
Study of DNN-based Ragweed Detection from
Drones ⋆

Martin Lechner1,2[0000−0003−1083−0246], Lukas Steindl1, and Axel
Jantsch1[0000−0003−2251−0004]

1 Christian Doppler Laboratory for Embedded Machine Learning, Institute of
Computer Technology, TU Wien, 1040 Vienna, Austria
2 Corresponding author, martin.lechner@tuwien.ac.at

Abstract. Ambrosia artemisiifolia, also known as ragweed, is an inva-
sive weed species that aggressively spreads across Europe. 4-5% of the
population suffers from strong allergic reactions to its pollen. This work
studies the use of aerial drones equipped with highly compressed deep
neural networks (DNNs) to scan large areas of vegetation for ragweed
with high speed and precision. Compared to the manual approaches with
an estimated survey cost of roughly 860 EUR/km2, the proposed tech-
nique can cut the cost of ragweed detection and monitoring by orders
of magnitudes. Aerial drones are heavily limited by their battery capac-
ity and thus require an efficient computation platform. As such, it is
not possible to use standard DNN models due to memory and computa-
tional constraints. Offloading the workload into data centers introduces
new issues as the drones may operate in rural areas with poor network
connectivity. To overcome these challenges, we train state-of-the-art ob-
ject detection and segmentation models on a ragweed dataset. The best
performing segmentation models were compressed using shunt connec-
tions, fine-tuned with knowledge distillation, and further optimized with
Nvidias TensorRT library for deployment on an Nvidia Jetson TX2. The
highest accuracy models still achieve between 200ms and 400ms infer-
ence latency, enabling real-time ragweed survey and potentially allowing
more advanced autonomous eradication use cases.
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1 Introduction

Over the last 20 years, the rise of Ambrosia Artemisiifolia extended the hayfever
season for millions of sensitized people in Europe from early summer to late
autumn. The plant originally native to North America came to our continent due
to upcoming global trade in the 19th century. Initially not spreading too much,
several factors such as industrialized agriculture and climate change speeded up
the infestation in Europe [7]. Figure 1 shows the rapid distribution of this alien
species across Europe.
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Economic Affairs, in part by the National Foundation for Research, Technology and
Development, and in part by the Christian Doppler Research Association.
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Fig. 1. Ragweed pollen concentration 1990 (a) and 2007 (b). Favored by climate change
Ambrosia Artemisiifolia expands roughly 25km from east to west every year. Data
provided by the European Aeroallergen Network [2].

Richter et al. [16] simulated the dispersion of ragweed in Austria and Bavaria
for different climate scenarios and found that taking no counteractions would
raise the mean annual allergy-related cost from 133 Mio. EUR in 2005 to 422
Mio. EUR in 2050. For the same region, they calculated that investments of 15
Mio. EUR/year in traditional weed management would reduce the mean allergy-
related cost by 82 Mio. EUR per year.

The effort for removing ragweed splits into the cost for detection (10%) and
subsequent eradication (90%) and is estimated to be 8570 EUR per km2 in total.
Since eradication costs increase for larger plants, a survey should cover large
areas in a short time. However, a person requires 25 hours to monitor a single
km2 once. One way to lower the detection cost is to crowd-source the task. People
are asked to take pictures of ragweed with their mobile phones and send them
to the authorities for verification and removal coordination. The disadvantage
of such an unstructured approach is that large areas might not be covered. In
an interdisciplinary project, a ResNet50-Image-Classifier was trained to show
that deep neural networks (DNNs) can distinguish ragweed from similar-looking
plants in close-up images from mobile phones.

This work extends the idea of automated detection and proposes a novel
method that uses highly optimized DNNs deployed to embedded devices to scan
vegetation images collected with aerial drones. Compared to the traditional man-
ual approach the proposed automated technique has the potential to cut the
survey costs (860 EUR/km2) by 80% and the survey time by 90%.

One challenge that comes with this approach is that offloading large datasets
to the cloud may not be possible due to poor network connectivity in rural areas.
Another challenge is that DNNModels with millions of parameters like ResNet50
cannot be deployed efficiently to embedded systems due to the lack of available
memory and computation resources. Furthermore, the DNN cannot utilize the
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embedded platform entirely since image pre-processing (cropping, scaling) and
data post-processing need additional resources.

We identify state-of-the-art DNNs to recognize ragweeds in images collected
with drones, study methods to compress and optimize the DNNs, and map
them on suitable embedded hardware. An optimized system can provide a cost-
effective solution to support the combat against the spread of Ambrosia Artemisi-
ifolia and to alleviate the medical conditions experienced by millions of people.
This paper makes the following main contribution:

A case study of ragweed detection from drones based on standard DNNs, and
specifically,

– study and comparison of segmentation and object detection DNNs,
– optimization and customization of the used DNNs,
– a method to find the optimal operating parameters for survey drones.

The rest of the paper is organized as follows: Section 3 describes our approach
for drone-based ragweed detection, with our experimental results in 4 and a
conclusion drawn in Section 5.

2 Related Work

2.1 Weed detection and eradication

Plascak et al. [14] use helicopters and drones at high altitudes to collect RGB
and NGB pictures. To interpret the images, they created orthographic maps
and manually engineered features such as tone, color, texture, pattern, form,
size, height/altitude, and location. They highlight that the spatial distribution
of ragweed can be estimated well by the strong green leaf color in early summer.
Budda et al. [6] suggested a combination of robotic sprayer and drone systems to
eradicate different kinds of weeds automatically. They trained an object detector
to recognize certain weed types in an early plant stage to apply small amounts of
pesticides. They emphasize the importance of flying drones at high altitudes to
improve efficiency. Increasing the distance between camera and surface reduces
the number of pixels per plant and degrades recognition quality. To mitigate this
problem, they propose to upsample images using generative adversarial networks
(GANs) and pass the output of the GAN as input to an object detector. The
authors reported a 93.8 % classification accuracy for the detected instances of the
three weed classes they consider in their model. However, 50 out of 170 Ragweed
examples were not detected by the Fast R-CNN Object Detector. Their solution
also requires offloading the workload to the cloud, limiting the application to
areas with sufficient network connectivity and bandwidth.

In 2019 the Laser Zentrum Hanover [3] proposed an eradication solution using
drones and robots equipped with lasers to remove unwelcome plants. Mathiassen
et al. suggest that laser treatment can indeed reduce the relative survival rate
of certain weed species and demonstrated that laser treatment is an effective
technique for weed control. Depending on infestation and plant development, a
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Table 1. The optimal ragweed eradication method depends on the level of infestation
and the size of the plant.

Plant
Stage

Late
Manual or piloted drone
(chemical / mechanical)

Tractor-supported
(chemical / mechanical)

Early
Autonomous drone

(laser)
Autonomous robot

(laser)
Weak Strong

Infestation

different removal technique might be optimal. Table 1 shows a classification of
weed management strategies. In case of heavily infested vegetation with plants
in the late stage, tractors and sprayers are likely the optimal eradication method.
If the plants are still in an early stage, one could consider ground-based robots
equipped with lasers as a viable solution [4, 1].

2.2 Deep Learning and Model Compression

Deep neural networks have been proven to outperform classical approaches in
various domains like object detection [12, 5] and semantic segmentation [8], and
applications like autonomous driving [9] and plant identification [13]. Object
detection networks can be grouped into two approaches, two-stage detectors
like Faster-RCNN [15] and single-stage detectors like YoloV4 [5] and singe-shot-
detection (SSD) [12]. While two-stage detectors typically reach a higher accuracy,
they are slower and require more resources than single-stage detectors. While
object detectors predict bounding boxes for each found object in an image, the
task of semantic segmentation is to assign a class to every pixel. DeeplabV3+ [8]
is one of the latest methods for semantic segmentation, which can be combined
with different sized backbones depending on the required accuracy and latency.

However, all state-of-the-art networks still need a lot of resources and re-
quire further optimization to run on embedded platforms and meet latency tar-
gets. Methods to compress deep neural networks include pruning, quantization,
knowledge distillation [11], and shunt-connections [10]. Pruning is a technique
to reduce the number of weights in a neural network and can be challenging in
architectures containing residual blocks as found in ResNet or MobileNet vari-
ants. In knowledge distillation, one trains a smaller neural network with the
output distribution of a larger DNN to achieve a comparable accuracy with a
reduced number of parameters. On the other hand, Shunt-connections replace
computationally expensive blocks of a DNN with much smaller ones.

3 System Architecture

3.1 Ground Sampling Distance

The ground sampling distance (GSD) describes the spatial density of image dis-
cretization. It gives the number of units of measurement on the ground that are
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Fig. 2. The ground sampling distance is the relation between the width of the camera
footprint on the ground gw and the sensor width sw

represented by a single pixel in the observed image. A ground sampling distance
of 1cm/pixel means that 1 pixel in the image represents 1cm of ground distance
in the real world. The ground-sampling distance is the relation between the
width of the camera footprint on the ground gw in cm and the sensor resolution
srw in pixel.

GSD =
gw
srw

PS =
sw
srw

(1)

For our considerations, we use the standard pinhole camera model to calcu-
late the flight altitude for a given GSD and a given pixel size PS:

a =
f · gw
sw

= f · GSD

PS
(2)

where a is the altitude, f is the focal length, gw is the width on the ground,
and sw is the sensor width.

A more expensive camera with a higher resolution sensor could outperform
cheaper models that require the drone platform to fly at lower altitudes for the
same GSD. We derive a model based on equation (eq 2) to decide which drone-
camera-combination is the most efficient for a specific GSD. Next, we need to
find the limits of the GSD necessary for detecting ragweed. When creating a
training dataset, image annotation is an important task typically performed by
humans. We found that annotators require at least 100x100 pixels to identify a
ragweed plant in an image.

Large ragweed plants often cover 1m of the ground surface. To obtain 100×
100 pixels the GSD should be 1cm/pixel. Plants in an early stage cover a surface
area of ≈ 10cm. Detecting smaller objects requires a lower GSD of 0.1cm/pixel.
One could argue that it is cheaper to detect ragweed when the plant is larger.
Although the detection cost goes down for larger plants, the eradication cost is
much higher when detected later, and laser-based removal techniques may no
longer be viable.

3.2 Flight Parameter Model

A drone platform provides a maximal flight duration t and a maximal speed v.
The cost of a flight is assumed to be c EUR. The mounted camera provides an
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Table 2. Five final layers of the network for the original (Cityscapes) and the reduced
(Ragweed) segmentation head.

Cityscapes Ragweed
Layer Out Shape (Params) Out Shape (Params)

decoder decoder conv0 271, 481, 19 (2451) 271, 481, 2 (258)
decoder feature project0 271, 481, 19 (1691) 271, 481, 2 (178)
add 3 271, 481, 19 (0) 271, 481, 2 (0)
resize 3 2161, 3841, 19 (0) 2161, 3841, 2 (0)
activation 87 2161, 3841, 19 (0) 2161, 3841, 2 (0)

image resolution of h × w pixels. The sensor height, width and focal length is
given as sh, sw and f . For a certain GSD in cm/pixel, the ground area covered
by an image is gw × ghm

2 with

gw =
w ·GSD

100
and gh =

h ·GSD

100
. (3)

The number of flights fc required to scan 1 km2 can be calculated as:

fc =
106

d× gw
(4)

where d is the distance, a drone can travel during one flight.
Finally, we can calculate the total cost of scanning 1km2 of vegetation at a

given GSD by

Total Cost per km2 =
108 · c

t · v · w ·GSD
(5)

This expression can be interpreted intuitively. The total costs decrease if a
drone can fly longer (flight time t) and faster (speed v) with a higher sensor
resolution. Ceteris paribus, a larger ground sampling distance allows the drone
to fly at higher altitudes increasing the observed ground surface and reducing
the overall data collection cost per km2. Increasing the sensor resolution w also
increases gw resulting in the same effect.

The model also allows the calculation of the optimal flight parameters. Equa-
tion (2) gives the ideal altitude. Ignoring motion blur, the optimal speed is equal
to the maximal speed of the drone. The number of pictures taken during a flight
is and the required framerate to fully cover the ground are given by:

images per flight =
d

gh
required framerate =

t

p
(6)

3.3 Dataset

In September 2020, we recorded roughly 130 minutes of video data and 200
high-resolution images of ragweed-infested dense vegetation in the eastern part
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of Austria at heights of 2.5 and 4 meters. We used multiple configurations of
camera systems and perspectives to obtain image data with the desired level of
quality.

Inspired by the work of Buddha et al. [6] we annotated an object-detection
dataset where we chopped the original 4k videos into eight non-overlapping video
tiles. The final dataset consists of 971 image tiles with a resolution of 960x1080
pixels, of which 481 tiles show at least one region of interest. We split the images
into 80% training samples and 20% test samples. We also created a segmentation
dataset consisting of 139 images.

3.4 Object Detection Network

We used an SSDResNet50FPN as included in the TensorFlow Object Detection
API for object detection, which is pre-trained on the MS CoCo 2017 dataset.
We used a cosine decay learning rate with a base learning rate factor of 0.04 and
a 2000 step warm-up phase with a warm-up learning rate of 0.013333. In total,
we executed the training for 25000 steps.

3.5 Semantic Segmentation Network

Our model for semantic segmentation is based on the DeeplabV3+ architec-
ture with a MobileNetV3 backbone and pre-trained on the Cityscapes dataset.
In the next step, we trained, compressed, and fine-tuned our model using the
Shunt-Connector-Framework from Haas et al. [10]. This includes modifying the
segmentation head for our dataset. The cityscapes dataset is annotated on 19
output classes, whereas our ragweed dataset has only two classes (ragweed, back-
ground). However, the modifications have to be done in-place in order to load the
pre-trained weights. Table 2 shows all modified layers. For training the shunt-
inserted model, we used a constant learning rate of 0.05 and executed the training
for 200 epochs.

4 Results

In the following sections, we first compare different drones for small and large
ragweed detection in terms of cost-efficiency. Then, we describe our experimental
setup and compare the results of object detection and segmentation on our
ragweed dataset. Finally, we show the required optimization steps for embedded
hardware deployment.

4.1 Drone Selection

As an example, we compare three off-the-shelf drones, a DJI Phantom 4 Pro
2 with a built-in camera, a DJI Matrice 300 RTK with a Zenmuse P1 (50mm)
camera, and a WingtraOne with a Sony QX1. For simplicity, we assume the
operating costs to be the same for each drone and only use the deprecation
costs set to 1/100 × list price as costs per flight. We consider two scenarios.
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Table 3. Overview of all required UAV parameters to decide which platform-sensor
combination is most efficient and to compute the optimal flight parameters.

DJI Phantom DJI Matrice WingtraOne

Flight duration [s] 1800 3300 3540
Cost per flight [EUR] 30 110 45
Speed [m/s] 20 23 16
Flight distance [km] 36 75.9 56.640
Camera Built in Zenmuse P1 Sony QX1
Resolution [px] 5472 × 3648 8192 × 5460 5456 × 3532
Sensor size [mm] 13.2 × 8 35.9 × 24 23.2 × 15.4
Focal length [mm] 8.8 50 20

Scenario S1 aims to detect small ragweed plants that are 10cm in size. A GSD
of 0.1cm/pixel will be assumed to achieve this goal. In Scenario S2, the drone
should detect large ragweed (1m in size). To obtain 100 × 100 pixels the GSD
will be 1cm/pixel.

With the parameters from Table 3, the ground dimensions mapped to a single
image can be calculated using Equation (3). Considering the real-world surface
dimensions of a single image, we can derive the total observed ground surface of
one flight. Table 4 summarizes the results. Note that the price per km2 decreases
by a factor of 10 when the GSD increases by a factor of 10.

Although the Matrice is about three times as expensive as the Phantom, it is
still more cost-efficient in collecting images with the desired GSD. The optimal
flight altitude can be calculated with Equation (2).

Another metric is the minimal interval of images required to cover the entire
ground surface during a flyover without overlaps. The Phantom-V4 in scenario
S1 has to take 36000/3.65 = 9869 pictures during an 1800 second long flight
resulting in a framerate of 0.18 images per second. This sets a strict time limit
for real-time onboard ragweed detectors. Due to the higher spatial resolution of
the DJI-Matrice, the drone can fly higher and take fewer images relative to the
Phantom for the same distance. However, it still takes more pictures as it can fly
longer and faster. Table 4 shows the optimal flight parameters and time limits
for both scenarios.

In conclusion, the relative drone efficiency does not depend on the scenario,
as changing the GSD affects all drones equally. Ignoring the constant values in
Equation (5) it is optimal to pick the drone-camera combination with the lowest
ratio of drone cost to maximal airtime× velocity× resolution.

4.2 Experimental Setup

For our experiments, we used an Nvidia Jetson TX2 as it is the sweet spot be-
tween power, performance, and weight for a drone application. All networks are
converted to Nvidia’s neural network inference framework Tensor RT (TRT).
It can quantize models with FP16 and INT8 operations while preserving the
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Table 4. Efficiency metrics and optimal flight parameters of three UAV models for
small and large ragweed detection. The costs per km scales linearly with the required
GSD.

Scenario S1 S2

Drone
DJI DJI Wingtra DJI DJI Wingtra

Phantom Matrice One Phantom Matrice One

Efficiency Metrics

Groundwidth [m/img] 5.47 8.19 5.46 54.72 81.92 54.56
Groundlength [m/img] 3.65 5.46 3.63 36.48 54.60 36.32
Ground area [km²/flight] 0.2 0.62 0.31 1.97 6.22 3.09
Flights per km² 5.08 1.61 3.24 0.51 0.16 0.32
Time [h/km²] 2.54 1.48 3.19 0.26 0.15 0.31
Costs [EUR/km²] 152.3 176.9 145.6 15.2 17.7 14.6

Optimal Flight Parameters

Altitude [m] 3.65 11.41 4.7 36.48 114.09 47.03
Speed [m/s] 20 23 16 20 23 16
Images per flight 9,869 13,902 15,595 987 1,391 1,560
Framerate [images/s] 5.48 4.21 4.41 0.55 0.42 0.44

Table 5. Semantic segmentation mIoU results. *IoU reported on the training server.

mIoU
Resolution dlv3* dlv3s dlv3trt dlv3trts

961× 541 0.588 0.625 0.574 0.625
1921× 1081 0.670 0.695 0.634 0.695

models’ accuracy and supports layer-fusing, kernel-auto-tuning, and other opti-
mizations. This allows us to run our networks at the highest possible efficiency.

Object detection On the ragweed testset, we achieved an Average Precision
(AP) of 0.525 for an Intersection over Union (IoU) of 0.5 and a mean AP of
0.229 for IoU scores in the range of 0.5 to 0.95. Figure 3 shows that while the
object detector can detect individual plants, it struggles in areas with dense
vegetation. Thus, object detection is a valid approach in spring or early summer
when vegetation is still sparse. After running optimizations with TensorRT, we
obtained a latency of 95ms at floating point 16 (FP16) and 124ms at FP32.
In FP16 mode, the AP@0.5IoU dropped slightly to 0.523, and the mean AP
dropped to 0.227.

Semantic Segmentation In our experiments, we compare the latency and the
IoU of the original model with TensorRT optimizations and the shunt-inserted
model with and without TensorRT optimizations. However, for the original
model, we could not run it on a TX2 due to memory constraints. Thus we
provide the IoU achieved on our training machine. Table 5 shows the mIoU
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(a) (b) (c)

(d) (e) (f)

Fig. 3. The model predicts reasonable (green) bounding boxes if the plant is well
separated from the rest of the vegetation. However, it sometimes fails (see (b) and
(f)). Especially when vegetation is dense the (red) ground truth boxes overlap with the
non-ragweed background.

of the original model (dlv3), the shunt-inserted model (dlv3s), the TensorRT
optimized model (dlv3trt), and the TensorRT optimized shunt-inserted model
on two different resolutions (1/4 and 1/8 of the original 4k images). As a gen-
eral trend, inserting the shunt connections followed by fine-tuning increases the
mIoU . Also, the TensorRT-based optimizations have no impact on the mIoU
for the shunt-inserted model. In addition to the mIoU , Figure 4a also shows the
mean latency for all models on the Jetson TX2. Platform-specific optimizations
clearly boost the latency, while shunt connections do not make a huge differ-
ence in terms of latency. However, due to the increased mIoU , the optimized,
shunt-inserted models represent the Pareto optimum. The TensorRT optimized,
shunt-inserted model (dv3trts) with a resolution of 1921× 1081 has a mean la-
tency of 200ms which meets most of the framerate requirements from Table 4.
In case of a DJI Phantom in scenario S1, only the lower resolution model with
a mean latency of 45ms is fast enough. Figure 4b shows the impact of the batch
size during training together with the achievable mIoU for three different resolu-
tions on the training server. As expected, the highest resolution model achieves
the best mIoU scores. However, these models do not fit our target hardware or
latency constraints. Figure 5 shows the predictions of the segmentation model
together with the ground-truth labels for two sample images. In both scenarios,
the predictions and the labeled ground-truth overlap to a large extent.
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(a) (b)

Fig. 4. Left: The Pareto-optima on the TX2 are the shunt-inserted deeplabv3+ models
optimized with TensorRT (dv3trts). Shunt-optimization has little effect on a TRT-
optimized models latency but significantly boosts its accuracy. The size of the points
denotes the image size and the shape (dot, cross) the training batch size (BS). The
test-batch size is always 1. Right: Higher resolution and larger training batch size
improve the quality of the segmentation model.

(a) (b)

Fig. 5. Predictions of the segmentation model (yellow) and ground-truth (purple).

5 Conclusion and Future Work

In this work, we presented a case study of ragweed detection from drones. The
experiments show that the current state of the art in computer vision and model
compression techniques is sufficient to detect ragweed with a high level of accu-
racy when the model runs on a resource constraint embedded system. Based on
the given assumptions (860 EUR/km2, 25h/km2), we can conclude that using
drones to detect ragweed plants (15-180 EUR/km2, 0.15-3.2h/km2) is between
five and fifty times more cost-efficient and eight to a hundred times more time-
efficient depending on the plant size.

Shunt connections and knowledge distillation allowed us to train much smaller
models to a similar or even higher accuracy as the original models with a sig-
nificantly reduced latency. However, the latency improvement due to TensorRT
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was substantially larger, highlighting the importance of hardware-specific opti-
mizations.

The next step is to collect a larger dataset using drones at higher altitudes.
This dataset should then needs careful annotations since the object detector
results show that a high-quality dataset is at least as important as the model
itself. Although the object detector did not work too well in the case of dense
vegetation, it has benefits for sparse vegetation images. Thus, we will fuse both
approaches to reliably detect ragweed plants independent of the growth state
and vegetation density. Further, we plan to extend our approach to detect and
locate other invasive plants.
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