
Research Article
Performance Analysis of Homogeneous On-Chip Large-Scale
Parallel Computing Architectures for Data-Parallel Applications

Xiaowen Chen,1,2 Zhonghai Lu,2 Axel Jantsch,3 Shuming Chen,1

Yang Guo,1 Shenggang Chen,1 and Hu Chen1

1College of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
2Department of Electronic Systems, KTH-Royal Institute of Technology, Kista, 16440 Stockholm, Sweden
3Institute of Computer Technology, Vienna University of Technology, 1040 Vienna, Austria

Correspondence should be addressed to Xiaowen Chen; xiaowenc@kth.se

Received 28 August 2014; Revised 18 January 2015; Accepted 18 January 2015

Academic Editor: Dimitrios Soudris

Copyright © 2015 Xiaowen Chen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

On-chip computing platforms are evolving from single-core bus-based systems to many-core network-based systems, which are
referred to as On-chip Large-scale Parallel Computing Architectures (OLPCs) in the paper. Homogenous OLPCs feature strong
regularity and scalability due to its identical cores and routers. Data-parallel applications have their parallel data subsets that are
handled individually by the same program running in different cores. Therefore, data-parallel applications are able to obtain good
speedup in homogenousOLPCs.The paper addressesmodeling the speedup performance of homogeneousOLPCs for data-parallel
applications. When establishing the speedup performance model, the network communication latency and the ways of storing data
of data-parallel applications aremodeled and analyzed in detail. Two abstract concepts (equivalent serial packet and equivalent serial
communication) are proposed to construct the network communication latency model.The uniform and hotspot traffic models are
adopted to reflect the ways of storing data. Some useful suggestions are presented during the performance model’s analysis. Finally,
three data-parallel applications are performed on our cycle-accurate homogenous OLPC experimental platform to validate the
analytic results and demonstrate that our study provides a feasible way to estimate and evaluate the performance of data-parallel
applications onto homogenous OLPCs.

1. Introduction and Motivation

As technology advances, on-chip computing platforms are
evolving from single-core bus-based systems to many-core
network-based systems, which feature integrating a number
of computing cores that run in parallel and adopting an on-
chip network that provides concurrent pipelined communi-
cation. The many-core network-based systems are referred
to as On-chip Large-scale Parallel Computing Architectures
(OLPCs) in the paper. OLPCs can be highly homogeneous
or irregular and heterogeneous. Homogenous OLPC owns
its characteristics of strong regularity and scalability, since
processor cores and routers in it are the same. Each processor
core has the same computation capability. As one way of par-
allel processing, data parallelism partitions data into several
blocks that aremapped to different processors and processors

work in SPMD (Single Program Multiple Data) mode, that
is, they handle their own data blocks by running the same
program. Data-parallel applications have the parallel data set
that can be partitioned in parallel into data subsets and each
data subset can be handled individually by the same program
and has marginal synchronization overhead, so they are well
scalable and can be used to exploit the potential of multiple
computing cores. Therefore, homogenous OLPCs and data-
parallel applications match each other well. Data-parallel
applications are able to obtain good speedup on homogenous
OLPCs. Therefore, the focus of the paper is to provide a
workable way to estimate and evaluate the performance of
homogenous OLPCs with data-parallel applications.

Scalability is one of the important features of homogenous
OLPCs. In homogenous OLPCs, as the network size is
scaled up, the network communication latency is increasing

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2015, Article ID 902591, 20 pages
http://dx.doi.org/10.1155/2015/902591

http://dx.doi.org/10.1155/2015/902591

2 Journal of Electrical and Computer Engineering

and becoming one of the most significant factors affecting
the system performance. Therefore, we firstly propose two
abstract concepts: equivalent serial packet and equivalent
serial communication, and then we construct a detailed
network communication latency model. Then, based on
Amdahl’s Law, we propose a performance model including
the detailed network communication latency. Two traffic
models (uniform and hotspot) are used to reflect the two ways
of storing data of data-parallel applications. The uniform
trafficmodelmatches the distributedway that data are equally
distributed into all nodes, while the hotspot traffic model
matches the centralized way that data are only maintained
in the central node. Our models also analyze the perfor-
mance impact of the noncommunication/communication
ratio. Some useful suggestions are presented during the
performance model’s analysis. Finally, we map three data-
parallel applications (Wavefront Computation, Vector Norm,
and BlockMatchingAlgorithm inMotion Estimation) on our
cycle-accurate homogenous OLPC experimental platform to
validate and demonstrate our performance analysis.

The contributions of the paper are summarized as follows.

(1) Since homogenous OLPCs match data-parallel appli-
cations well and vice versa, our study exhibits a work-
able way to formulate and evaluate the speedup per-
formance of data-parallel applications onto homoge-
nous OLPCs before application programming and
hardware design.

(2) Two abstract concepts, equivalent serial packet and
equivalent serial communication, are proposed and
then used to construct the detailed network commu-
nication latency model (see Section 4.3).

(3) Based on Amdahl’s Law, we propose a performance
model of homogeneous OLPCs for data-parallel
applications (see Section 4.4). The proposed perfor-
mance includes the proposed network communica-
tion latency model and adopts two traffic models
(uniform and hotspot) so as to have two forms (see
Sections 4.4.1 and 4.4.2).They, respectively, reflect the
distributed way and the centralized way of storing
data of data-parallel applications.

(4) A cycle-accurate homogenous OLPC experimental
platform is built up and three real data-parallel
applications are mapped to validate the effectiveness
of the proposed performance model.

The rest of the paper is organized as follows. Section 2
presents the background and related work. Section 3 dis-
cusses the characteristics of homogenous OLPCs and data-
parallel applications and their relationship. Section 4 pro-
poses the communication latency model and the perfor-
mance model of homogenous OLPCs and details the anal-
ysis. Section 5 maps three data-parallel applications on our
homogenous OLPC platform to validate the effectiveness of
the performance model. Section 6 discusses the applicabili-
ties and the limitations of our performance model. Finally,
we conclude in Section 7.

2. Background and Related Work

The development of on-chip computation presents two
trends. One is towards a growing number of processors
integrated on a chip [1, 2]. it is moving away from a
sequential to a parallel paradigm leading to tens, dozens,
hundreds, and soon even thousands of computing cores on
a single chip. A number of computing cores are potential to
cooperate in parallel to obtain higher performance of parallel
applications. The other trend is about the interconnection
of on-chip resources. The communication infrastructure
is developing into a similarly parallel structure, which is
often called a Network-on-Chip (NoC) [3–5]. Shared, serial
buses are replaced by pipelined communication networks
that allow hundreds or thousands of communications going
on concurrently at any time. Combining the two trends,
on-chip computing platforms are evolving from single-core
bus-based systems to many-core network-based systems,
which are referred to as On-chip Large-scale Parallel Com-
puting Architectures (OLPCs) in the paper. Understanding the
speedup potential that OLPC computing platforms can offer
is a fundamental question to continually pursuing higher
performance.

With respect to performance analysis, Amdahl’s Law [6]
provides a simple, yet very useful method to evaluate the
performance of a parallel system. Its fundamental hypothesis
is that the computation problem size does not change when
running on enhanced parallel systems. Its main result shows
that the percentage of the serial portion dominates the
speedup limit. Amdahl’s Law is a pessimistic view that the
speedup does not increase infinitely alongwith the increase of
the number of paralleled processor cores. Based on Amdahl’s
Law, many researchers discussed their variants for different
purposes. In [7], Li and Malek discussed the effect of non-
communication/communication ratio on the speedup based
on Amdahl’s Law, but his communication delay model is
simple without considering the detail of interconnects. In [8],
Paul revisited Amdahl’s Law on the single chip heterogeneous
multiprocessor. His focus was on the performance impact
induced by different types of processor cores with different
processing capability. In [9], Cho and Melhem presented the
corollaries to Amdahl’s Law in order to study the interaction
between parallelization and energy consumption. In [10],
Hill and Marty offered a corollary of a simple model of
multicore hardware resources based on Amdahl’s Law. He
proved that an enhanced core is necessary for the high
systemperformance but the parallelism supported by systems
with such cores suffers. In [11], Loh extended Hill’s work to
study the performance impact of uncore function units on
the multicore system’s throughput. In both Hill’s and Loh’s
discussions, the effect of network communication latency is
omitted. In OLPCs, the enhancement of application perfor-
mance may be restricted by the increasing network commu-
nication latency, even though the number of cores increases.
We note that less work aforementioned discusses the effect
of network communication latency on the performance of
OLPCs. In the paper, we detail the network communication
latency by proposing two abstract concepts, equivalent serial

Journal of Electrical and Computer Engineering 3

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

R

PM

Processor
core

Processor-memory node

I-cache
D-cache

Local memory

Router

Cross
bar

(a)

Problem size
handled by a

PM node
12

12

(b)

Figure 1: (a) Sketch map of homogenous OLPCs and (b) an example of data partitioning of data-parallel applications.

packet and equivalent serial communication, and establish
the performance model of homogenous OLPCs. Our model,
verified by real data-parallel applications, exhibits a workable
way to estimate and evaluate the performance of homogenous
OLPCs.

3. Homogenous OLPCs and
Data-Parallel Applications

Homogenous OLPCs are a suitable architecture for data-
parallel applications and vice versa. Regularity and scalability
are the key features of homogenousOLPCs. Figure 1(a) shows
an example of homogenous OLPCs. The communication
infrastructure is a regular 2D-mesh NoC, which is the most
popular NoC topology proposed today [12]. As we can see,
the processor type and the local memory volume in each
Processor-Memory (PM) node is the same so that each PM
node has the same computation capability. All PM nodes are
networked by routers. The network size is scalable. As one
way of parallel processing, data parallelism partitions data
into several blocks that are mapped to different processors.
Processors handles their own data blocks by running the
same program. Data parallelism is efficient for applications
with high computation complexity (e.g., image processing,
hydrodynamics computing). These data-parallel applications
are well scalable and their data are regular. They are easily
parallelized by partitioning their data. Figure 1(b) illustrates a
data partitioning way of data-parallel applications. Assuming
that there are 144 (12 × 12) data to be processed by a data-
parallel application and the homogenous OLPC is with the
network size of 36 (6 × 6). Since the computation ability of
each PM node is the same, it is obvious to partition the 144
data into 36 equivalent parts. Each equivalent part contains 4
sets of data and is handled by a PM node. As the network
size is scaled up and hence more PM nodes are included,
we can repartition the data to suit the number of PM nodes
in order to gain higher performance. However, the network
communication limits the performance. We consider two

Subtask

Communication

Subtask

Communication

Subtask

Communication

Subtask

Subtask
(Computation,

memory access, etc.)

Communication

Subtask

Communication

(a) (b)

Equivalent

...

...

...

...

Figure 2: The subprogram running on a processor node is
abstracted as a set of subtasks and communications.

traffic models which reflect two ways of storing data of data-
parallel applications. The uniform traffic model matches the
distributed way that data are distributed equally into all local
memories of all nodes.The hotspot traffic model matches the
centralized way that data are only maintained in the central
node.

4. Models and Analysis

4.1. Problem Definition. The problem we consider is the
performance in the context of homogeneous OLPCs for data
parallel applications. We give detailed analysis on communi-
cation latency. The program running on OLPCs are divided
into several subprograms running on different processor
nodes. The subprogram can be abstracted as a set of subtasks
and communications (see Figure 2(a)). The communication

4 Journal of Electrical and Computer Engineering

Table 1: Calculation of Hop Count in 𝑘-ary-2-mesh.

Uniform Hotspot

𝐻 = 2(

𝑘

3

−

1

3𝑘

) 𝐻 =

{
{
{

{
{
{

{

𝑘

2

+

𝑘

2 (𝑘
2
− 1) 𝑘

𝑘: even

𝑘

2

𝑘: odd

denotes the interaction between two communicating proces-
sor nodes. A communication contains one or more packets
transmitted in the network.The subtask denotes the noncom-
munication processing (e.g., computation, memory access,
etc.) between two successive communications. To facilitate
constructing the models of communication latency and the
performance, we make the following three assumptions.

(1) The noncommunication time and communication
time of the subprogram assigned to each node is
equal to each other. That is, the subprogram in each
node contains the same number of subtasks and
communications.

(2) The execution time of each subtask is also equal to
each other.

(3) The time of each communication is also equal to that
of others.

Figure 2(b) is the reabstracted subprogram based on
assumption (2) and (3). The sum of the subtasks and com-
munications of Figure 2(b) is equal to that of Figure 2(a).

4.2. Notations. To facilitate the analysis, we first define a set
of symbols in Notaions section.

4.3. Communication LatencyModel. Communication latency
contains two parts: minimal (noncontention) latency and
contention latency.

The minimal latency is determined by the distance of the
two communicating nodes. We use hop count to calculate
the latency. Table 1 lists our calculated hop count following
[13]. We consider two representative traffic models (Uniform
and Hotspot) in 2D-mesh networks. For hotspot traffic, the
central node is chosen as the hotspot node.

The contention latency mainly depends on the behavior
of parallel applications running on OLPCs. In general, it is
difficult to quantify the contention latency exactly. “When
to communicate,” “which processor core starts a message
passing” and “where the destination is” lead to different con-
tention latency. If no contention occurs, transmitting a packet
in one hop takes 1 cycle (𝜏

1hop = 1) in our experimental plat-
form shown in Figure 8. However, network contentionmakes
𝜏
1hop uncertain. Hence, in order to facilitate constructing
the performance models, we consider the contention latency
from another angle. Since network contention occurs only
whenmultiple communications issued by different processor
nodes appear simultaneously in the on-chip network, we
introduce an abstract concept: equivalent serial communica-
tion. The equivalent serial communications are sequential
when the program is running so that network contention

Packet 1

Packet 2

Packet 4

Packet 3 Pa
ck

et Overlapped

Time

Time

Pa
ck

et

Equivalent serial
packet 1

Equivalent serial
packet 2

Equivalent serial
packet 3

(a)

(b)

Figure 3: Packets in a communication issued by a processor node.

does not exist at all. To a certain extent, the number of
equivalent serial communication (𝜔) reflects the network
contention. Equivalent serial communication is discussed in
detail in Step 3 below.

In the next, we use three steps to establish the communi-
cation latency model.

Step 1 (calculating the time of transmitting a packet). With
packet switching, the average time of transmitting a packet in
the network is

𝜏
𝑡
= 𝐻 ⋅ 𝜏

1hop, (1)

where 𝐻 reflects the distance and 𝜏
1hop reflects the architec-

tural latency without contention.

Step 2 (calculating the time of a communication). In general,
a communication issued by a processor node contains one
or more packets. These packets are launched by the same
processor node. Packet transmissions may overlap. In the
best case, a packet in a communication is launched one cycle
after the preceding packet. A packet transmits in the on-chip
network without need of waiting for the completion of its
preceding packet transmission. The packet transmissions are
overlapping. For the worst case, all packets are transmitted
serially; that is, a packet will not be transmitted until the
previous one is finished.The overlap among packet transmis-
sions improves the performance by shortening the network
communication latency.

To measure the time of a communication, we define
an abstract concept: equivalent serial packet. The equivalent
serial packet is considered to be transmitted sequentially. A
communication is abstracted to consist of several equivalent
serial packets. As shown in Figure 3(a), assuming that the
communication contains four packets, the program behavior
determines the concurrent degree of packets’ transmission.

Journal of Electrical and Computer Engineering 5

Time

C
om

m
un

ic
at

io
n Overlapped

Subtask

Subtask

Node 1

Node 2

Equivalent serial
communication 1

Time

C
om

m
un

ic
at

io
n

Equivalent serial
communication 2

Equivalent serial
communication 3

Equivalent serial
communication 4

(a)

(b)

Without
contention

Communication 1 1 Communication 1 2

Communication 2 1 Communication 2 2

Figure 4: Communications in the entire program.

For example, Packet 1 and Packet 2 are almost fully over-
lapped, while small portion of Packet 3 and 4 are overlapped.
For ease of measuring the communication time, the commu-
nication is abstracted to be composed of several equivalent
serial packets. In Figure 3(b), the number of equivalent serial
packets (𝛾) is about 2.67,which is less than the packet number:
4. 𝛾meets the inequation below:

1 < 𝛾 ⩽ 𝑀. (2)

𝛾 describes the concurrent degree of packet transmission
in a communication. The ideal best case is that all packets
is transmitted concurrently. However, it cannot be reached,
because there is only one physical channel from the node to
the router. The best case is that packets in a communication
are launched one cycle by one cycle, so 𝛾 is close to, but
not equal to, 1. For the worst case that all packets transmit
sequentially, 𝛾 = 𝑀. That means the number of equivalent
serial packets is equal to the number of real packets (𝑀) in a
communication.

From (1) and (2), we can obtain the time of a communi-
cation:

𝜏
𝑐
= 𝛾 ⋅ 𝜏

𝑡
= 𝛾 ⋅ 𝐻 ⋅ 𝜏

1hop (1 < 𝛾 ⩽ 𝑀) . (3)

Step 3 (calculating the communication overhead of a pro-
gram). The program is parallelized on 𝑁 nodes, so the
subprogram in each node contains 𝑝/𝑁 communications.
Communications issued by the same node are sequential,
because the subprogram is sequentially executed in the pro-
cessor node. Communications issued by different nodes may
exist in the network at the same time. For the best case, the
program is fully parallelized. The communication overhead
of the entire program is equal to communication latency of
the subprogram distributed in each node. For the worst case,
communications from different nodes do not overlap one
another.The communication overhead of the entire program
is equal to the sum of communication latency of each node.
In this case, there is no network contention. However, in gen-
eral, communications are partially overlapped and network

contention always exists. Moreover, the existence of multiple
communications in the network leads to the occurrence of
network contention. The behavior of parallel programs (e.g.,
“when a communication is generated” and “which node
sends or receives packets in the communication”) determines
the concurrent degree of communications and the network
contention latency.

Therefore, in order to quantify the network contention
and measure the communication overhead of the entire
program, we define an abstract concept: equivalent serial
communication. The equivalent serial communication is con-
sidered to be sequential so that there is no network con-
tention. A program is abstracted to contain several equivalent
serial communications. As shown in Figure 4(a), assuming
that the program is mapped on two nodes: Node 1 and
Node 2. There are four communications. Communication
1 1 and Communication 1 2 are generated by Node 1, while
Communication 2 1 and Communication 2 2 are generated
by Node 2. Communications generated by different nodes
may be overlapped due to the programbehavior. For example,
Communication 1 2 is overlapped with Communication 2 2.
There are network contention between Communication 1 2
and Communication 2 2. The number of equivalent serial
communications (𝜔) is about 3.33, which is less than the
communication number: 4. 𝜔meets the inequation below:

𝑝

𝑁

⩽ 𝜔 ⩽

𝑝

𝑁

⋅ 𝑁 = 𝑝. (4)

𝜔 describes the concurrent degree of communications
as well as the network contention. The equivalent serial
communications are sequential when the program is run-
ning so that no network contention occurs. Therefore, the
contention latency is removed and fused into the 𝜔 when
calculating the network communication latency.The network
contention and the concurrent degree of communications
together determine the value of 𝜔.

(i) If communications are concurrent and they all
exist in the same local area resulting in a hotspot,

6 Journal of Electrical and Computer Engineering

2,2 3,2

2,1 3,1

1,2

1,1

2,3 3,31,3

(a)

2,2 3,2

2,1 3,1

1,2

1,1

2,3 3,31,3

(b)

2,2 3,2

2,1 3,1

1,2

1,1

2,3 3,31,3

(c)

2,2 3,2

2,1 3,1

1,2

1,1

2,3 3,31,3

(d)

Figure 5: Examples of communications in a 3 × 3 2D-mesh network.

the network contention is heavy. In this case, the
total communication time of the program is longer
and hence 𝜔 is larger, close to (𝑝/𝑁) ⋅ 𝑁 = 𝑝.
For instance, as illustrated in Figure 5(a), Node (1,1),
Node (2,1), Node (1,2), Node (2,2), and Node (3,3)
communicatewithNode (3,1) concurrently. A hotspot
is formed near Node (3,1) and network contention is
heavy there. Although the five communications are
issued concurrently, the network contention serializes
them.

(ii) If communications are concurrent and they are uni-
formly distributed in the entire on-chip network,
the network contention becomes light. In this case,
the total communication time of the program is
shorter and hence 𝜔 is smaller, close to 𝑝/𝑁. For
instance, as shown in Figure 5(b), there are also
five communications occurring concurrently in the
network. However, they belong to different source
nodes and destination nodes and their routing tracks
do not overlap, so there is no network contention.
Therefore, its 𝜔 is smaller than that in Figure 5(a).

(iii) If communications are sequential, although the net-
work contention is not heavy, the total commu-
nication time of the program is always long and
hence 𝜔 is large and close to (𝑝/𝑁) ⋅ 𝑁 = 𝑝.
For instance, as shown in Figure 5(c), Node (1,1)
communicates with Node (3,1), Node (2,2) com-
municates with Node (1,2), and Node (3,3) com-
municates with Node (3,2). After that, Node (2,1)
communicates with Node (2,2) and Node (1,2)
communicates with Node (1,3) (see Figure 5(d)).
Although there is no network contention, the five
communications are not issued concurrently. There-
fore, its 𝜔 is bigger than that in Figure 5(b).

(iv) For the best case that all nodes are fully concurrent
and there is no network contention, the number
of equivalent serial communication is equal to the
number of real communication in each node (𝜔 =

𝑝/𝑁). For the worst case that communications from
all nodes occur sequentially, the number of equiv-
alent serial communication is equal to the sum of

the number of real communication in each node (𝜔 =

(𝑝/𝑁) ⋅ 𝑁 = 𝑝).

From (1), (2), and (4), we can calculate the communica-
tion overhead of a program running on homogenous OLPCs:

𝑇
𝑇
= 𝜔 ⋅ 𝜏

𝑐
= 𝜔 ⋅ 𝛾 ⋅ 𝐻 ⋅ 𝜏

1hop (

1 < 𝛾 ⩽ 𝑀

𝑝

𝑁

⩽ 𝜔 ⩽ 𝑝

) . (5)

From (5), we can observe that (i) when 𝛾 = 𝑀 and
𝜔 = 𝑝, 𝑇

𝑇
= 𝑝 ⋅ 𝑀 ⋅ 𝐻 ⋅ 𝜏

1hop is the maximal communication
overhead of the program for the worst case that all packets
are transmitted in the network in a sequential way and (ii)
when 𝛾 → 1 and 𝜔 = 𝑝/𝑁, 𝑇

𝑇
→ (𝑝/𝑁) ⋅ 𝐻 ⋅ 𝜏

1hop
is the minimal communication overhead of the program for
the ideal best case that all packets in a communication are
transmitted concurrently, all communications from different
nodes are concurrent and no network contention occurs and
(iii) when the network size is scaled up, 𝐻 and 𝑇

𝑇
increases

due to the longer communication distance.
Network contention is hard to quantify exactly. The

concrete behavior of parallel applications leads to different
traffic patterns, packet generation rate, and other factors.
These factors influence the network contention. In this
section, by introducing two abstract concepts, equivalent
serial packet and equivalent serial communication, we could
quantify the network contention and formulate the network
communication latency. The equivalent serial packets and
equivalent serial communications are sequential so that the
network contention does not exist. To a certain extent, the
effect of network contention is fused into the number of
equivalent serial packet (𝛾) and the number of equivalent
serial communication (𝜔). With the two extremes of traffic
patterns (Uniform and Hotspot traffic models), we obtain the
upper and lower bounds of 𝛾 and 𝜔 (see Formulas (2) and
(4)). The bounds are determined by the number of packets
in a communication (𝑀), parallel part of the program (𝑝)
and the total processor number (𝑁). 𝑀 reflects the packet
generation rate. Our model offers a feasible way to evaluate
the network communication latency of homogenous OLPCs,
but here comes a question: how do we determine or estimate

Journal of Electrical and Computer Engineering 7

𝑁, 𝑝, 𝑀, 𝛾, and 𝜔? The network size of OLPCs decides
𝑁. Different applications have their own 𝑝. Data-parallel
applications are scalable and their data are regular. Their
programs generally consist of a set of identical subtasks.
Analyzing computation and communication behavior of the
subtask, we could determine 𝑀 and estimate 𝛾 and 𝜔.
Section 5.3 exemplifies the way of estimating 𝛾 and 𝜔. Based
on the analysis in this subsection, we could have a piece of
implication.

Implication 1. Network communication latency has significant
influence on the system’s performance. The basic three
threads to reduce the latency are (1) decreasing the number
of communications in the program and the number of
packets in a communication, (2) improving the concurrency
of communications and packets, and (3) avoiding hotspot
traffic. Architects or programmers can try their best to
achieve these three threads by optimizing hardware design
and applicationmapping, for instance by offering support for
outstanding transactions or caching remote data in the local
memory.

4.4. Performance Model. In this subsection, inspired by
Amdahl’s Law, we establish the performance model for
homogenous OLPCs, incorporating the network communi-
cation latency. We elaborate the performance model under
both uniform and hotspot traffic patterns. Under the two
traffic models, we discuss and analyze the performance’s
trend, limitation, minimum, and maximum. The impact of
network size (𝑁), the ratio of the serial part and the parallel
part in a program (𝛼), the number of equivalent serial packets
in a communication (𝛾), and the execution time of a subtask
(𝜏nc) on the performance are also discussed in detail. 𝛾 reflects
the influence of network contention and congestion, while 𝜏nc
reflects the influence of noncommunication/communication
ratio.

The same as with Amdahl’s Law, we assume that the total
problem size is fixed as the number of computing nodes
increases.The parallel part in the program is speeded up.The
parallel part assigned to each processor node decreases with
the increase of the system size. So we can get the performance
model as the formula below shows:

𝑆 =

(𝑠 + 𝑝) ⋅ 𝜏nc

𝑠 ⋅ 𝜏nc + (𝑝/𝑁) ⋅ 𝜏nc + 𝑇
𝑇

. (6)

By including (5), we can get

𝑆 =

(𝑠 + 𝑝) ⋅ 𝜏nc

𝑠 ⋅ 𝜏nc + (𝑝/𝑁) ⋅ 𝜏nc + 𝜔 ⋅ 𝛾 ⋅ 𝐻 ⋅ 𝜏
1hop

(

1 < 𝛾 ⩽ 𝑀

𝑝

𝑁

⩽ 𝜔 ⩽ 𝑝

) .

(7)

The last product item in the denominator describes the
communication overhead. If this item is ignored, (6) can be
simplified to

𝑆 =

𝑠 + 𝑝

𝑠 + 𝑝/𝑁
(8)

which is Amdahl’s Law [6].
The behavior of parallel programs determines the com-

munication patterns, affecting the value of 𝛾 and 𝜔. Uni-
form traffic model is a well-distributed traffic model, while
hotspot traffic model is a centralized traffic model. They are
two extremes, representing the upper bound and the lower
bound of the communication patterns, respectively. Hence,
we consider both uniform and hotspot traffic models below
to analyze the speedup in detail. Although hotspot traffic has
smaller average hop count and hence less minimal latency,
hotspot traffic causes much heavier network contention than
uniform traffic. For uniform traffic, it has lower network
contention and 𝜔 is closer to 𝑝/𝑁. For hotspot traffic, it has
higher network contention and 𝜔 is closer to 𝑝, because of
the serialization effect in the destination node. Therefore,
to facilitate the formula transformation and analysis, we
consider𝜔 = 𝑝/𝑁 for uniform traffic,while𝜔 = 𝑝 for hotspot
traffic. This assumption is thought to be reasonable without
the loss of analyzing the performance trend.

4.4.1. Uniform Traffic Model. Assuming 𝜔 = 𝑝/𝑁, we can
refine (7) as

𝑆 =

(𝑠 + 𝑝) ⋅ 𝜏nc

𝑠 ⋅ 𝜏nc + (𝑝/𝑁) ⋅ 𝜏nc + 𝑝 ⋅ 𝛾 ⋅ (2/3) ⋅ (1/𝑁
1/2

− 1/𝑁
3/2
) ⋅ 𝜏
1hop

=

(𝛼 + 1) ⋅ 𝜏nc

(𝛼 + 1/𝑁) ⋅ 𝜏nc + (2/3) ⋅ 𝛾 ⋅ (1/𝑁
1/2

− 1/𝑁
3/2
) ⋅ 𝜏
1hop

.

(9)

Since 𝜏
1hop reflects the architectural latency without

contention, it is a constant for a given homogenous OLPC
architecture. Therefore, The speedup (𝑆) is a quaternion

function: 𝑆 = 𝑆(𝑁, 𝛼, 𝜏nc, 𝛾). Its value is determined by 𝑁,
𝛼, 𝜏nc, and 𝛾. To obtain the variation trend of 𝑆, we conduct
two steps below.

8 Journal of Electrical and Computer Engineering

Step 1 (calculating the speedup’s limitation). We have the
limitation of 𝑆 as below:

lim
𝑁→∞

𝑆 =

𝛼 + 1

𝛼

= 1 +

1

𝛼

. (10)

Step 2 (calculating the value of 𝑁 related to the extreme
minimal value of 𝑆). Let 𝜕S/𝜕𝑁 = 0; then, we can get

𝑁
𝜕𝑆/𝜕𝑁=0

=

6 ⋅ 𝛾
2
⋅ 𝜏
2

1hop + 9 ⋅ 𝜏
2

nc − 3 ⋅ √12 ⋅ 𝛾
2
⋅ 𝜏
2

1hop ⋅ 𝜏
2

nc + 9 ⋅ 𝜏
4

nc

2 ⋅ 𝛾
2
⋅ 𝜏
2

1hop
. (11)

Let 𝛽 = 𝜏nc/(𝛾 ⋅ 𝜏1hop); Formula (11) is refined as

𝑁
𝜕𝑆/𝜕𝑁=0

=

9 ⋅ 𝛽
2
+ 6 − √9 ⋅ 𝛽

2
⋅ √9 ⋅ 𝛽

2
+ 12

2

.
(12)

From formula (12), we can get

𝑁
𝜕𝑆/𝜕𝑁=0

>

9 ⋅ 𝛽
2
+ 6 − (9 ⋅ 𝛽

2
+ 9 ⋅ 𝛽

2
+ 12) /2

2

= 0,

𝑁
𝜕𝑆/𝜕𝑁=0

<

9 ⋅ 𝛽
2
+ 6 − √9 ⋅ 𝛽

2
⋅ √9 ⋅ 𝛽

2

2

= 3.

(13)

The extreme minimal value of 𝑆 exists; its related 𝑁 is
defined as𝑁opt. Because𝑁 is a positive integer, we have

𝑁opt ∈ {1, 2, 3} . (14)

The OLPC hosts at least one processor core, so 𝑁 ⩾ 1.
Combining the two steps, we can obtain that

(1) when𝑁opt = 1,

(i) 𝑆 monotonically increases with the increase
of 𝑁; parallelization enables the performance
improvement; however, 𝑆 is bounded by 1 + 1/𝛼
for 𝑁 → ∞; the ratio of the serial part in a
program limits the performance improvement;

(2) when𝑁opt = 2 or𝑁opt = 3,

(i) when 𝑁 < 𝑁opt, 𝑆 decreases with the increase
of 𝑁; parallelization degrades the performance
rather than improves it, because the negative
effect of network communication latency on
the performance surpasses the positive effect of
cooperation of multiple processor cores on the
performance;

(ii) when𝑁 = 𝑁opt, 𝑆 reaches its minimum (𝑆min);
(iii) when 𝑁 > 𝑁opt, 𝑆 increases when 𝑁 is

increasing; the positive effect of parallelization
surpasses the negative effect of network com-
munication latency, thus improving the perfor-
mance;

(3) the ratio between the serial part and the parallel part
in a program determines the upper limit of 𝑆. The
limit is inversely proportional to 𝛼. It indicates that
reducing the serial part or enlarging the parallel part
in a program is good for improving the performance
limit.

As we can see, 𝑆 reaches its minimum when 𝑁 is
very small. The OLPC hosts a number of processor cores.
Therefore, for a lager range of 𝑁, 𝑆 keeps going up when 𝑁

increases. To further discuss the effect of𝑁, 𝛼, 𝜏nc, and 𝛾 on 𝑆,
Figure 6 shows performance trends of 𝑆 under uniform traffic
model. Without loss of trend analysis, we consider

(a) 𝑁 ∈ {𝑛 | 1 ⩽ 𝑛 ⩽ 256, 𝑛 ∈ N}; the network size is
scaled up from 1 to 256; the increase of the network
size makes more processor cores involved;

(b) 𝛼 ∈ {𝑥 | 0 ⩽ 𝑥 ⩽ 1, 𝑥 ∈ R}; with the increase of
𝛼, the serial part takes more proportion in a program;
the performance limit (1 + 1/𝛼) becomes less;

(c) 𝛾 ∈ {1, 16, 256}; the number of equivalent serial pack-
ets in a communication increases from 1, 16 to 256;
more packets lead to larger network communication
latency, causing negative effect on the performance;

(d) 𝜏nc ∈ {10, 100, 1000}; the execution time of a subtask
increases from 10, 100 to 1000; increasing noncom-
munication time can bring positive effect on the
performance.

From aforementioned formula transformation and
Figure 6, we can have results regarding the performance
under uniform traffic model.

(I) The increase of the network size (𝑁) makes more
processor cores, exploiting larger parallelism. As
shown in Figure 6, as 𝑁 increases, the speedup (𝑆)
firstly decreases and soon reaches its minimum when
𝑁 = 𝑁opt (this situation is shown in Figure 6(g). It
also exists in other subfigures, but it is not obvious,
since 𝑆 is much larger); then, 𝑆 increases. However, 𝑆
increasesmore andmore slowly; it is limited by 1+1/𝛼
finally.

(II) Both the incremental ratio and the limit of 𝑆 are
deeply influenced by 𝛼. As shown in all subfigures, as
𝛼 increases, the incremental ratio of 𝑆 becomes very
low and the limit of 𝑆 is very small. Even if the network

Journal of Electrical and Computer Engineering 9

0

0.5

1

50100150200250

20
40
60
80

100
120

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 124 (N = 256, 𝛼 = 0)

(a) 𝛾 = 1, 𝜏nc = 10

0

0.5

1

50100150200250

50
100
150
200

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 23 N1 (= 256, 𝛼 = 0)

(b) 𝛾 = 1, 𝜏nc = 100

0

0.5

1

50100150200250

50
100
150
200
250

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 253 (N = 256, 𝛼 = 0)

(c) 𝛾 = 1, 𝜏nc = 1000

0

0.5

1

50100150200250
2
4
6
8

10
12
14

S f
N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)
Smax = 14 (N = 256, 𝛼 = 0)

(d) 𝛾 = 16, 𝜏nc = 10

0

0.5

1

50100150200250

20
40
60
80

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 95 (N = 256, 𝛼 = 0)

(e) 𝛾 = 16, 𝜏nc = 100

0

0.5

1

50100150200250

50
100
150
200

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)
Smax = 219 (N = 256, 𝛼 = 0)

(f) 𝛾 = 16, 𝜏nc = 1000

0

0.5

1

50100150200250

1

S f

N

𝛼

0.8

0.6

0.4

0.2

Smin = 0 (N = 3, 𝛼 = 0)

Smax = 1 (N = 1,𝛼 = 0)

(g) 𝛾 = 256, 𝜏nc = 10

0

0.5

1

50100150200250

2
4
6
8

S f

N

𝛼

Smin = 1 (N = 2, 𝛼 = 0)
Smax = 9 (N = 256, 𝛼 = 0)

(h) 𝛾 = 256, 𝜏nc = 100

0

0.5

1

50100150200250

20

40

60

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)
Smax = 69 (N = 256, 𝛼 = 0)

(i) 𝛾 = 256, 𝜏nc = 1000

Figure 6: Performance trends under uniform traffic model.

10 Journal of Electrical and Computer Engineering

size (𝑁) is scaled up, the performance improvement
is very little.

(III) As 𝛾 increases, network communication hosts more
packets, worsening network congestion or contention
and thus generating larger network communica-
tion latency. Larger network communication latency
brings negative effect on the performance. Frequent
network communication and huge latency makes the
performance very bad. For instance, for 𝜏nc = 10,
𝛼 = 0, and 𝑁 = 256 (see Figures 6(a), 6(d), and
6(g)), (i) when 𝛾 = 1, 𝑆 can reach its maximum
(𝑆max = 124); (ii) when 𝛾 = 16, the maximal
speedup becomes small (𝑆max = 14); (iii) when 𝛾 =

256, the heavy network communication makes the
performance even not improved.

(IV) The increase of 𝜏nc can improve the performance,
alleviating and making up the negative effect of
network communication latency. For instance, for 𝛾 =
16, 𝛼 = 0, and 𝑁 = 256 (see Figures 6(d), 6(e),
and 6(f)), (i) when 𝜏nc = 10, 𝑆 reaches its maximum
(𝑆max = 14); (ii) when 𝜏nc = 100, the maximal
speedup becomes large (𝑆max = 95); (iii) As 𝜏nc rises
up to 1000, themaximal speedup (𝑆max = 219) is close
to the ideal maximal value (256).

4.4.2. Hotspot Traffic Model. Assuming 𝜔 = 𝑝 and 𝑘 is odd,
we can refine (7) as

𝑆 =

(𝑠 + 𝑝) ⋅ 𝜏nc

𝑠 ⋅ 𝜏nc + (𝑝/𝑁) ⋅ 𝜏nc + 𝑝 ⋅ 𝛾 ⋅ (√𝑁/2) ⋅ 𝜏
1hop

=

(𝛼 + 1) ⋅ 𝜏nc

(𝛼 + 1/𝑁) ⋅ 𝜏nc + (1/2) ⋅ 𝛾 ⋅ √𝑁 ⋅ 𝜏
1hop

.

(15)

The same as with Section 4.4.1, the speedup (𝑆) is also a
quaternion function: 𝑆 = 𝑆(𝑁, 𝛼, 𝜏nc, 𝛾). Its value is decided
by 𝑁, 𝛼, 𝜏nc, and 𝛾. In (15), when 𝑁 becomes larger, (1/𝑁) ⋅

𝜏nc decreases but (1/2) ⋅ 𝛾 ⋅ √𝑁 ⋅ 𝜏
1hop increases, so 𝑆 may

increase or decrease. To obtain the variation trend of 𝑆, we
also conduct two steps below.

Step 1 (calculating the speedup’s limitation). We have the
limitation of 𝑆 as below:

lim
𝑁→∞

𝑆 = 0. (16)

Step 2 (calculating the value of 𝑁 related to the extreme
maximal value of 𝑆). Let 𝜕𝑆/𝜕𝑁 = 0; then, we can get

𝑁
𝜕𝑆/𝜕𝑁=0

=
3
√(

4 ⋅ 𝜏nc
𝛾 ⋅ 𝜏
1hop

)

2

> 0. (17)

The extreme maximal value of 𝑆 exists; its related 𝑁opt is
obtained by the formula below:

𝑁opt =

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1, when 𝑁
𝜕𝑆/𝜕𝑁=0

< 1

⌊𝑁
𝜕𝑆/𝜕𝑁=0

⌋ , when 𝑁
𝜕𝑆/𝜕𝑁=0

⩾ 1,

𝑆 (⌊𝑁
𝜕𝑆/𝜕𝑁=0

⌋) ⩾ 𝑆 (⌈𝑁
𝜕𝑆/𝜕𝑁=0

⌉)

⌈𝑁
𝜕𝑆/𝜕𝑁=0

⌉ , when 𝑁
𝜕𝑆/𝜕𝑁=0

⩾ 1,

𝑆 (⌊𝑁
𝜕𝑆/𝜕𝑁=0

⌋) < 𝑆 (⌈𝑁
𝜕𝑆/𝜕𝑁=0

⌉) .

(18)

With Formulas (15) and (17), we can have the extreme
maximal value of 𝑆:

𝑆max = 𝑆 (𝑁opt) ≃ 𝑆 (𝑁
𝜕𝑆/𝜕𝑁=0

)

=

𝛼 + 1

𝛼 + 3 ⋅
3
√((𝛾 ⋅ 𝜏

1hop) / (4 ⋅ 𝜏nc))
2

.
(19)

Let 𝛽 = 3 ⋅
3
√((𝛾 ⋅ 𝜏1hop)/(4 ⋅ 𝜏nc))

2; Formula (19) is refined
as

𝑆max ≃
𝛼 + 1

𝛼 + 𝛽

. (20)

Because𝑁 is a positive integer, combining the two steps,
we can obtain that

(1) when𝑁opt = 1,

(i) 𝑆 monotonically decreases with the increase
of 𝑁; parallelization degrades the performance
rather than improves it, because the negative
effect of network communication latency on
the performance surpasses the positive effect of
cooperation of multiple processor cores on the
performance; 𝑆 tends to zero when𝑁 → ∞;

(2) when𝑁opt ⩾ 2,

(i) when𝑁 < 𝑁opt, 𝑆 increases with the increase of
𝑁; within this condition, the network commu-
nication latency is not much and parallelization
is able to improve the performance;

(ii) when𝑁 = 𝑁opt, 𝑆 reaches its maximum (𝑆max);
(iii) when𝑁 > 𝑁opt, 𝑆 becomes decreasing when𝑁

keeps going up; performance degrades because
the network communication latency dominates;

(3) 𝑁
𝜕𝑆/𝜕𝑁=0

∼ 𝜏
2/3

nc and𝑁
𝜕𝑆/𝜕𝑁=0

∼ 𝛾
−2/3; when 𝜏nc ↑ and

𝛾 ↓, 𝑁
𝜕𝑆/𝜕𝑁=0

↑, resulting in 𝑁opt ↑; it indicates that
increasing noncommunication time and improving
packet concurrency can increase the extreme value
of 𝑆 and the performance improves further covers a
larger system size.

Journal of Electrical and Computer Engineering 11

To further discuss the effect of 𝑁, 𝛼, 𝜏nc, and 𝛾 on
𝑆, Figure 7 shows performance trends of 𝑆 under uniform
traffic model. We consider the values of 𝑁, 𝛼, 𝜏nc, and 𝛾 as
the same with Section 4.4.1. From aforementioned formula
transformation and Figure 7, we can have results regarding
the performance under hotspot traffic model.

(I) Although the increase of the network size (𝑁)
could make more processor cores involved to
cooperation together so as to seek higher
parallel performance, it also induces network
communication latency, limiting the performance
improvement and even worsen-ing the performance.
As shown in Figure 7, as 𝑁 increases, in some cases
(see Figures 7(a), 7(b), 7(c), 7(e), 7(f), and 7(i)), the
speedup (𝑆) firstly increases and then becomes
decreasing after reaching its maximum; in other cases
(see Figures 7(d), 7(g), and 7(h)), it monotonically
decreases. For all cases, as𝑁 increases, 𝑆 finally tends
to zero.

(II) Both the incremmental/decremental ratio and the
maximal value of 𝑆 are influenced by 𝛼. As shown in
all subfigures, as 𝛼 increases, the incremental/
decremental ratio becomes very low. With the
increase of 𝛼, the maximal value of 𝑆may increase or
decrease: (i) if 1 > 𝛽 in Formula (20), 𝑆max decreases
(see Figures 7(a), 7(b), 7(c), 7(e), 7(f), and 7(i)); (ii)
if 1 = 𝛽 in Formula (20), 𝑆max ≡ 1; (iii)
if 1 < 𝛽 in Formula (20), 𝑆max increases
(see Figures 7(d), 7(g), and 7(h)).

(III) As 𝛾 increases, network communication hosts more
packets. Larger network communication latency
makes the performance goes bad. The maximal value
of 𝑆 reached by parallelism declines. For instance, for
𝜏nc = 1000 and 𝛼 = 0 (see Figures 7(c), 7(f), and 7(i)),
(i) when 𝛾 = 1, 𝑆 can reach its maximum (𝑆max = 84

with 𝑁 = 252); (ii) when 𝛾 = 16, the maximal
speedup becomes small (𝑆max = 13with𝑁 = 40); (iii)
when 𝛾 = 256, the heavy network communication
makes the speedup soon reach its little maximum
(𝑆max = 2 with𝑁 = 6).

(IV) The increase of 𝜏nc can improve the performance,
alleviating and making up the negative effect of
network communication latency. For instance, for 𝛾 =
1 and 𝛼 = 0 (see Figures 7(a), 7(b), and 7(c)), (i) when
𝜏nc = 10, the maximal value of 𝑆 is very small (𝑆max =
4 with 𝑁 = 12); (ii) when 𝜏nc = 100, the maximal
speedup becomes big (𝑆max = 18 with 𝑁 = 54); (iii)
as 𝜏nc rises up to 1000, the maximal speedup further
becomes large (𝑆max = 84 with𝑁 = 252).

In all, performance under hotspot traffic model is worse
than that under uniform traffic model.

With the performance analysis in this subsection, we
could have the following.

Implication 2. With the uniform traffic model, the commu-
nication overhead is modest, assuming that there is limited
contention, so the performance can still keep improving.

Under the uniform traffic model, the concurrent degree of
communications are usually high. Architects or program-
mers need to pay more attention to improve the concurrent
degree of packets in a communication. The performance
improvement can benefit more from the improvement of
packet concurrency.

Implication 3. With the hotspot traffic model, parallelization
cannot always improve the system’s performance, when
the network communication latency dominates. To alleviate
the impact of network communication latency on the per-
formance and hence keep the performance’s improvement
continuous, designers need to address increasing the non-
communication time and improving packet concurrency.

Implication 4. Exploiting the parallelism of multiple proces-
sor cores well is potential to make up the negative effect
of network communication latency and even obtains the
continuous improvement of the performance. Following this
view, architects or programmers need to pay more attention
to exploit the parallelism of processor cores.

Implication 5. Besides, increasing the noncommunication
time is a viable way to alleviate the negative effect induced
by the network communication latency.

5. Experiments and Results

In this section, we apply three real data-parallel applications
on our cycle-accurate homogenous OLPC experimental plat-
form to validate and demonstrate the effectiveness of our
performance analysis.

5.1. Experimental Platform. Figure 8 shows our homogenous
OLPC experimental platform. The platform uses the LEON3
[14] as the processor in each PM node and uses the Nostrum
NoC [15] as the on-chip network. Each Processor-Memory
(PM) node has a LEON3 processor, an enhanced memory
controller plus a local memory. The enhanced memory
controller extends the function of LEON3’s own memory
control module to support memory accesses from/to remote
nodes via the network. The LEON3 processor core is a
synthesizable VHDL model of a 32-bit processor compat-
ible with the SPARC V8 architecture. The Nostrum NoC
is a 2D-mesh packet-switched network with configurable
size. Besides, moving one hop in the network takes one
cycle.

5.2. Application Examples. We use Wavefront Computation,
Vector Norm, and Block Matching Algorithm in Motion
Estimation as application examples and perform experiments
on various instances of the three applications. Wavefront
Computation and Vector Norm are mostly used in wireless
communication, computer vision, and image/video process-
ing. And Block Matching Algorithm in Motion Estimation is
one of the basic components in image/video processing.

12 Journal of Electrical and Computer Engineering

0

0.5

1

50100150200250
1

2

3

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 4 (N = 12, 𝛼 = 0)

(a) 𝛾 = 1, 𝜏nc = 10

0
0.5

1

50100150200250

5

10

15

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)

Smax = 18 (N = 54, 𝛼 = 0)

(b) 𝛾 = 1, 𝜏nc = 100

0
0.5

1

50100150200250

20
40
60
80

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)
Smax = 84 (N = 252, 𝛼 = 0)

(c) 𝛾 = 1, 𝜏nc = 1000

0
0.5

1

50100150200250
S f

N

𝛼

Smin = 0 (N = 256, 𝛼 = 0)

Smax = 1 (N = 2, 𝛼 = 1)

0.6

0.4

0.2

(d) 𝛾 = 16, 𝜏nc = 10

0
0.5

1

50100150200250

S f

N

𝛼

Smin = 1 (N = 256, 𝛼 = 0)

Smax = 3 (N = 9, 𝛼 = 0)2.5

2

1.5

1

(e) 𝛾 = 16, 𝜏nc = 100

0
0.5

1

50100150200250
2
4
6
8

10
12

S f

N

𝛼

Smin = 1 (N = 1, 𝛼 = 0)
Smax = 13 (N = 40, 𝛼 = 0)

(f) 𝛾 = 16, 𝜏nc = 1000

0
0.5

1

50100150200250

0.02
0.04
0.06
0.08

0.1
0.12

S f

N

𝛼

Smin = 0 (N = 256, 𝛼 = 0)

Smax = 0 (N = 1, 𝛼 = 1)

(g) 𝛾 = 256, 𝜏nc = 10

0
0.5

1

50100150200250

S f

N

𝛼

Smin = 0 (N = 256, 𝛼 = 0)
Smax = 1 (N = 1, 𝛼 = 1)

0.6

0.4

0.2

(h) 𝛾 = 256, 𝜏nc = 100

S f

N

𝛼

Smin = 0 (N = 256, 𝛼 = 0)

Smax = 2 (N = 6, 𝛼 = 0)

1.5

0.5

0
0.5

1

50100150200250

1

2

(i) 𝛾 = 256, 𝜏nc = 1000

Figure 7: Performance trends under hotspot traffic model.

Journal of Electrical and Computer Engineering 13

Leon3
core D-cache

I-cache

Enhanced
memory

controller

AHB bus

Other
modules

Local
memory

Processor-memory node

PM

PM PM PM

PM PM

PM PM

PM

PM

PM

PM

PM

PM

PM

PM

Router

Homogeneous multicore NoC

Figure 8: The homogenous OLPC experimental platform.

5.2.1. Wavefront Computation. Wavefront Computations are
common in scientific applications. Given a matrix (see
Figure 9(a)), the left and top edges of which are all a con-
stant, the computation of each remaining element depends
on its neighbors to the left, above, and above-left. If the
solution is computed in parallel, the computation at any
instant forms a wavefront propagating toward in the solution
space. Therefore, this form of computation gets its name as
wavefront. We use the same method as [16] to parallelize the
Wavefront Computation, the rows of the matrix are assigned
to PMnodes in a round-robin fashion (see Figure 9(b)).With
this static scheduling policy, to compute an element, only
the availability of its above neighbor needs to be checked
(synchronized). For instance, PM node 0 computes the
elements in row 1. PM node 1 cannot compute the elements
in row 2 until the corresponding elements in row 1 has been
figured out by PM node 0. After finishing the computation
in row 1, PM node 0 goes on to compute the elements in
row 3 according to the round-robin scheduling policy. In
our experiment, we conduct various instances of Wavefront
Computation described below.

(1) Two ways of data storing are realized to reflect the
two trafficmodels. One is “Uniform”meaning that the
matrix data are uniformly distributed over all nodes.
The other is “Hotspot” meaning that the matrix data
are only located in the central node.

(2) Both integer matrix and floating point matrix are
implemented to vary the noncommunication time:
𝜏nc. For the same problem size and algorithm, floating
point computation needs more time than integer
computation and hence has bigger 𝜏nc.

(3) The Wavefront Computation conducts a matrix with
the size of 256 × 256, on the homogenous OLPC with
the network size varying from 1 × 1 (1), 1 × 2 (2), 2
× 2 (4), 2 × 4 (8), 4 × 4 (16), 4 × 8 (32), 8 × 8 (64),
8 × 16 (128), to 16 × 16 (256). The total problem size
is fixed and the problem size assigned to each node
varies from 256 rows, 128 rows, 64 rows, 32 rows, 16
rows, 8 rows, 4 rows, 2 rows to 1 row.

5.2.2. Vector Norm. Vector Norm is used to compute the
magnitude (length) of the vector. Figure 10(a) shows the
formula of Vector Norm. When 𝑝 = 2, the Vector Norm is

also called 𝐿
2-Norm or Euclidean Norm, which is common

in operations of 2D/3D computer graphics. In the paper,
we choose to parallelize and compute 𝐿2-Norm. Figure 10(b)
illustrates the parallelization of 𝐿2-Norm on our OLPC plat-
form. Different from Matrix Multiplication and Wavefront
Computation, VectorNormonly can be partially parallelized.
Its computation contains two steps. Step 1 is parallel. In Step
1, PM nodes are responsible for computing the square (𝑡

𝑖
) of

𝑥
𝑖
(𝑖 = 1, . . . , 𝑛). 𝑥

𝑖
are assigned to PM nodes in a round-

robin fashion. Step 2 is sequential. In Step 2, a central PM
node takes charge of computing the square root of the sum
of all 𝑡

𝑖
. For instance, as shown in Figure 10(b), there are

two PM nodes computing the 𝐿
2-Norm of a vector with

four elements. In Step 1, PM node 0 computes the square
(𝑡
1
) of 𝑥

1
, while PM node 1 computes the square (𝑡

2
) of 𝑥

2
.

After finishing the computation of 𝑡
1
, PM node 0 goes on

to compute the square (𝑡
3
) of 𝑥

3
according to the round-

robin scheduling policy. In Step 2, PM node 1 (the central
PMnode) computes√𝑡1 + 𝑡

2
+ 𝑡
3
+ 𝑡
4
. In our experiment, we

apply various instances of 𝐿2-Norm described below.

(1) Two ways of data storing are realized to reflect the
two trafficmodels. One is “Uniform”meaning that the
data in Step 1 are uniformly distributed over all nodes.
The other is “Hotspot” meaning that all data in both
Steps 1 and 2 are only located in the central node.

(2) Both integer data type and floating point data type are
implemented to vary the noncommunication time:
𝜏nc. For the same problem size and algorithm, floating
point computation needs more time than integer
computation and hence has bigger 𝜏nc.

(3) The 𝐿2-Norm conducts a vector with 1024 elements,
on the homogenous OLPC with the network size
varying from 1× 1 (1), 1× 2 (2), 2× 2 (4), 2× 4 (8), 4× 4
(16), 4× 8 (32), 8× 8 (64), 8× 16 (128), to 16× 16 (256).
The total problem size is fixed and the problem size
assigned to each node varies from 1024 elements, 512
elements, 256 elements, 128 elements, 64 elements, 32
elements, 16 elements, 8 elements, to 4 elements.

5.2.3. Block Matching Algorithm in Motion Estimation.
Motion Estimation is one of important parts in H.264/AVC
standard, which addresses obtaining high coding efficiency
and good picture quality [17]. It is of importance to find the
best Motion Vector in Motion Estimation. The Block Match-
ing Algorithm in Motion Estimation aims at looking for the
bestmatching blockwith the bestMotionVector in Reference
Frame. Figure 11(a) illustrates the BlockMatching Algorithm.
As shown in the figure, there is a Current Block (C) in the
Current Frame. For a Reference Frame, the Block Matching
Algorithm first predicts a Search Center (SC) according to
the position of the Current Block (C). Then, it exhaustively
checks all search points (i.e., candidate Reference Blocks, e.g.,
R) in the Search Window (SW) of the Reference Frame to
find the best matching block (Ropt) with the best Motion
Vector (MV). The position of the Search Window (SW) is
decided by the Search Center (SC), while its size is decided
by the Search Range (SR). It is obvious that larger Search

14 Journal of Electrical and Computer Engineering

y

x

(a)

PM node 0

PM node 1

PM node 0

PM node 1

Row 1

Row 2

Row 3

Row 4

(b)

Figure 9: (a) Wavefront Computation; (b) its parallelization.

|x|p =
n

∑
i=1

|xi|
p

1/p

, Lp-Norm

(a)

Step 1

PM node 1
(The central PM node)

Step 2

PM node 0

PM node 1

PM node 0

PM node 1

x1 ∗ x1 = t1

x2 ∗ x2 = t2

x3 ∗ x3 = t3

x4 ∗ x4 = t4

(t1 + t2 + t3 + t4)
1/2

(b)

Figure 10: (a) Vector Norm and (b) its parallelization.

MV
SW

Current
frame

Reference
frame

Current
block

CSC

SR

SR

Block size

Bl
oc

k
siz

e R

Ropt

(a)

PM
node 0

PM
node 1

SW

R0R1
R2

Rn

R0 R1 · · ·

· · ·

...
...

...

...

...

...

Rn/2−1

Rn/2 Rn/2+1 Rn

(b)

Figure 11: (a) Block Matching Algorithm in Motion Estimation and (b) its parallelization.

Window (SW) leads to more accurate prediction of the best
matching block with the best Motion Vector but consumes
more amount of computation time. Figure 11(b) shows how
the Block Matching Algorithm is parallelized on our OLPC
platform. We uniformly assign candidate Reference Blocks
(R
𝑖
) into each PM node so that each PM node handles the

same number of candidate Reference Blocks. For instance,
assume that there are n search points in the Search Window
(SW) and two PM nodes take charge of obtaining the best
matching block.The PM node 0 is responsible for comparing
R
0
,R
1
, . . . ,R

𝑛/2−1
with the Current Block (C), while PMnode

1 takes charge of comparing R
𝑛/2
,R
𝑛/2+1

, . . . ,R
𝑛
with the

Current Block (C). In our experiment, we perform a various
instances described below.

(1) We also realize two ways of data storing to reflect the
two trafficmodels. One is “Uniform”meaning that the
candidate reference blocks are uniformly distributed
over all nodes.The other is “Hotspot”meaning that all
candidate reference blocks are located in the central
node.

(2) Only integer data type is considered, since the data in
image processing are “integer.”

(3) We conduct a Search Window with the size of 128
× 128 (i.e., 16384 candidate reference blocks), on the
homogenous OLPC with the network size varying
from 1 × 1 (1), 1 × 2 (2), 2 × 2 (4), 2 × 4 (8), 4 × 4 (16),
4 × 8 (32), 8 × 8 (64), 8 × 16 (128), to 16 × 16 (256).

Journal of Electrical and Computer Engineering 15

The total problem size is fixed and the problem size
assigned to each node varies from 16384, 8192, 4096,
2048, 1024, 512, 256, 128, to 64 reference blocks.

5.3.Theoretical Speedup Estimation. To compare our theoret-
ical analysis with the real simulation results, we first estimate
the theoretical speedups of the three applications.

5.3.1. Wavefront Computation

(1) The program of Wavefront Computation can be fully
parallelized, thus 𝑠 = 0.

(2) The subtask on each node is 𝐸(𝑖, 𝑗) = 𝐸(𝑖 − 1, 𝑗 −

1) ∗ 𝐸(𝑖 − 1, 𝑗 − 1) − 𝐸(𝑖, 𝑗 − 1) ∗ 𝐸(𝑖 − 1, 𝑗). Here,
𝐸(𝑖, 𝑗) represents the current element in the matrix in
Figure 9, while 𝐸(𝑖 − 1, 𝑗 − 1), 𝐸(𝑖, 𝑗 − 1) and 𝐸(𝑖 − 1, 𝑗)
are 𝐸(𝑖, 𝑗)’s neighboring element to the above-left,
left and above, respectively. The time of such subtask
(including computation and local memory reference)
is collected in our experiment: 𝜏nc = 176 clock cycles
for integer data type; 𝜏nc = 2032 clock cycles for
floating point data type.

(3) For “Uniform” data storing, the elements computed
by a PM node are located on the local memory of that
PM node. Hence, 𝐸(𝑖, 𝑗) and 𝐸(𝑖, 𝑗−1) are local, while
𝐸(𝑖 − 1, 𝑗 − 1) and 𝐸(𝑖 − 1, 𝑗) are remote.There are two
packets (𝑀 = 2) transmission in a communication
and we assume that 𝛾 = 1.5 considering packet
concurrency. For “Hotspot” data storing, all elements
are located on the central node. Hence, there are four
packet transmissions (𝑀 = 4) in a communication.
Considering packet transmissions are overlapped, we
assume that 𝛾 = 2.

5.3.2. Vector Norm

(1) The program of Vector Norm is partially parallelized.
The serial part consumes much time.

(2) Step 1 is parallel. In Step 1, the subtask on each node
is 𝑡
𝑖
= 𝑥
𝑖
× 𝑥
𝑖
. The time of such subtask (including

computation and localmemory reference) is collected
in our experiment: 𝜏nc = 110 clock cycles for integer
data type; 𝜏nc = 1270 clock cycles for floating point
data type. Because the vector contains 1024 elements,
𝑝 = 1024. Step 2 is sequential. in our experiment,
the computation of √𝑡1 + 𝑡

2
+ ⋅ ⋅ ⋅ + 𝑡

1024
takes 32700

cycles for integer data type and 337560 cycles for
floating point data type. So 𝑠 = 32700/110 ≈ 297

for integer data type and 𝑠 = 337560/1270 ≈ 266 for
floating point data type.

(3) For “Uniform” data storing, 𝑥
𝑖
in Step 1 used by a

PM node are located on the local memory of that PM
node. 𝑡

𝑖
is stored in the central PMnode. Hence, there

is one packet (𝑀 = 1) transmission in a commu-
nication and we assume that 𝛾 = 1. For “Hotspot”
data storing, all data are located on the central node.
Hence, there are two packet transmissions (𝑀 = 2) in

a communication. Considering packet transmissions
are overlapped, we assume that 𝛾 = 1.5.

5.3.3. Block Matching Algorithm in Motion Estimation

(1) The Reference Frame has been computed and stored
in on-chip local memories in the last Motion Esti-
mation. In current Motion Estimation, the “Block
Matching” processing starts until the Current Block
in the Current Frame is transferred from the off-
chip DRAM into the on-chip memory. The elapsed
time of transferring the Current Block from the off-
chip DRAM memory into the on-chip memory is
the serial part of the Block Matching Algorithm. In
our OLPC platform, the central PM node features an
External Memory Interface connecting with the off-
chip DRAM. The External Memory Interface reads a
datum from the DRAM in 20 cycles and the size of
the Current Block is 16 × 16. Hence, for “Hotspot” data
storing that all data are stored in the central PM node,
the data transfer takes 5120 (=16 × 16 × 20) cycles. For
“Uniform” data storing that data are uniformly stored
in each PM node, the Current Block is transferred
from the DRAM to the External Memory Interface
and routed to all PM nodes in a broadcast way, so
the time of the Current Block’s transfer is 5120 +𝑁/2

cycles (a packet from the central node to the corner
one takes 𝑁/2 hops), approximately equal to 5120
cycles.The subtask on each node is the comparison of
the Current Block and a candidate Reference Block,
consuming 7680 cycles.Therefore, the problem size is
128 × 128, so the parallel part takes 125829120 (=7680
× 128 × 128) cycles. 𝑠 = 5120/(5120 + 125829120) ≈

0.00%, and 𝑝 = 1 − 𝑠 ≈ 100.00%.
(2) The subtask on each node is the comparison of the

Current Block and a candidate Reference Block. The
time of such subtask (including computation and
local memory reference) is collected in our experi-
ment: 𝜏nc = 7680 cycles.

(3) For “Uniform” data storing, the Current Block and
the candidate blocks are located in each PM node,
so there is no network communication and 𝛾 = 0.
For “Hotspot” data storing, the Current Block and the
candidate blocks are in the central PM node, Hence,
there are 512 (=16 × 16 × 2) packet transmissions
(𝑀 = 512) in a communication. Considering that
such many packets are routed to the central node,
the network contention is extremely heavy and we
assume that 𝛾 = 512.

Then, using the Formula (9) and (15) estimates the
theoretical speedups of the three applications.

5.4. Simulation Results. The real speedups of the three appli-
cations are calculated based on the simulation results on
our homogenous OLPC experimental platform (because the
sequential part in the program of Vector Norm dominates,
the performance improvement is limited).

16 Journal of Electrical and Computer Engineering

1 1.
91 3.
71 7 13

.3
9

24
.5

4 45
.5

9

81
.8

9

15
9.

77

1 1.
83 3.
46 6.
55 11

.3
7

14
.8

8

15
.4

4

12
.1

9

10
.3

7

1 1.
99 3.
97 7.
89 15

.6
7 31
.0

3 61
.2

6

12
0.

33

23
4.

74

1 1.
97 3.
83 7.
09 11

.7
3

15
.7

8

16
.3

7

13
.8

7

10
.5

5

Wavefront computation
Fi

xe
d-

siz
e s

pe
ed

up

Real speedup (uniform traffic, integer data type)
Real speedup (hotspot traffic, integer data type)
Theoretical speedup (uniform traffic, integer data type)
Theoretical speedup (hotspot traffic, integer data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

0

50

100

150

200

250

300

(a)

Wavefront computation

1 1.
99 3.
97 7.
89 15

.6
6 30
.7

1 58
.5

4

11
5.

66

23
0.

94

1 1.
98 3.
94 7.
83 14

.5
5

27
.5

4 55
.8

9

69
.5

1

77
.0

5

1 1.
99 1.
99 3.
99 7.
99 15

.9
7 31
.9

1 63
.7

5

12
7.

3

25
4.

01

1 3.
98 7.
91 15

.5
1 29
.3

8 51
.1

2 74
.7

4

84
.8

9

Fi
xe

d-
siz

e s
pe

ed
up

Real speedup (uniform traffic, floating-point data type)
Real speedup (hotspot traffic, floating-point data type)
Theoretical speedup (uniform traffic, floating-point data type)
Theoretical speedup (hotspot traffic, floating-point data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

0

50

100

150

200

250

300

(b)

Figure 12: Effect of traffic models: Wavefront Computation with (a) integer data type and (b) floating-point data type.

5.5. Analysis and Discussion

5.5.1. Effect of Network Size. The effect of network size on the
performance reflects the scalability of homogenous OLPCs.
Figures 12, 13, 14, 15, and 16 plot the real and theoretical
speedups versus the size of the homogenous OLPC from 1 ×
1 (1), 1 × 2 (2), 2 × 2 (4), 2 × 4 (8), 4 × 4 (16), 4 × 8 (32), 8 ×
8 (64), 8 × 16 (128), to 16 × 16 (256). From the six figures,
we can see that (i) the theoretical speedups has the same
trend with the real speedups; (ii) for uniform traffic model,
the speedup usually increases when the network size is scaled
up; and (iii) for hotspot traffic model, the speedup reaches
its maximum when the network size is scaled up to a certain
size and becomes decreasing when the network size goes on
increasing.

5.5.2. Effect of Traffic Models. Figure 12 shows the effect of
traffic models on the real and theoretical speedups of both
integer and floating-pointWavefront Computation, Figure 13
shows the effect of traffic models on the real and theoretical
speedups of both integer and floating-point Vector Norm,
and Figure 14 shows the effect of trafficmodels on the real and
theoretical speedups of BlockMatching Algorithm inMotion
Estimation.

(i) For uniform traffic model, consistent with the theo-
retical speedup performance model, the real speedup
increases as the network size is scaled up, no matter
the data type is integer or floating-point. This is
because the contention latency induced by uniform

traffic is not enough to kill the performance improve-
ment introduced by the parallelization. However, it
can slow down the performance improvement.

(ii) Because a hotspot traffic model incurs heavy con-
tention latency, the speedup increases when the net-
work size is small but begins decreasing when the
network size is scaled up to a certain finite value.
Using (17), we can calculate the value of network
size (𝑁) for the maximal speedup. (i) For Wavefront
Computation with integer data type, 𝑁opt ≈ 50, so
Figure 12(a) shows that both the theoretical and the
real speedups go up from 1 × 1 (1) to 4 × 8 (32), the
speedups on 8 × 8 (64) are approximately equal to the
speedups on 4× 8 (32), and the speedups turn to fall as
the network size goes on increasing to 16 × 16 (256).
(ii) For Wavefront Computation with floating-point
data type, 𝑁opt ≈ 255, so Figure 12(b) shows both
the theoretical and the real speedups ascend when the
network size is from 1 × 1 (1) to 16 × 16 (256). (iii) For
Vector Norm with integer data type, 𝑁opt ≈ 44, so
Figure 13(a) shows that both the theoretical and the
real speedups go up from 1 × 1 (1) to 4 × 8 (32), the
speedups on 8 × 8 (64) are approximately equal to the
speedups on 4 × 8 (32), and the speedups fall when
the network size goes on increasing to 16 × 16 (256).
(iv) For Vector Norm with floating-point data type,
𝑁opt ≈ 226, so Figure 13(b) shows both the theoretical
and the real speedups ascendwhen the network size is
from 1 × 1 (1) to 16 × 16 (256). (v) For Block Matching
Algorithm, 𝑁opt ≈ 15, so Figure 14 shows that both
the theoretical and the real speedups go up from

Journal of Electrical and Computer Engineering 17

1

1.
59

2.
33

3.
01

3.
55 3.

9 4.
1 4.
1 4.
2

1

1.
56

2.
3

2.
98

3.
51 3.

86 4.
06 4.
09

1

1.
63

2.
38

3.
09

3.
64 4

4.
21

4.
21 4.

32 4.
38

1

1.
61

2.
33

2.
97

3.
39 3.

58 3.
58

3.
44

3.
2

0

1

2

3

4

5

6
Vector Norm

Fi
xe

d-
siz

e s
pe

ed
up

Real speedup (uniform traffic, integer data type)
Real speedup (hotspot traffic, integer data type)
Theoretical speedup (uniform traffic, integer data type)
Theoretical speedup (hotspot traffic, integer data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

(a)
1

1.
63

2.
38

2.
38

3.
1

3.
64

3.
64

4

4.
2

4.
2 4.
31

4.
31 4.
37

1

1.
62

3.
09

3.
99 4.

36

1

1.
66

2.
47

2.
47

3.
27

3.
91

4.
33 4.

58 4.
71 4.
78

1

1.
66

3.
26

3.
88 4.

28 4.
5 4.
6 4.
62

0

1

2

3

4

5

6
Vector Norm

Fi
xe

d-
siz

e s
pe

ed
up

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

Real speedup (uniform traffic, floating-point data type)
Real speedup (hotspot traffic, floating-point data type)
Theoretical speedup (uniform traffic, floating-point data type)
Theoretical speedup (hotspot traffic, floating-point data type)

(b)

Figure 13: Effect of traffic models: Vector Norm with (a) integer data type and (b) floating-point data type.

1 1.
99

8

3.
99

7

7.
99

5

15
.9

9 31
.9

3 63
.7

6

12
5.

45

24
8.

78

1 1.
58 2.
95 3.
67 4.
43

3.
92 3.
51

2.
21

1.
521 1.
99

9

3.
99

9

7.
99

8

15
.9

9 31
.9

59

63
.8

35

12
7.

33
8

25
3.

35
5

1 1.
82

8

3.
15

8

4.
56

5.
10

6

4.
54

9

3.
54

2

2.
59

8

1.
86

1

Block matching algorithm in motion estimation

Fi
xe

d-
siz

e s
pe

ed
up

Real speedup (uniform traffic)
Real speedup (hotspot traffic)
Theoretical speedup (uniform traffic)
Theoretical speedup (hotspot traffic)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

0

50

100

150

200

250

300

Figure 14: Effect of traffic models: Block Matching Algorithm in
Motion Estimation.

1 × 1 (1) to 4 × 4 (16) but fall when the network size
is from 4 × 8 (32) to 16 × 16 (256). From Figure 14, we
can see that the speedupunder hotspot trafficmodel is
very small, because the Block Matching Algorithm in
Motion Estimation makes a large number of memory

accesses flow towards the central PM node and hence
results in huge network contention.

(iii) Because hotspot traffic model consumes much more
network contention latency than uniform traffic
model, the speedup with hotspot traffic model is
smaller than that with uniform traffic model for the
same network size. The difference becomes larger
when the network size is increasing.

5.5.3. Effect of Noncommunication/Communication Ratio.
Figure 15 shows the effect of noncommunication/ com-
munication ratio on the real and theoretical speedups of
Wavefront Computation under both uniform and hotspot
traffic models, and Figure 16 shows the effect of noncom-
munication/communication ratio on the real and theoretical
speedups of Vector Norm under both uniform and hotspot
traffic models.

(i) For the same network factors, the theoretical and real
speedups for the floating point data type is higher
than those for the integer data type.This is as expected
because when the noncommunication time increases,
the portion of communication latency becomes less
significant, thus achieving higher performance.

(ii) For hotspot traffic model, the increase of noncom-
munication/communication ratio shifts the optimal
network size (𝑁opt) to a larger value. For integer data
type, 𝑁opt ≈ 50 for Wavefront Computation and
𝑁opt ≈ 44 for Vector Norm. For floating-point data
type, 𝑁opt ≈ 255 for Wavefront Computation and
𝑁opt ≈ 226 for Vector Norm.

18 Journal of Electrical and Computer Engineering

1 1.
91 3.
71 7 13

.3
9

24
.5

4 45
.5

9

81
.8

9

15
9.

77

1 1.
99

1.
99

1.
99 3.
97 7.
89 15

.6
6 30
.7

1 58
.5

4

11
5.

66

23
0.

94

1 3.
97 7.
89 15

.6
7 31
.0

3 61
.2

6

12
0.

33

23
4.

74

1 3.
99 7.
99 15

.9
7 31
.9

1 63
.7

5

12
7.

3

25
4.

01

Wavefront computation
Fi

xe
d-

siz
e p

er
fo

rm
an

ce

Real speedup (uniform traffic, integer data type)
Real speedup (uniform traffic, floating-point data type)
Theoretical speedup (uniform traffic, integer data type)
Theoretical speedup (uniform traffic, floating-point data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4)

2
×
4
(8
)

4
×
4
(1
6)

4
×
8(
3
2)

8
×
8(
6
4)

8
×
16
(1
28
)

16
×
16
(2
5
6)

Network size

0

50

100

150

200

250

300

(a)
1 1.

83 3.
46 6.
55 11

.3
7

14
.8

8

15
.4

4

12
.1

9

10
.3

7

1 1.
98 3.
94 7.
83 14

.5
5

27
.5

4 55
.8

9 69
.5

1

77
.0

5

1 1.
97 3.
83 7.
09 11

.7
3

15
.7

8

16
.3

7

13
.8

7

10
.5

5

1 1.
99 3.
98 7.
91 15

.5
1

29
.3

8 51
.1

2 74
.7

4

84
.8

9

Wavefront computation

Fi
xe

d-
siz

e s
pe

ed
up

Real speedup (hotspot traffic, integer data type)
Real speedup (hotspot traffic, floating-point data type)
Theoretical speedup (hotspot traffic, integer data type)
Theoretical speedup (hotspot traffic, floating-point data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

0

50

100

150

200

250

300

(b)

Figure 15: Effect of noncommunication/communication ratio:Wavefront Computation with (a) uniform trafficmodel and (b) hotspot traffic
model.

1

1.
59

2.
33

3.
01

3.
55 3.

9 4.
1 4.
21

4.
2

1

1.
63

2.
38

3.
1

3.
64

4 4.
2 4.
31 4.
37

1

1.
63

2.
38

3.
09

3.
64

4 4.
21 4.
32 4.
38

1

1.
66

2.
47

3.
27

3.
91

4.
33 4.

58 4.
71 4.
78

0

1

2

3

4

5

6 Vector Norm

Fi
xe

d-
siz

e s
pe

ed
up

Real speedup (uniform traffic, integer data type)
Real speedup (uniform traffic, floating-point data type)
Theoretical speedup (uniform traffic, integer data type)
Theoretical speedup (uniform traffic, floating-point data type)

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

(a)

Vector Norm

1

1.
56

2.
3

2.
98

3.
51 3.

86 4.
06 4.
1

4.
09

1

1.
62

2.
38

3.
09

3.
64 3.

99 4.
2 4.
31 4.
36

1

1.
61

2.
33

2.
97

3.
39 3.

58

3.
58

3.
44

3.
2

1

1.
66

2.
47

3.
26

3.
88

4.
28 4.

5 4.
6

4.
62

0

1

2

3

4

5

6

Fi
xe

d-
siz

e s
pe

ed
up

1
×
1(
1)

1
×
2(
2)

2
×
2(
4
)

2
×
4
(8
)

4
×
4
(1
6
)

4
×
8(
3
2)

8
×
8(
6
4
)

8
×
16
(1
28
)

16
×
16
(2
5
6
)

Network size

Real speedup (hotspot traffic, integer data type)
Real speedup (hotspot traffic, floating-point data type)
Theoretical speedup (hotspot traffic, integer data type)
Theoretical speedup (hotspot traffic, floating-point data type)

(b)

Figure 16: Effect of noncommunication/communication ratio: Vector Norm with (a) uniform traffic model and (b) hotspot traffic model.

6. Applicability and Limitation

6.1. Applicability. The target architectures and applications
of our study are homogenous OLPCs and data-parallel
applications, respectively. Homogenous OLPCs are such

an on-chip computing platform that have a number of
computing cores that run in and an on-chip network
that provides concurrent pipelined communication, and
data-parallel applications represent a wide range of appli-
cations whose data sets can be partitioned in parallel

Journal of Electrical and Computer Engineering 19

into data subsets handled individually by the same program
running in different processor cores. Scalability is the com-
mon characteristic of both. Considering that homogenous
OLPCs and data-parallel applications match each other very
well in nature and hence data-parallel applications can obtain
good speedup in homogenous OLPCs, the performance
model proposed by the paper is applicable to homogenous
OLPCs for data-parallel applications.

The performance model is general for homogenous
OLPCs and a variety of data-parallel applications. For any
particular application, a customized many-core platform
such as application-specific architecture and hardware accel-
erator will be superior, but a NoC-based homogenous OLPC
would be better than such a custom-designed hardware
architecture when a variety of data-parallel applications share
the sameOLPC.The custom-designedmany-core platform is
specific so as not to be in the range of the general homogenous
OLPCs. GPU (Graphic Processing Unit) is such kind of
hardware accelerator for graphic processing as the name
suggests. AlthoughGPGPU (General-PurposeGPU) exhibits
generality to some extent by providing programmability
in its GPUs, it is still specific because the programmable
GPU adopts a special structure for accelerating the graphic
processing applications and the interconnections in GPGPU
is special for such as stream processing and data shuffling
that are common in graphic processing.Therefore, GPGPU is
not in the range of homogenousOLPCs. Besides data-parallel
applications, there exist other applications that do not have
the scalability feature, so the proposedmodel is not applicable
to those applications’ performance analysis.

6.2. Limitation. The proposed performance model is not
suitable for many-core platforms in specific application areas
and the applications without the characteristic of scalability.
The purpose of the model is to offer a general but workable
way to estimate and evaluate the performance of homogenous
OLPCs for data-parallel applications. Because the network
communication latency and the ways of storing data of data-
parallel applications are two of the most significant factors
affecting the performance of homogenous OLPCs, when
we establish the speedup performance model, the network
communication latency and the data storingways are stressed
out and modeled in detail. Therefore, the processor behavior
such as cache hierarchy and cache miss is not considered.
We assume that all of the data are moved from the exter-
nal memory to the appointed on-chip memory regions in
different nodes before the system handles the data and the
performance is measured from the time when the system
begins handling the data, even if the data is continuously fed
from the external memory, part of the latency can be hidden
in the process of data handling, and we emphasize analyzing
the effect of the data storing ways, so the model does not
describe the situation that data are moved from the external
memory.

7. Conclusion

Understanding the speedup potential that homogenous
OLPC computing platforms can offer is a fundamental

question to continually pursuing higher performance. This
paper has focused on analyzing the performance of homo-
geneous OLPCs for data-parallel applications. Because the
enhancement of application performance in OLPCs may
be restricted by the increasing network communication
latency even though the number of cores increases, one main
issue for the analysis is to properly capture the network
communication. We first detailed a network communication
latencymodel by proposing two abstract concepts (equivalent
serial packet and equivalent serial communication). Then,
based on the network communication latency model, we
have proposed the performance model. By considering the
uniform and hotspot traffic models, the performance model
has two detailed forms to reflect the distributed way and the
centralized way of storing data of data-parallel applications.
Essentially, the performance model revisits Amdahl’s Law
under the context of homogenous OLPCs. Theoretic anal-
ysis and real application experiments demonstrate that our
model provides a feasible way to estimate and evaluate the
performance of data-parallel applications onto homogenous
OLPCs.

In the future, we plan to extend the performance model
by considering the cache hierarchy and cache miss and the
external memory access. Another direction is to emphasize
studying the effect of topologies and communication proto-
cols on the performance models of homogenous OLPCs.

Notations

𝑘: Number of nodes in each dimension
𝑁: The number of processor nodes,𝑁 = 𝑘

2

𝑠: The number of subtasks in the serial part
of a program

𝑝: The number of subtasks or
communications in the parallel part of a
program

𝛼: The ratio between the serial part and the
parallel part in a program, 𝛼 = 𝑠/𝑝

𝜏
𝑐
: The time of a communication

𝜏nc: The execution time of a subtask, that is,
noncommunication time

𝐻: Average hop count of transmitting a
packet

𝜏
1hop: The time of transmitting a packet in one

hop
𝜏
𝑡
: Average time of transmitting a packet in

the network
𝑀: The number of packets in a

communication
𝛾: The number of equivalent serial packets in

a communication
𝜔: The number of equivalent serial

communications in a program
𝑇
𝑇
: The communication overhead of a

program on OLPCs
𝑆: Speedup
𝑆max: Maximal speedup
𝑆min: Minimal speedup.

20 Journal of Electrical and Computer Engineering

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research is partially supported by the Hunan Natural
Science Foundation of China (no. 2015JJ3017), the Doc-
toral Program of the Ministry of Education in China (no.
20134307120034), and the National Natural Science Founda-
tion of China (no. 61402500).

References

[1] S. Borkar, “Thousand core chips—a technology perspective,”
in Proceedings of the 44th ACM/IEEE Design Automation
Conference (DAC ’07), pp. 746–749, June 2007.

[2] M. Horowitz and W. Dally, “How scaling will change processor
architecture,” inProceedings of the IEEE International Solid-State
Circuits Conference, Digest of Technical Papers (ISSCC '04), vol.
1, pp. 132–133, February 2004.

[3] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwer Aca-
demic Publishers, New York, NY, USA, 2003.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,”ACMComputing Surveys, vol. 38,
no. 1, pp. 1–51, 2006.

[5] J. D. Owens, W. J. Dally, R. Ho, D. N. Jayashima, S. W. Keckler,
and L.-S. Peh, “Research challenges for on-chip interconnection
networks,” IEEE Micro, vol. 27, no. 5, pp. 96–108, 2007.

[6] G. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings
of the American Federation of Information Processing Societies
Conference, pp. 383–385, Atlantic City, NJ, USA, April 1967.

[7] X. Li and M. Malek, “Analysis of speedup and communica-
tion/computation ratio in multiprocessor systems,” in Proceed-
ings of the Real-Time Systems Symposium, pp. 282–288, 1988.

[8] J. Paul, “Amdahl’s law revisited for single chip systems,” Interna-
tional Journal of Parallel Programming, vol. 35, no. 2, pp. 101–123,
2007.

[9] S. Cho and R. G. Melhem, “Corollaries to Amdahl’s law for
energy,” Computer Architecture Letters, vol. 7, no. 1, pp. 25–28,
2008.

[10] M. D. Hill andM. R. Marty, “Amdahl’s law in the multicore era,”
Computer, vol. 41, no. 7, pp. 33–38, 2008.

[11] G. Loh, “The cost of uncore in throughput-oriented manycore
processors,” in Proceedings of the Workshop on Architectures
and Languages forThroughput Applications (ALTA ’08), Beijing,
China, June 2008.

[12] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Per-
formance evaluation and design trade-offs for network-on-chip
interconnect architectures,” IEEE Transactions on Computers,
vol. 54, no. 8, pp. 1025–1040, 2005.

[13] W. Dally and B. Towles, Principles and Practices of Interconnec-
tion Networks, Morgan Kaufmann, 2004.

[14] Gaisler, “Leon3 processor,” http://www.gaisler.com/doc/Leon3
%20Grlib%20folder.pdf.

[15] M. Millberg, E. Nilsson, R. Thid, S. Kumar, and A. Jantsch,
“The Nostrum backbone—a communication protocol stack for
networks on chip,” in Proceedings of the 17th International
Conference on VLSI Design, pp. 693–696, January 2004.

[16] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization
state buffer: supporting efficient fine-grain synchronization on
many-core architectures,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA ’07),
pp. 35–45, June 2007.

[17] ITU, “Draft ITU-T recommendation and final draft interna-
tional standard of joint video specification (ITU-T Rec. H.264
— ISO/IEC 14496-10 AVC),” 2003.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

