
Dynamic Constraints for Mixed-Criticality Systems
Dávid Juhász

TU Wien
Vienna, Austria

Imsys AB
Stockholm, Sweden

david.juhasz@tuwien.ac.at

Axel Jantsch
TU Wien

Vienna, Austria
axel.jantsch@tuwien.ac.at

ABSTRACT
We define quality of service requirements for mixed-criticality sys-
tems based onmin-plus algebra rather than discrete criticality levels.
The requirements (1) unify a spectrum of weakly-hard real-time
requirements with strongly-hard real-time and soft real-time as
extreme cases and (2) support dynamic tuning of task importance.
The paper elaborates the relation to mixed-criticality scheduling
theory and weakly-hard real-time systems. The supported timing
requirements, computational complexity, and scheduling feasibility
are discussed.

CCS CONCEPTS
• Computer systems organization→ Real-time system spec-
ification; Embedded systems; System on a chip;

KEYWORDS
mixed-criticality systems, quality of service, weakly-hard real-time
systems, task allocation, scheduling, multi-core systems

ACM Reference Format:
Dávid Juhász and Axel Jantsch. 2019. Dynamic Constraints for Mixed-
Criticality Systems. In INTERNATIONAL CONFERENCE ON OMNI-LAYER
INTELLIGENT SYSTEMS (COINS), May 5–7, 2019, Crete, Greece. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3312614.3312625

1 INTRODUCTION
Real-time (RT) scheduling has a long history with well-established
results [18]. In classic hard real-time (hRT) systems, no task is al-
lowed to miss any of its deadlines. Most RT systems could, however,
tolerate some deadlines being missed in a known and predictable
way. The weakly-hard real-time (whRT) concept models RT sys-
tems that tolerate a clearly specified degree of missed deadlines [2].
Opposed to whRT systems — allowing deadline misses —, strongly-
hard real-time (shRT) systems do not allow tasks to miss any dead-
line. Soft real-time (sRT) systems allow deadline misses without
guarantees about them.

The conservative shRT approach for ensuring reliability of criti-
cal RT applications accepts underutilized and over-sized systems for
performance guarantees. However, economic considerations favor
resource sharing to increase hardware utilization and decrease costs.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
COINS, May 5–7, 2019, Crete, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6640-3/19/05. . . $15.00
https://doi.org/10.1145/3312614.3312625

Research on mixed-criticality systems (MCSs) — a term coined by
Vestal [20] in 2007 — has accumulated a large body of results [3]
as a way of providing performance guarantees for safe resource
sharing among tasks of different importance.

Practical applicability of academic results on MCSs is being dis-
cussed and concerns have been raised [1, 6, 7]. WhRT concepts
have been applied to provide degraded quality of service (QoS) for
low-criticality tasks in overloaded MCSs [8]. We propose a new
model of MCSs based on whRT concepts — rather than applying
those concepts as an addition to an existing model.

Main contributions: We discuss a formulation of QoS require-
ments over the number of deadline misses. The proposed formula-
tion has the following novel characteristics:

• requirements are based on the min-plus algebra, which al-
lows continuous control over dynamic parameters;

• a spectrum of whRT requirements is unified with shRT and
sRT as extreme cases.

The following properties are discussed:
• computational complexity is analyzed and a window-based
approximation is suggested to make implementation feasible;

• considerations for scheduling feasibility are outlined.
The paper is concerned with formulating effective requirements

for MCSs and solving the resulting optimization problem is left for
future work.

2 MOTIVATION
Our work is motivated by various aspects: robustness of MCSs (Sec-
tion 2.1), providing whRT guarantees (Section 2.2), and supporting
dynamic QoS requirements (Section 2.3).

2.1 Mixed-Criticality Systems
MCSs are associated with mixed-criticality scheduling theory (MC-
Sched). Note, however, the more general topic of MCSs [1, 3]. While
we consider MCSs in the general sense, our motivation is based on
MCSched and its limitations as follows.

MCSched was established by Vestal’s seminal paper [20]. The
considered task model is based on sporadic task systems as summa-
rized in [3, Section 2]. A task system consists of tasks. Each task is
defined by its period (minimal inter-arrival time), deadline, worst-
case execution time (WCET), and criticality level (CL). Some, in rare
cases indeed all, of the parameters have CL-dependent values (e.g.,
separate WCET estimates for CLs). Tasks generate a potentially
unbounded sequence of jobs to execute.

The MCS — as in MCSched — starts running at its lowest CL
mode and executes jobs for all tasks. At any CL mode, the system
executes jobs for tasks with CL not below the current mode. When

https://doi.org/10.1145/3312614.3312625
https://doi.org/10.1145/3312614.3312625

COINS, May 5–7, 2019, Crete, Greece D. Juhász and A. Jantsch

any executed job violates its CL-dependent WCET in the current
mode, CLmode is raised to the next level; lower-CL jobs get ignored.

While there are different variants of the basic model depending
on the properties of the parameters and the number of allowed CLs,
all variants share common traits: MCSched is focused on a priori
verification and its support for runtime robustness — the second
aspect of safety-critical RT systems — is open to debate [1].

Abandoning tasks with lower CL and never returning to a low
CL state is a major issue raised by systems engineers [1, 6, 7].
Some approaches mitigate the issue by reconfiguring the system to
abandon tasks in a more graceful manner [3, Section 6].

Compliance to safety standards is important for industrial appli-
cations. The delicate connection between CLs and safety assurance
levels (safety integrity level (SIL) in IEC 61508, automotive safety
integrity level (ASIL) in ISO 26262, or development assurance level
(DAL) in DO 178C) is discussed in [6] with arguments against the
practical applicability of MCSched. The common ground of con-
cerns is safety standards requiring separation among different assur-
ance levels, which MCSched does not provide among CLs [3, 6, 7].

We also considered suggestions from [9] about safety assurance
for MCSs, most importantly: need for partitioning integrity — that
is temporal separation in our context — and problem formulation
in terms of task importance — that describes the consequence of
missing the deadline and varies dynamically.

ThisWork:Weuse a sporadic taskmodel without CL-dependent
values (i.e., values that are equal for all CLs): a MCS is defined based
on task importance as individual QoS requirements, rather than
statically-defined discrete CLs. We formulate task allocation with
QoS requirements as constraints and realize partitioning integrity
with respect to a minimal level of required service.

2.2 Weakly-Hard Real-Time Systems
ShRT systems require all deadlines to be met; sRT systems allow
deadlines to be missed. sRT systems optimize some metric based
on deadline misses but do not provide guarantees on bounding
the number and distribution of deadline misses. WhRT systems
bridge the gap between shRT and sRT systems by bounding the
distribution of met and missed deadlines [2].

MCSched provides a priori verification of separate shRT models
for each CL. While each CL is considered as a shRT system, switch-
ing between CLs renders MCSched a sRT system: allowing low-CL
tasks to miss deadlines without bounds. While deadline misses are
present in MCSs inherently, their distribution needs to be bounded
for providing partitioning integrity.

This Work: We define MCSs as whRT systems by specifying
QoS requirements as bounds on deadline misses. Fine-grained set-
ting of task importance is supported by QoS parameters. The pa-
rameters unify a spectrum of whRT requirements including shRT
and sRT as extreme cases.

2.3 Dynamic Quality-of-Service Requirements
Task importance in MCSs varies dynamically [9]. As far as we
know, no MCS model with support for dynamic adjustment of task
importance has been proposed yet.

This Work: We define dynamic QoS parameters to enable run-
time adjustment of task importance. The QoS requirements are

formulated based on the min-plus algebra [13], which allows con-
tinuous control of requirements by changing QoS parameters.

3 PRELIMINARIES
The section summarizes the model and notations for defining qual-
ity of service (QoS) requirements in Section 4: platform (Section 3.1)
and task (Section 3.2) models, properties of jobs and their execu-
tion (Section 3.3) and QoS parameters (Section 3.4) are defined.

3.1 Platform Model
We model the platform as a set of processing elements (PEs), Π,
with the effects of shared memory and the NoC being implicit. This
abstraction limits accuracy without losing generality since QoS
requirements are independent of those details. The same approach
can be taken with full network on chip (NoC) and memory models
to improve QoS guarantees.

We assume a discrete time model with time granularity δ = 1,
which can be considered equivalent to one clock cycle of PEs.

3.2 Task Model
We follow the sporadic task model. A task, τi , is defined by its
minimal inter-arrival time, relative deadline, and PE-dependent
worst-case execution time (WCET) as (T τi ,D

τ
i ,

®Cτi). The WCET
Cτi [q] stands for executing task τi on PE πq .

In the case of functional asymmetric multi-cores, Cτi [q] = ∞
indicates that τi cannot be executed on πq .

Standard timing conditions (Eq. (1)) hold.

∀τi : max
q,Cτ

i [q],∞
Cτi [q] ≤ Dτ

i ≤ T τi (1)

3.3 Jobs and their Execution
A task τi generates a potentially infinite sequence of jobs, ιi, j , with
properties inherited from τi .

A new job is generated at timeAιi, j , which is called the admission
time of ιi, j . The absolute deadline of the job is thenDι

i, j = Aιi, j +D
τ
i .

The skip flag S ιi, j ∈ B (B = { False, True }) indicates if the job
has been skipped, that is never released for execution.

An executed job ιi, j , for which S ιi, j = False, is mapped on a PE
P ιi, j ∈ Π and scheduled to be released for execution at Rιi, j ∈ N

+.
Once a job starts to execute, it runs for completion; preemption is
not supported. Note a natural restriction of task allocation: no PE
may execute more than one job at any time.

The completion time Cι
i, j of ιi, j is when the job signals comple-

tion. The execution time is Eιi, j = C
ι
i, j − Rιi, j . No job is expected to

execute longer than its WCET: Eιi, j ≤ Cτi [q] where πq = P ιi, j .
The earliest possible admission (EPA) of job ιi, j+1 is Âιi, j+1 =

Aιi, j +T
τ
i . Job admission respects EPA times, that is Aιi, j ≥ Âιi, j .

3.4 Parameters for Requirements
Requirements are derived from the following dynamic QoS param-
eters for each task τi :

• Sτi ;M (t) ∈
[
Mτi ,Mτi

]
(0 ≤ Mτi ≤ Mτi ≤ 1) is the allowed

increase rate for non-bursting deadline misses to occur with;

Dynamic Constraints for Mixed-Criticality Systems COINS, May 5–7, 2019, Crete, Greece

• Sτi ;b (t) ∈ { 0, . . . ,Bτi } is allowed burstiness, the limit of
consecutive deadline misses occurring in a burst.

The boundsMτi ,Mτi , and Bτi are static parameters of each task.
The QoS parameters may change their value within their cor-

responding static bounds at any time. The actual dynamics of the
parameters is dependent on application-specific factors beyond the
scope of the model. Hence, the changes in the parameters are best
perceived as stochastic disturbances.

4 QUALITY OF SERVICE REQUIREMENTS
The section specifies the actual requirements: basic definitions (Sec-
tion 4.1), the QoS requirements (Section 4.2), and some necessary
additional requirements (Section 4.3) are described.

4.1 Definitions for Quality of Service
4.1.1 The Number of Deadline Misses. We use the indicator func-
tion χ : B→ { 0, 1 } (Eq. (2)).

χ (expr) =
{

0 if expr = False
1 if expr = True

(2)

The number of jobs generated by task τi with absolute deadline
not later than t is Nτi (Eq. (3)).

Nτi (t) = max{ j ∈ N+ | Dι
i, j ≤ t } (3)

The delayed cumulative deadline miss function for task τi start-
ing at time s isMτi ;s (Eq. (4)): the number of jobs that were gener-
ated by τi and missed their deadlines between times s and s + t (an
arbitrary period of the system’s lifetime), including skipped jobs.

Mτi ;s (t) =
Nτi (s+t)∑
j=Nτi (s)+1

χ (S ιi, j ∨Cι
i, j > Dι

i, j) (4)

4.1.2 Deadline Miss Bounds. While QoS parameters Sτi ;M and
Sτi ;b may change at any time, deadline miss bounds are derived on
a job-by-job basis. The deadline miss bound for task τi is based on
the following parameters:

• allowed increase rate of deadline misses for job ιi, j at Aιi, j is
Qτi ;M (j) (Eq. (5));

Qτi ;M (j) = Sτi ;M (Aιi, j) (5)

• allowed burstiness of deadline misses for τi at time t is
Qτi ;b (t) (Eq. (6)).

Qτi ;b (t) = Sτi ;b (t) (6)

The delayed cumulative deadline miss bound for task τi starting
to count at time s is µτi ;s (Eq. (7)): the number of allowed deadline
misses between times s and s + t for jobs generated by τi ,

µτi ;s (t) =

Nτi (s+t)∑
j=Nτi (s)+1

Qτi ;M (j)
 +Qτi ;b (s) (7)

4.2 Quality-of-Service Requirements
QoS requirements are defined on the number of deadline misses.
For respecting the QoS parameters (Section 3.4) both globally and
locally, deadline miss requirements are defined by the convolution
in min-plus algebra as in network calculus [13].

Min-plus algebra describes linear real-time (RT) systems; detailed
description is available in standard textbooks, for example [13]. The
min-plus convolution (⊗, Eq. (8)) can be used to calculate the output
rate, a ⊗ s , of a service working with rate s and input arriving at
rate a (i.e., rate a is bounded by s as a ⊗ s).

(f ⊗ д)(t) = min
0≤s≤t

{ f (t − s) + д(s) } (8)

We set QoS requirements by bounding deadline misses,Mτi ;t , by
the corresponding deadline miss bound function, µτi ;t , (Section 4.1).
The actual number of deadline misses of task τi is to be constrained
by the bounded flow of deadline misses at any time t (Eq. (9)).

Mτi ;t ≤
(
Mτi ;t ⊗ µτi ;t

)
(9)

In analogy to network calculus, a flow of deadline misses is bounded
by a deadline miss bound function as an arrival curve.

We have the inequalities in Eq. (10) as requirements.

∀τi , t : Mτi ;t −
(
Mτi ;t ⊗ µτi ;t

)
≤ 0 (10)

4.3 Notion of Deadline Misses
As QoS is based on deadline misses, we briefly review different
notions how deadlines may be missed according to [2]:

delayed completion allows each job to run to completion
even though it finishes after the deadline;

abortion terminates any job that missed the deadline;
skip allows the system to not release — skip — admitted jobs,

the whole invocation is not executed;
rejection allows the system to not admit — reject — jobs.

Our model allows jobs to be skipped but not to be aborted — as
preemption is not supported (Section 3.3). Rejection is not applicable
to our model because QoS requirements are defined over deadline
misses of admitted jobs (Section 4.1).

Allowing delayed completion of released (i.e., not-skipped) tasks
let more jobs to be completed at the cost of less room for utilizing
dynamic power management (DPM) — features that are considered
for future work (Section 5.5). Also, the value contributed by delayed
completion is application-dependent. Hence, delayed completion is
not included in our problem formulation.

We require all released jobs to meet their deadlines. Jobs that
would not meet their deadlines are to be recognized before release
and be skipped. This additional requirement is defined in Eq. (11).

∀τi , j : ¬S ιi, j =⇒ Cι
i, j ≤ Dι

i, j (11)

As a job is either skipped or completed by its deadline and Dτ
i ≤

T τi , not more than one job may be active — neither skipped nor
completed — by the EPA of its consecutive job. Since job admission
respects EPA times: at most one job may be active in the system
for any task at any time.

5 PROPERTIES OF THE MODEL
The section discusses supported real-time (RT) requirements (Sec-
tion 5.1), continuous control of dynamic requirements (Section 5.2),
computational complexity (Section 5.3), scheduling feasibility (Sec-
tion 5.4), and future work (Section 5.5).

COINS, May 5–7, 2019, Crete, Greece D. Juhász and A. Jantsch

0 1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

µτ1;0(t)

µτ2;0(t)

µτ3;0(t)

t

nu
m
be
ro

fa
llo

w
ed

de
ad
lin

e
m
is
se
s

Figure 1: Deadline miss bounds for a shRT task (Sτ1;M (t) = 0,
Sτ1;b (0) = 0), a whRT task (Sτ2;M (t) = (t/2) mod 1.5, Sτ2;b (0) =
0), and a sRT task (Sτ3;M (t) = 1, Sτ3;b (0) = 0); jobs admitted at
each time step starting at t = 1

Table 1: RT requirements according to possible values ofQoS
parameters Sτi ;M (t) and Sτi ;b (t) (invariant in t)

Sτi ;M (t) = 0 0 < Sτi ;M (t) < 1 Sτi ;M (t) = 1
Sτi ;b (t) = 0 shRT whRT (1) sRT
Sτi ;b (t) > 0 whRT (2) whRT (3) sRT

5.1 Static Requirements
For catching supported RT requirements, consider static quality of
service (QoS) parameters: Sτi ;M (t) and Sτi ;b (t) are invariant in t .

Examples of Different Real-Time Requirements.
Different values of QoS parameters Sτi ;M (t) and Sτi ;b (t) allow
covering a spectrum of weakly-hard real-time (whRT) requirements
(see Fig. 1):

strongly-hard real-time (shRT) tasks with
MτshRT = MτshRT = 0 and BτshRT = 0;

whRT tasks withMτwhRT
< 1 andMτwhRT > 0;

soft real-time (sRT) tasks with MτsRT = MτsRT = 1 and
BτsRT ≥ 0.

No deadline misses are allowed for shRT tasks and sRT tasks may
miss all their deadlines. An acceptable but bounded rate of deadline
misses can be specified for whRT tasks between the extremes. Note
that we call tasks between the two extremes (i.e., shRT and sRT)
whRT tasks, though all requirements — including the extremes —
are expressed as whRT requirements.

Inventory of the Supported Real-Time Requirements.
The supported RT requirements are summarized in Table 1. Be-
yond the extreme cases of shRT and sRT, three types of whRT
requirements are supported:

whRT (1) covers a spectrum between shRT and sRT allowing
deadlines to be missed regularly: it is

(1
m
)
as “misses any 1

inm deadlines” [2] wherem =
⌊
1/Sτi ;M (t)

⌋
;

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

Mτi (t)

m
is
se
s7

in
a
bu

rs
t

m
is
se
s1

in
2
de
ad
lin

es

m
is
se
s4

in
a
bu

rs
t

m
is
se
s1

in
2
de
ad
lin

es

m
is
se
s1

in
3
de
ad
lin

es

m
is
se
s1

in
2
de
ad
lin

es

m
isses6

in
a
burst

m
isses1

in
2
deadlines

t

nu
m
be
ro

fd
ea
dl
in
e
m
is
se
s

0
0.330.5

3

5

Sτi ;M (t)

Sτi ;b (t)

pa
ra
m
et
er

va
lu
e

Figure 2: Requirement follows changes of QoS parameters;
plot of bounded deadline misses (Mτi (t) Eq. (14), left axis)
and QoS parameters (Sτi ;M (t) and Sτi ;b (t), right axis); periods
when no deadline is missed let allowed burstiness replenish

whRT (2) allows Sτi ;b (t) deadlines to be missed in total (the
allowed burstiness never replenishes): it is

〈
Sτi ;b (t) + 1

〉
as

“misses row Sτi ;b (t)+1 deadlines” [2], also
(Sτi ;b (t)∞

)
stretching

the definition of
(n
m
)
[2];

whRT (3) allows consecutive deadlinemisses limited by bursti-
ness Sτi ;b (t), which depletes with every missed deadline and
replenishes with rate Sτi ;M (t): it is ⟨d + 1 ⟩ as “misses row
d + 1 deadlines” [2] and

(д
d+д

)
as “meets any д in d + д dead-

lines” [2] where d (Eq. (12)) is the number of deadlines that
may be missed consecutively until allowed burstiness de-
pletes completely and д (Eq. (13)) is the number of deadlines
that must be met consecutively for a depleted burstiness to
allow one deadline to be missed.

d =

⌊
Sτi ;b (t)

1 − Sτi ;M (t)

⌋
(12)

д =

⌊
1

Sτi ;M (t)

⌋
− 1 (13)

5.2 Dynamic Requirements
For discussing dynamic QoS requirements, consider dynamic QoS
parameters: Sτi ;M (t) and Sτi ;b (t) vary in t .

Tracking Dynamically Changing QoS Requirements.
The actual number of deadline misses meeting requirements in
Eq. (10) for task τi is Mτi (Eq. (14)). The formula follows from
properties of min-plus convolution (Eq. (8), [13]). Requirements in
Eq. (10) makes Mτi follow changing QoS parameters (see Fig. 2) by
enforcing deadline miss bounds (Eq. (7)) in all time windows.

Mτi (t) = min
0≤s≤t

((
Mτi ;s ⊗ µτi ;s

)
(t − s)

)
(14)

Dynamic Constraints for Mixed-Criticality Systems COINS, May 5–7, 2019, Crete, Greece

Task Importance as QoS Parameters.
Task importance as in [9] is an abstract metric of requirement spec-
ification; the metric is to be mapped to absolute whRT temporal
requirements — QoS parameters — for implementation. Our model
supports a spectrum of whRT requirements and allows dynamic
changes — in line with [9].

5.3 Computational Complexity
Computing a convolution of t (e.g.,

(
Mτi ;s ⊗ µτi ;s

)
(t)) has a time

complexity of O(t). Computing QoS bounds (Eq. (9)) for one task up
to t steps has a complexity of O(∑t

w=0w). Further, computing QoS
bounds up to t steps for a task system of N tasks has a complexity
of O(N ∑t

w=0w).
The sum

∑∞
w=0w diverges for the infinite requirement in Eq. (10).

We recognize that performing infinite computation would render
any system infeasible. Note, however, that a corresponding par-
tial sum ofW steps has a closed form (Eq. (15)). A window-based
approximation of QoS requirements has an overall complexity of
O(NW 2) with a window of lengthW .

W∑
w=0

w =
1
2
W (W + 1) (15)

While approximating the QoS requirements is imperative for
any implementation, we omit detailed discussion of window-based
approximation due to space limitation. Conceptually speaking: full
accuracy of approximation is being approached as window length
— a design parameter — approaches infinity. That is because of a
sliding window enforces local requirements; the longer the window,
the longer a local requirement is respected.

5.4 Scheduling Feasibility
A system — platform and task set — is feasible concerning some
requirements if a feasible task allocation — that satisfies the require-
ments — exists. A system is schedulable with an algorithm if the
algorithm generates a feasible task allocation. Schedulability is a
sufficient — but not necessary — condition of feasibility.

Feasibility.
Considering the strictest (“worst-case”) requirements is sufficient
to check feasibility of whRT systems with dynamic requirements.

Each task τi is considered with QoS parameters Sτi ;M (t) = Mτi
and Sτi ;b (t) = 0 — resulting in strictest requirements:

• shRT tasks withMτi = 0 must meet all their deadlines;

• whRT tasks with 0 < Mτi < 1 may miss 1 in
⌊
1/Mτi

⌋
deadlines (Section 5.1);

• sRT tasks withMτi = 1 are ignored.

These requirements are
(1⌊
1/Mτi

⌋) (whRT) and (
0
1

)
(shRT) of [2].

They correspond to particular skip factors [12] and (m,k)-firm dead-
lines [10] according to [2, Section 3.3].

A necessary condition for feasibility of occasionally skippable
task sets on uniprocessors has been given in [12, Eq. (2)]; while
determining feasibility has been proven NP-hard [12, Theorem 3.2].

Schedulability checks for whRT task sets against a few sched-
uling algorithms have been discussed [2, 11, 12]. The published
analyses consider scheduling algorithms that target uniprocessors
with static requirements — properties that do not match our model.

Uniprocessor checks can be adapted for telling multiprocessor
feasibility (sufficiently but not necessarily). A uniprocessor check is
applied for each processing element (PE) for every possiblemapping.
The original complexity is increased by the exponential factor P (I+1)
— depending on the numbers of PEs (P) and jobs (I).

Schedulability.
The published scheduling algorithms for whRT systems ([2, 11,
12]) lack support for multiprocessors and dynamic requirements. No
algorithm that is applicable for the task allocation problem at hand
is known to us — also see Section 6. Designing and implementing a
suitable task allocation algorithm is left for future work.

5.5 Future Work
Our target is an energy-aware dynamic resource management tech-
nique for multiprocessor system on chip (MPSoC)-based mixed-
criticality systems (MCSs). The discussed QoS requirements are
merely a first step of a long journey with the following milestones:

• complete analysis of the proposed QoS requirements on
approximation (Section 5.3) and schedulability (Section 5.4);

• a combined problem of task allocation and power manage-
ment with
– QoS requirements as constraints for partitioning integrity,
– an energy-aware objective that simultaneously optimizes
throughput and energy consumption;

• an efficient resourcemanager for the problemwith awindow-
based approximation of QoS requirements and utilizing dy-
namic power management (DPM);

• supporting communicating task pairs and communication
over a network on chip.

Note that combining whRT requirements and dynamic power
policies enables tuning between the contradictory goals of optimiz-
ing throughput and energy consumption. Dynamic parameters may
be controlled by the appliances themselves based on the situation
and system state — see self-adaptive systems [17].

6 RELATEDWORK
Mixed-Criticality Scheduling Theory.

Our work is positioned with respect to mixed-criticality scheduling
theory (MCSched) in Section 2. Works that provide runtime robust-
ness for MCSched — see examples below — are limited by the basic
model (Section 2.1).

Robustness of MCSs is discussed in the context of MCSched [4].
The severity of timing faults on the group of high-criticality tasks is
analyzed. Tolerance against high-criticality task overruns and occa-
sional skipping of robust tasks are utilized for graceful degradation.

Control theory has been applied [16] to implement runtime re-
silience for MCSched. The dual-criticality system is resilient against
overruns of high-criticality tasks. Low-criticality tasks are not aban-
doned but may miss deadlines. Resource bounds can be calculated:
QoS guarantees are synthetic properties of the integrated system.

COINS, May 5–7, 2019, Crete, Greece D. Juhász and A. Jantsch

WhRT requirements have been applied to MCSched [8] to re-
duce the load on the system. Some low-criticality tasks are skipped
according to (m,k)-firm deadlines [10] when the system is in high-
criticality mode — a degraded service instead of abandoning tasks.
However, QoS (full or degraded) is unpredictable as being subject
to occasional criticality mode switches.

Quality of Service.
The term QoS is used in many different areas. We consider QoS
in relation to RT systems. The selected papers are also related to
energy-awareness — a relevant aspect for future work.

Most of the papers consider QoS in combination with sRT sys-
tems, for example [5, 14]. As sRT systems do not constrain deadline
misses, QoS is used as a measure of “profit” that is realized by meet-
ing deadlines. The overall “profit” is to be optimized. QoS for sRT
systems does not define any absolute guarantees and hence no parti-
tioning integrity is supported. Dynamic tuning of QoS requirements
is typically not supported either.

On the other end of the RT spectrum, shRT systems do not allow
flexibility in meeting deadlines. QoS is, nevertheless, used in some
cases. For example, QoS classes are used to define the deadline of
jobs generated by aperiodic tasks with varying workload [19].

A whRT system with QoS guarantee is described in [15]. QoS is
defined as requirement of (m,k)-firm deadlines [10]. The proposed
model is similar to ours: allowing fine-grained setting of whRT re-
quirements and providing partitioning integrity accordingly. How-
ever, dynamic tuning of QoS requirements is not supported.

Weakly-Hard Real-Time Systems.
The whRT scheme of [2] generalizes other static whRT require-
ments [10, 12, 21]. The connection of the proposed QoS require-
ments to [2] is discussed in Sections 5.1 and 5.4.

7 CONCLUSION
We define QoS requirements for MCSs as dynamic whRT require-
ments based on the min-plus algebra. The QoS parameters unify
a spectrum of whRT requirements with shRT and sRT as extreme
cases. The fine-grained dynamic QoS requirements enable mixed-
criticality (MC) problem formulation in terms of task importance.
Continuous control over changing requirements is also supported.

The paper motivates and positions the proposed QoS formulation
with respect to MCSched and whRT systems. Different properties
of the requirements are discussed as well.

We recognize that an approximation of the described ideal QoS
requirements is a necessity for implementation. Detailed discussion
of a window-based approximation and a task allocation algorithm
with schedulability analysis are left for future work.

Our final target is an energy-aware dynamic resource manage-
ment technique for MPSoC-based MCSs. We consider the presented
QoS requirements a basis for a relevant problem definition. We
believe that providing proper partitioning integrity and support
for dynamic tuning of requirements for both task importance and
power policies — features we design our solution around — are
going to be imperative for future smart embedded systems.

ACKNOWLEDGMENTS
This research was partially funded by the European Union’s Hori-
zon 2020 Framework Programme for Research and Innovation under
grant agreement no 674875 (oCPS Marie Curie Network).

REFERENCES
[1] Sanjoy Baruah. 2018. Mixed-Criticality Scheduling Theory: Scope, Promise, and

Limitations. IEEE Des. Test 35, 2 (2018), 31–37. https://doi.org/10.1109/MDAT.
2017.2766571

[2] Guillem Bernat, Alan Burns, and Albert Liamosi. 2001. Weakly Hard Real-Time
Systems. IEEE Trans. Comput. 50, 4 (2001), 308–321. https://doi.org/10.1109/12.
919277

[3] Alan Burns and Robert I. Davis. 2018. Mixed Criticality Systems — A Review.
(2018), 72 pages. https://www-users.cs.york.ac.uk/burns/review.pdf

[4] Alan Burns, Robert I. Davis, Sanjoy Baruah, and Iain Bate. 2018. Robust Mixed-
Criticality Systems. IEEE Trans. Comput. 67, 10 (2018), 1478–1491. https://doi.
org/10.1109/TC.2018.2831227

[5] Eduardo Camponogara, George Lima, Daniel Mossé, and Ríad Nassiffe. 2013.
Optimizing QoS in Adaptive Real-Time Systems with Energy Constraint Varying
CPU Frequency. In 2013 III Brazilian Symp. Comput. Syst. Eng. 101–106. https:
//doi.org/10.1109/SBESC.2013.9

[6] Rolf Ernst and Marco Di Natale. 2016. Mixed Criticality Systems—A History
of Misconceptions? IEEE Des. Test 33, 5 (2016), 65–74. https://doi.org/10.1109/
MDAT.2016.2594790

[7] Alexandre Esper, Geoffrey Nelissen, Vincent Nélis, and Eduardo Tovar. 2015.
How realistic is the mixed-criticality real-time system model?. In Proc. 23rd
Int. Conf. Real Time Networks Syst. - RTNS ’15. ACM Press, 139–148. https:
//doi.org/10.1145/2834848.2834869

[8] Oliver Gettings, Sophie Quinton, and Robert I Davis. 2015. Mixed criticality
systems with weakly-hard constraints. In Proc. 23rd Int. Conf. Real Time Networks
Syst. - RTNS ’15. ACM Press, 237–246. https://doi.org/10.1145/2834848.2834850

[9] Patrick Graydon and Iain Bate. 2013. Safety Assurance Driven Problem Formula-
tion for Mixed-Criticality Scheduling. In Proc. Work. Mix. Syst. 19–24.

[10] Moncef Hamdaoui and Parameswaran Ramanathan. 1995. A dynamic priority
assignment technique for streams with (m, k)-firm deadlines. IEEE Trans. Comput.
44, 12 (1995), 1443–1451. https://doi.org/10.1109/12.477249

[11] Jian Li, YeQiong Song, and Françoise Simonot-Lion. 2004. Schedulability analysis
for systems under (m,k)-firm constraints. In IEEE Int. Work. Fact. Commun. Syst.
2004. Proceedings. IEEE, 23–30. https://doi.org/10.1109/WFCS.2004.1377670

[12] G. Koren and D. Shasha. 1995. Skip-Over: algorithms and complexity for over-
loaded systems that allow skips. Proc. 16th IEEE Real-Time Syst. Symp. (1995),
110–117. https://doi.org/10.1109/REAL.1995.495201

[13] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network Calculus. Lecture Notes
in Computer Science, Vol. 2050. Springer Berlin Heidelberg. xix – 274 pages.
https://doi.org/10.1007/3-540-45318-0

[14] Jinkyu Lee, Insik Shin, and Arvind Easwaran. 2010. Online robust optimization
framework for QoS guarantees in distributed soft real-time systems. In Proc. tenth
ACM Int. Conf. Embed. Softw. - EMSOFT ’10. ACM, 89–98. https://doi.org/10.1145/
1879021.1879034

[15] Linwei Niu. 2010. Energy Efficient Scheduling for Real-Time Embedded Systems
with QoS Guarantee. In 2010 IEEE 16th Int. Conf. Embed. Real-Time Comput. Syst.
Appl. 163–172. https://doi.org/10.1109/RTCSA.2010.41

[16] Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns.
2018. AdaptMC: A Control-Theoretic Approach for Achieving Resilience in
Mixed-Criticality Systems. In 30th Euromicro Conf. Real-Time Syst. (ECRTS 2018),
Vol. 106. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 14:1–14:22. https:
//doi.org/10.4230/LIPIcs.ECRTS.2018.14

[17] Jurgo S. Preden, Kalle Tammemäe, Axel Jantsch, Mairo Leier, Andri Riid, and
Emine Calis. 2015. The Benefits of Self-Awareness and Attention in Fog and
Mist Computing. Computer (Long. Beach. Calif). 48, 7 (2015), 37–45. https:
//doi.org/10.1109/MC.2015.207

[18] Lui Sha, Tarek Abdelzaher, Karl-Erik Årzén, Anton Cervin, Theodore Baker, Alan
Burns, Giorgio Buttazzo, Marco Caccamo, John Lehoczky, and Aloysius K Mok.
2004. Real Time Scheduling Theory: A Historical Perspective. Real-Time Syst. 28,
2-3 (2004), 101–155. https://doi.org/10.1023/B:TIME.0000045315.61234.1e

[19] Vivek Sharma, Arun Thomas, Tarek Abdelzaher, Kevin Skadron, and Zhijian Lu.
2003. Power-aware QoS management in Web servers. In RTSS 2003. 24th IEEE
Real-Time Syst. Symp. 2003. IEEE Comput. Soc, 63–72. https://doi.org/10.1109/
REAL.2003.1253254

[20] Steve Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance. In 28th IEEE Int. Real-Time Syst.
Symp. (RTSS 2007). IEEE, 239–243. https://doi.org/10.1109/RTSS.2007.47

[21] Horst F. Wedde and Jon A. Lind. 1997. Building Large, Complex, Distributed
Safety-Critical Operating Systems. Real-Time Syst. 13, 3 (1997), 277—-302. https:
//doi.org/10.1023/A:1007915628098

https://doi.org/10.1109/MDAT.2017.2766571
https://doi.org/10.1109/MDAT.2017.2766571
https://doi.org/10.1109/12.919277
https://doi.org/10.1109/12.919277
https://www-users.cs.york.ac.uk/burns/review.pdf
https://doi.org/10.1109/TC.2018.2831227
https://doi.org/10.1109/TC.2018.2831227
https://doi.org/10.1109/SBESC.2013.9
https://doi.org/10.1109/SBESC.2013.9
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.1109/MDAT.2016.2594790
https://doi.org/10.1145/2834848.2834869
https://doi.org/10.1145/2834848.2834869
https://doi.org/10.1145/2834848.2834850
https://doi.org/10.1109/12.477249
https://doi.org/10.1109/WFCS.2004.1377670
https://doi.org/10.1109/REAL.1995.495201
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1145/1879021.1879034
https://doi.org/10.1145/1879021.1879034
https://doi.org/10.1109/RTCSA.2010.41
https://doi.org/10.4230/LIPIcs.ECRTS.2018.14
https://doi.org/10.4230/LIPIcs.ECRTS.2018.14
https://doi.org/10.1109/MC.2015.207
https://doi.org/10.1109/MC.2015.207
https://doi.org/10.1023/B:TIME.0000045315.61234.1e
https://doi.org/10.1109/REAL.2003.1253254
https://doi.org/10.1109/REAL.2003.1253254
https://doi.org/10.1109/RTSS.2007.47
https://doi.org/10.1023/A:1007915628098
https://doi.org/10.1023/A:1007915628098

	Abstract
	1 Introduction
	2 Motivation
	2.1 Mixed-Criticality Systems
	2.2 Weakly-Hard Real-Time Systems
	2.3 Dynamic Quality-of-Service Requirements

	3 Preliminaries
	3.1 Platform Model
	3.2 Task Model
	3.3 Jobs and their Execution
	3.4 Parameters for Requirements

	4 Quality of Service Requirements
	4.1 Definitions for Quality of Service
	4.2 Quality-of-Service Requirements
	4.3 Notion of Deadline Misses

	5 Properties of the Model
	5.1 Static Requirements
	5.2 Dynamic Requirements
	5.3 Computational Complexity
	5.4 Scheduling Feasibility
	5.5 Future Work

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

