either the number of parallel inference requests
or the clock frequency. In both cases, the power consump-
tion increases when switching to the higher throughput
modes, but with the overall result of a lower energy per
image.

With our study, we wanted to obtain a better understanding
of power and energy usage in specific state-of-the-art networks
with diverse layer combinations on a given hardware platform.
We conclude that latency can be used as a first-order estimate
for power and energy consumption for a network and indi-
vidual layers. However, if a more detailed understanding of a
network and its layers is required for system energy budgeting
or network optimizations, more detailed and precise measure-
ments are required because the dependencies and influences
are often non-linear and non-intuitive. In addition to providing
insight into what can be derived from accurate power profiles
of DNN accelerators, the understanding gained in this study
can also be applied to power consumption estimation and
energy-aware neural architecture search.

REFERENCES

[1] Intel. Neural compute stick documentation. https://www.intel.com/cont
ent/www/us/en/developer/articles/guide/get-started-with-neural-compu
te-stick.html, 2019. Accessed: 2023-05-25. 1, 2

https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-neural-compute-stick.html
https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-neural-compute-stick.html
https://www.intel.com/content/www/us/en/developer/articles/guide/get-started-with-neural-compute-stick.html


TABLE I: Speedup comparison of different Networks. nireq denotes the number of parallel inference requests. Freq denotes
the frequency setting for the edge TPU.

HW Network nireq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

NCS2
w.o. Host

FP16

YOLOv3-tiny 1 21.2 41 2165 101.93 65.91 36.02 18.32 11.52
2 35.3 52 2670 75.55 39.61 35.94 13.58 8.54

5.6 Gop 3 43.1 46 2995 69.42 32.45 36.97 12.47 7.85
8.8 Mpar 4 43.1 44 2954 68.54 32.48 36.06 12.32 7.75

YOLOv3 1 2.6 363 2505 960.92 537.04 423.88 14.69 15.61
2 4.4 400 3413 769.61 315.69 453.92 11.76 12.50

65.8 Gop 3 4.7 425 3615 764.89 296.22 468.67 11.69 12.42
61.6 Mpar 4 4.9 390 3604 742.50 288.43 454.07 11.35 12.06

MobileNetV2 1 49.3 21 1806 36.60 28.37 8.23 60.84 10.55
2 87.2 23 2118 24.29 16.06 8.23 40.38 7.00

0.6 Gop 3 90.4 31 2164 23.95 15.49 8.46 39.81 6.90
3.4 Mpar 4 92.4 53 2162 23.39 15.15 8.24 38.88 6.74

HW Network Freq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

Edge TPU
w.o. Host

INT8

YOLOv3-tiny std 46.3 22.3 1407 30.40 22.28 8.12 5.46 3.44
max 51.0 19.6 1528 29.95 20.21 9.73 5.38 3.39

YOLOv3 std 6.3 158.3 1519 240.50 163.27 77.23 3.68 3.91
max 7.0 142.0 1657 235.36 147.29 88.06 3.60 3.82

MobileNetV2 std 331.3 3.0 1422 4.29 3.11 1.18 7.13 1.24
max 512.3 1.9 1658 3.23 2.02 1.21 5.37 0.93

HW Network Freq Fthr(fps) Tlat(ms) P (mW) Etotal(mJ) Ebase(mJ) Edyn(mJ) E/Gop(mJ) E/Mpar(mJ)

i.MX8M+
INT8

YOLOv3-tiny npu 102.8 9.7 4398 42.78 26.32 16.47 7.64 4.84
cpu 1.3 758.5 3917 2971.33 2421.60 549.73 534.41 335.93

YOLOv3 npu 9.5 105.0 4788 502.51 289.93 212.58 7.64 8.16
cpu 0.1 7706.6 3434 26462.35 20632.56 5829.79 402.16 429.58

MobileNetV2 npu 97.1 10.3 3807 39.21 28.11 11.11 65.35 11.53
cpu 8.4 119.7 3375 403.97 327.90 76.07 673.28 118.81

[2] Coral. Usb accelerator datasheet. https://coral.ai/docs/accelerator/data
sheet/, 2021. Accessed: 2023-05-25. 1, 2, 3

[3] NXP. i.mx 8m plus documentation. https://www.nxp.com/products/p
rocessors-and-microcontrollers/arm-processors/i-mx-applications-pro
cessors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53
-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS,
2023. Accessed: 2023-05-25. 1

[4] David Cantero, Iker Esnaola-Gonzalez, José Miguel-Alonso, and Ekaitz
Jauregi. Benchmarking object detection deep learning models in em-
bedded devices. Sensors, 22(11), 2022. 1

[5] Cody Coleman, Daniel Kang, Deepak Narayanan, Luigi Nardi, Tian
Zhao, Jian Zhang, Peter Bailis, Kunle Olukotun, Christopher Ré, and
Matei Zaharia. Analysis of dawnbench, a time-to-accuracy machine
learning performance benchmark. ACM SIGOPS Oper. Syst. Rev., 53(1),
2019. 2

[6] Colby R. Banbury et al. Mlperf tiny benchmark. In Joaquin Vanschoren
and Sai-Kit Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks, 2021. 2

[7] V. J. Reddi et al. Mlperf inference benchmark. In ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
2020. 2

[8] Leandro Libutti, F. Igual, L. Piñuel, Laura C. De Giusti, and M. Naiouf.
Benchmarking performance and power of USB accelerators for inference
with MLPerf. In 1st Workshop on Accelerated Machine Learning
(AccML), 2020. 2

[9] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor pro-
cessing unit. In 2017 ACM/IEEE 44th Annual International Symposium
on Computer Architecture (ISCA), 2017. 2

[10] Michaela Blott et al. Evaluation of optimized cnns on heterogeneous
accelerators using a novel benchmarking approach. IEEE Trans. Com-
puters, 70(10), 2021. 2

[11] Stefan Reif, Benedict Herzog, Judith Hemp, Timo Hönig, and Wolfgang
Schröder-Preikschat. Precious: Resource-demand estimation for embed-
ded neural network accelerators. In First International Workshop on
Benchmarking Machine Learning Workloads on Emerging Hardware,
2020. 2

[12] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. Accelergy:
An architecture-level energy estimation methodology for accelerator

designs. In Proceedings of the International Conference on Computer-
Aided Design, ICCAD, 2019. 2

[13] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David M.
Brooks. Aladdin: A pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized architectures. In
ACM/IEEE 41st International Symposium on Computer Architecture,
ISCA, 2014. 2

[14] Intel. OpenVINO Toolkit. https://software.intel.com/en-us/openvino-t
oolkit, 2021. 3

[15] Coral. Tensorflow models on the edge tpu. https://coral.ai/docs/edgetp
u/models-intro/, 2021. 3

[16] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, 2018. 3

[17] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018. 3

[18] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In
Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM), 2008. 4

https://coral.ai/docs/accelerator/datasheet/
https://coral.ai/docs/accelerator/datasheet/
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://software.intel.com/en-us/openvino-toolkit
https://software.intel.com/en-us/openvino-toolkit
https://coral.ai/docs/edgetpu/models-intro/
https://coral.ai/docs/edgetpu/models-intro/

