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reconfigurations. With our event models constructed as cumulative functions on data streams, we exploit a
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due to reconfigurations with experiments.
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1. INTRODUCTION

Partially runtime reconfigurable (RTR) FPGAs, such as Xilinx Virtex-4 [Xilinx Ltd],
are becoming very popular infrastructures in today’s embedded systems Chaudhuri
et al. [2008]. They allow part of the hardware tasks to be reprogramed dynamically
on the fly while the remaining part continues its operation without being affected.
For a number of signal processing and multimedia streaming applications, this recon-
figurable property enhances their capability to vary functionalities at runtime in a
dynamic environment with varying demands, which significantly reduces the design
cost while leveraging the ubiquity of embedded systems. Hence, RTR FPGAs can be
used to built cost-effective hardware platform for streaming applications [Kirischian
et al. 2008], and deliver high flexibility, besides breakthrough performance.

However, reconfigurability adds another dimension of complexity to the de-
sign process, while the system performance needs to be satisfied even during
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Fig. 1. An example adaptive streaming application model.

reconfigurations. The scheduling of regular SDF applications have been known to be
NP-complete [Govindarajan et al. 2002; Stuijk et al. 2006]. Compared with traditional
nonadaptive systems, the reconfigurations in adaptive systems add new challenges in
performance analysis and lead to even more complexity.

An adaptive streaming application in the synchronous data flow (SDF) model [Lee
and Messerschmitt 1987] is illustrated in Figure 1, which we use as a tutorial example
in this article. Nodes denote the computation processes, which are connected with each
other via communication channels denoted as edges. For instance, the communication
channel chi, j connects process pi with pj. FIFOs associated with each communication
channel denote the storage buffers, which decouple the input and output data streams
for each channel. For instance, FIFOi, j decouples the input data stream s1 from the
output data stream s2 of chi, j. Processes read tokens from the input-side FIFOs, operate
(compute) on the data, and emit the resulting data tokens to the output-side FIFOs.
In SDF models, the amount of input (output) tokens is fixed in each firing of a process,
and is called input (output) rate. For instance, the output rate ni, j from process pi to
channel chi, j and input rate mj,k of process pk from channel chj,k are both static. While
a process is computing, the data tokens remain on the input-side FIFO(s) until the
computation is completed [Stuijk et al. 2006]. At the end of each execution, the output
results are available in the output-side FIFO(s).

Besides the regular source and sink processes pi and pk, there is an adaptive process
pj, which has N different working modes from M1 to MN, as illustrated in the dashed
box. The mode change is initiated by a (MCR). stream, that is, sM, j for pj. Each mode
transition circumstance introduces a temporal overhead, during which pj does not
work in either the old or new mode and is thus stalled.

While the stream source pi provides an input throughput ρin (to the input of commu-
nication channel chi, j cutting by the dashed line), an average output throughput ρout
needs to be guaranteed by the application even during reconfigurations. Caused by the
reconfiguration stalls of adaptive process pj, it is critical that the backlog tokens in the
FIFO(s) between pj and the consumer process(es), the so called playout buffer(s)1, are
sufficient to sustain the application throughput. Therefore, to exploit the full poten-
tial of RTR adaptive systems, special resource requirement and scheduling techniques
are needed when taking the behaviors and properties of reconfigurations into consid-
eration. In this article, we address performance analysis, without losing throughput
guarantees and design efficiency, for real-time adaptive streaming applications. To the
extent of our knowledge, it is still an open topic.

1In the example application in Figure 1, the playout buffer is FIFO j,k.
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The rest of this article is structured as follows. Section 2 discusses the related
work. Section 3 introduces the reconfiguration basics and the RTR FPGA architecture
model used throughout this article. Section 4 and Section 5 discuss the simulation
based approach on our synchronous model and the reconfiguration analysis framework
for adaptive systems respectively. Then, we present our constraint based analysis
approach in Section 6. Section 7 shows the experimental results. Finally, Section 8
concludes this article.

2. RELATED WORK

Models of computations (MoCs) have been widely used as the formal base in streaming
applications design [Geilen and Basten 2004; Lee and Sangiovanni-Vincentelli 1998].
For a class of specifications with fixed consumption and production tokens in compu-
tation, Lee and Messerschmitt [1987] have introduced synchronous data flow (SDF)
models, which facilitate the functionality validation, scheduling, and buffer analysis
at compile time. To provide timing guarantees, Govindarajan et al. [2002] and Stuijk
et al. [2006] exploit a timed-SDF model2 to address the scheduling of SDF applica-
tions for buffer requirement minimization with performance guarantees (NP-complete
problem). Preserving the static producing and consuming token properties, the SDF
models can be transformed into synchronous models [Lublinerman and Tripakis 2008;
Zhu et al. 2008a], in which timing-related properties (e.g., throughput and energy) can
be captured. The synchronous MoC has been very successful in the context of indus-
trial safety-critical and reactive real-time systems [Benveniste et al. 2003]. We adopt
the synchronous model in a recent work [Sander and Jantsch 2008] for the modelling
of adaptive systems with prespecified reconfiguration scenarios. However, buffer di-
mensioning and design cost efficiency of real-time embedded systems with runtime
reconfigurability have not yet been addressed by all the previous work above.

Formal analysis at design time has been widely used in performance analysis of
heterogeneous embedded systems, such as timing properties validation, scheduling
policies optimization, and buffer dimensioning. It has been a promising option to over-
come the limitations of simulation based methods in incomplete corner case coverage,
and can thus preserve conservative system properties. In SymTA/S [Richter et al.
2002], a compositional way for scheduling analysis has been presented based on stan-
dard periodic/sporadic event models. Network calculus [Boudec and Thiran 2001] and
real-time calculus (RTC) [Chakraborty et al. 2003] are both a collection of methods
in deterministic queuing theories. Both methods formalize the incoming workloads
and processing capabilities as cumulative functions over time, and suit performance
analysis in network domain and real-time embedded system domain respectively. In
the subsequent extensions of RTC, Chakraborty et al. [2005] and Phan et al. [2008]
present a mode based RTC to handle the execution dependence between processing
resources and buffers caused by their state information (i.e., the fill-levels of buffers
and their effect on processing resources). However, none of them aims at buffer dimen-
sioning and design cost (area) analysis for adaptive systems as we do.

Schedulability analysis and reconfiguration methods for multimode (adaptive) real-
time systems has been studied in [Real and Crespo 2004; Shin et al. 2000], where each
mode consists of a different set of tasks. They develop mode change protocols in mode
transition stages, and exploit analysis techniques to ensure that no deadlines are vi-
olated during the transition periods. In the cyclo-SDF MoC [Bilsen et al. 1996], the
number of tokens produced and consumed by a single task changes periodically. Since
this cyclically changing behavior is known at compile time, static schedules can be

2To analyze timing related properties, the timed-SDF model is a timed extension to the regular untimed
SDF model in Lee and Messerschmitt [1987].
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constructed when the necessary and sufficient condition for scheduling holds [Bilsen
et al. 1996]. Accordingly, the buffer requirement can be analyzed for specified through-
put requirement [Moreira et al. 2009], similar as in SDF models [Stuijk et al. 2006].
Furthermore, Wiggers et al. [2008] propose an algorithm to compute sufficient buffer
capacities for task graphs with data-dependent execution conditions (consumption to-
ken rate), but they do not consider the runtime overhead between the transition of
different execution conditions. On the other hand, we address more practical adap-
tive systems on RTR FPGAs with reconfiguration overhead, according to the runtime
(unpredictable at compile-time) configuration request.

Our constraint formulation is close in spirit to the work on nonadaptive SDF appli-
cations in Govindarajan et al. [2002], in which the authors establish their linear con-
straints based on data dependency and process start execution time. However, they
relax the integer constraints on buffer sizes (the integer formulation is NP-complete)
in implementation to utilize the efficiency of linear programming. It is argued to di-
mension the conservative minimal buffer requirement. This article is based on our
previous work [Zhu et al. 2008b]. While the scheduling problem of adaptive streaming
applications is formulated in integer linear programming (ILP) techniques, the simu-
lation based on the synchronous model of computation ensures application throughput
guarantees [Zhu et al. 2008b]. In this article, we propose a refined integral approach
based on iterative timing phases for reconfiguration analysis, instead of the hybrid
approach of simulation and analysis in Zhu et al. [2008b]. Inspired by the existing
successful optimization techniques in constraint programming domain to solve NP-
complete problems, we exploit a public domain constraint solver: Gecode [Gecode 2009]
for solutions finding.3

3. RECONFIGURATION PRELIMINARIES

In this section, without losing generality, we use the adaptive process pj in Figure 1 to
illustrate the reconfiguration preliminaries used in this article.

3.1 Definitions and Assumptions

First, we introduce the reconfiguration definitions and the main assumptions used in
our work.

For the adaptive process pj, a mode change is triggered by the (MCR), this is, the
stream sM, j in Figure 1, which might either come from an external controller or be
retrieved from the input data streams. During the mode transition stage, the old
configuration is deleted and released for the loading of new ones. The reconfigura-
tion transition from an old mode M1 to a new mode M2 takes nonzero time tM1,M2

R, j .
tM1,M2
R, j depends on the circuit size of different reconfiguration modes and is usually

nonignorable.
For convenience, to avoid the use of tMx,My

R, j , we will simply write tR, j to implicitly

mean tMx,My

R, j when the mode switching is known from context. Similarly, tC, j is used to

implicitly mean the computation time tMx
C, j or tMy

C, j of process pj in the respective working
modes.

An MCR may occur during the execution of the system in a particular mode, but
never during the transition stages. In the worst case, two succeeding configurations

3While our previous work [Zhu et al. 2008b] utilizes a Python script to glue the ILP analysis in
lp solve [lp solve 2009] and the simulation in synchronous model of computation, the framework in this
article is implemented using a single Gecode [Gecode 2009] solver.
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have the minimal interval tinterR,i to avoid violating the application throughput require-
ment caused by too-close consecutive reconfiguration stalls.

The input data stream arrives at a peak or average4 throughput ρin. Meanwhile,
a required average output throughput ρout is applied to the sink process pk, to denote
the stable application throughput requirement during the lifetime of adaptive systems
even in reconfiguration transition stage.

3.2 Consistency

In this article, we only consider SDF applications, which can run infinitely with
bounded buffer and are said to be consistent [Lee and Messerschmitt 1987]. Given
the communication channel chi, j with the input data token ni, j (from pi) and output
data token mi, j (to pj), for consistent SDF models, process pi and pj can run in a repet-
itive pattern with nontrivial (nonzero) firing rates ri and rj. While ri and rj are called
repetition firing rate of process pi and pj, they are the minimum integer solutions of a
set of balance equations for all the communication channels as follows.

ri · ni, j = rj · mi, j. (1)

The consistency of SDF models is known to be a necessary condition to allow them to
be executed within bounded memory without deadlock [Ghamarian et al. 2006]. To ex-
ecute adaptive SDF streaming applications within bounded memory without deadlock,
the model consistency needs to be preserved. Besides the balance equations as defined
in Equation (1) for communication channels between nonadaptive processes, further-
more, for each communication channel chi, j from nonadaptive process pi to adaptive
process pj, the following equation holds.

ri · ni, j =
N∑

x=1

rMx
j · mMx

i, j , (2)

in which rMx
j and nMx

i, j are the firing rate and consumption data tokens for process pj in
each working mode Mx. While reconfiguration protocols determine the correctness of
Equation (2) for general adaptive SDF applications, to our best knowledge, such proto-
cols for SDF applications (similar as in [Real and Crespo 2004] for task graphs) are still
lacking. Since to develop such protocols is out of the scope of this article, we assume
all configurations of the same adaptive process have the same input/output token rate
which meets Equation (1); that is, the reconfiguration scenarios addressed in our work
always comply with the application consistency requirement, and we focus on the per-
formance analysis of such kind of adaptive systems. However, our approach should be
able to handle more general SDF applications, once the reconfiguration protocols are
available and can be captured as extra constraints in our analysis framework.

3.3 Runtime Reconfigurable FPGAs

Our architecture template is a partially reconfigurable FPGA, as illustrated in
Figure 2. For discussion, we divide the configuration-related area (excluding the non-
reconfigurable area) into two parts.

(1) The configuration memory is used to store the bit stream of all configurations for
different working modes in a compressed (with a ratio kC) format. It can either be
a local memory, or an external memory (Flash, DDRAM, SRAM, etc.).

(2) The reconfigurable area is the space for configurations that are only needed for a
limited amount of time at runtime. It can be used to store several configurations

4Both situations will be covered in our analysis approach; see Section 6.4.
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Fig. 2. Overview of a RTR FPGA using just-in-time (JIT) reconfiguration with a single configuration slot.

at the same time. However, here we focus on a “just-in-time” approach (JIT), in
which a single5 configuration slot is shared by different configurations at runtime.
Every time a new system function is needed, the configuration controller enables
the reconfiguration, and the bit stream of the new hardware implementation is
loaded from the configuration memory into this reconfiguration slot.

Since the prespecified application throughput needs to be sustained during the
whole time period of reconfigurations, the consequence may be that there is a need for
extra buffer space, which includes the output buffer to sustain the output throughput
during reconfiguration transitions and possibly the buffer to store input data tokens.
The only unit we use for area is logic elements (LEs). Area requirements in form of
memory elements are converted into LEs. Given the hardware implementations for
each mode of the process, the cost of configuration controller ACC, configuration slot
AC, and configuration memory

∑i=n
i=1 A M,i are static (fixed). For the JIT configuration

on RTR FPGA in Figure 2, the total design cost in terms of area is

AJIT = ACC +
i=n∑
i=1

A M,i + kC · max(A M,1, . . . , A M,n)︸ ︷︷ ︸
AC

+ ABuffer, (3)

in which ABuffer is the area cost of buffers, that is, FIFOi, j and FIFO j,k in Figure 1.
To design JIT reconfigurable systems efficiently, it is critical to dimension the min-

imal conservative buffer size and the corresponding cost ABuffer, and to explore the
implementation trade-offs of different design options.

4. MODEL OF COMPUTATION

We adopt the synchronous model [Zhu et al. 2008a] to capture the timing analysis of
streaming applications, which preserves the static execution input/output data tokens
of SDF models. Based on the simulation mechanisms of the synchronous model, the
periodic phases in deterministic scheduling are revealed and utilized to provide appli-
cation throughput guarantees.

4.1 Synchronous MoC

In our synchronous model, time slots are numbered with n ∈ N0, and the data stream s
is a time indexed set of events, s = {e0, e1, · · · , en, · · · }. Each event en = (n, vn) represents

5For some applications with predictable MCR, it may be possible to use multiple configuration slots and
preload the useful configurations to overcome the JIT reconfiguration stall. We call such a mechanism
prefetch adaptation, which remains to be addressed in our future work (see Section 8).
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Fig. 3. A self-timed schedule (right) of the example application (Figure 1) with specified specification para-
meters (left).

the number vn ∈ N0 of data tokens present during the time slot n. Especially, we
restrict a fixed constant time distance between the events of data streams for timing
properties analysis and simulation.6

To quantify the process computation and FIFO storage capabilities of the applica-
tion model, a process computation latency list T contains the worst case execution
time (WCET)7 tC,x in time slots to execute each process px once. A time slot equals to
an abstract clock cycle. A FIFO size list � contains the storage capacity γy,z in data
tokens for each FIFO FIFOy,z . For instance, the example application in Figure 1 has
T = [tC,i, tC, j, tC,k] and � = [γi, j, γ j,k].

A process is enabled and ready for execution when both the input-side FIFO(s) has
sufficient data tokens and the output-side FIFO(s) has enough vacant space. A process
executes only when it is enabled and assigned the priority by scheduling policies. While
a process is computing, the data tokens remain on the input-side FIFO(s) until the
computation is completed [Stuijk et al. 2006]. At the end of each execution, the output
results are available in the output-side FIFO(s).

4.2 Simulation Based on Synchronous MoC

Here, the example application is instantiated with computation latency list T =
[2, 2, 2], storage size list � = [6, 2], and process input/output token numbers ni, j = 2,
mi, j = 3, nj,k = 1 and mj,k = 2, as illustrated on the left of Figure 3. Thus, the application
process firing times vector is < ri, rj, rk >=< 3, 2, 1 >.

In the simulation based on the synchronous MoC, we use self-timed scheduling
[Sriram and Bhattacharyya 2000], which means a process executes as soon as it is
enabled; otherwise, it stalls. The corresponding self-timed schedule is illustrated on
the right side, in which the process and FIFO status are listed in separated rows. The
time evolution is depicted in corresponding columns and advances 1 per column. At
each time tag, a process in executing (shadowed) state has a number to denote the
remaining execution time slots, a stalling (nonshadowed) process status is denoted as
0, and a FIFO status is denoted as the occupied storage space (existing tokens plus
scheduling reservation) in number of tokens. At each time tag x, the process and FIFO
status list are denoted as T ′

x and �′
x respectively.

At time tag 0, the process status list is T ′
0 = [2, 0, 0], in which pi is executing with

2 time slots left and pj and pk are stalled; in the meantime the FIFO status list is
�′

0 = [2, 0], with only 2 tokens space reserved at FIFOi, j. At time tag 2, pi finishes

6In general synchronous languages, there is no time metrics associated with the interval between ticks [Lee
and Zheng 2007].
7The WCET of a process is the maximum possible running time on a certain hardware platform. It is usually
derived by worst case analysis of a process program flow [Chen et al. 2001].
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Fig. 4. Timing phases of reconfiguration analysis. In this graph, only the particular mode transition from
M1 to M2 is shown.

the previous computation, emits 2 tokens into FIFOi, j, and reserves another 2 tokens
space from FIFOi, j for a new execution; thus, T ′

2 = [2, 0, 0] and �′
2 = [4, 0]. At time tag

4 (T ′
4 = [2, 2, 0] and �′

4 = [6, 1]), besides the similar status changes in pi and FIFOi, j,
p2 is enabled and starts to compute.

As the schedule advances to time tag 10, the application encounters the same
process and FIFO status list as at time tag 4 (i.e., T ′

10 = T ′
4 = [2, 2, 0] and �′

10 = �′
4 =

[6, 1]), and enters a periodic phase. The periodic phase extends from time tag 4 to 9,
with length Lperiod = 6, in which the process pi, pj, and pk are guaranteed to run 3,
2, and 1 times respectively. Consequently, the schedule guarantees an average output
throughput ρout = 1·mj,k

Lperiod
= 1

3 to process pk with buffer storage requirement � = [6, 3],
which are the maximum buffer usages at each FIFO.

4.3 Discussions

Using deterministic scheduling policies, such as self-timed scheduling, the above sim-
ulation based way can construct schedules for SDF applications at design time with
periodic phases and guaranteed throughput (see the schedule in Figure 3 and the proof
of Proposition 1). Later, similar techniques based on periodic phases will be exploited
in our proposed analysis method as encoded constraints (see Section 6.4).

However, for adaptive systems with reconfiguration requests known at runtime,
the optimal scheduling policies are usually not specified in advance. Thus, simulation
based methods are lacking systematic ways and exact scheduling policies to dimension
the minimal buffer requirement of adaptive systems. Furthermore, they have inher-
ent limitations to cover the corner cases not being considered, which can lead to too
optimistic buffer dimensioning.

5. RECONFIGURATIONS ANALYSIS FRAMEWORK

Here, we present a reconfiguration analysis framework based on iterative timing
phases and the declarative execution semantics of streaming applications. Instead of
describing the actual algorithms (the how) used to solve the problem, we formalize the
properties (the what) of the desired solutions in different phases as composable con-
straints (to be introduced in Section 6), and exploit a constraint solver [Gecode 2009]
in solutions finding.

The staged timing phases in reconfiguration analysis, as illustrated in Figure 4, are
the following.

Prologue. This is the start-up phase with no throughput guarantees. The length of
the prologue phase can be specified by τ0 in Constraint 7 (Section 6).

Periodic phase M1(M2, · · · , MN). These are phases with guaranteed throughput in
working mode M1(M2) of the adaptive process pj. While the length Lperiod is through-
put relevant, the sustainable throughput requirements can be distinct in different
working modes and can be specified in Constraint 7 and 8.
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Reconfiguration phase. This phase starts with an initial working mode M1 upon the re-
configuration request MCR. The mode transmission starting time tag t′ (determined by
a reconfiguration decision variable ξ (t) in Section 6.5) is explored in a specified periodic
phase Lperiod

8 to find the optimal reconfiguration with minimized objective function (to
be given in Equation (4)). The reconfiguration stall (working mode transmission to
M2) takes tR, j time slots (Constraint 10). The length of this phase is specified to be the
worst case Lperiod + tR, j.

Transient phase. This phase has a length τ1, in which throughput is met but with no
periodic properties in scheduling yet.

Caused by the periodic properties in the scheduling of each working mode, the buffer
requirement can be analyzed in a finite length of time, without everlasting analysis. To
make the phases in gray (colored) iterative, we can use the timing analysis to traverse
all reconfiguration scenarios. The conservative size of each buffer should adopt their
worst case dimension respectively. Our design objective is to find the minimal total
buffer sizes as follows.

min :
∑

FIFOx,y∈F

γx,y, (4)

in which F is the set of the buffers being considered and γx,y is the size of each buffer
FIFOx,y.

6. CONSTRAINT BASED ANALYSIS

In this section, we first illustrate our event model on data streams. Subsequently,
we formalize a constraint based analysis approach which fits well to capture both the
streaming application execution semantics and the varying design concerns in differ-
ent timing phases proposed for reconfiguration analysis. Without loss of generality, we
adopt the example application in Figure 1 for illustration.

6.1 Event Models

We construct our event model as cumulative functions on data streams, similar to
Cruz [1995] and Chakraborty et al. [2003]. The input/output workloads of each com-
munication channel and the processing capabilities of the computation processes are
characterized as follows.

Definition 1 (Arrival Function). The arrival function Ri, j (t) of the communication
channel chi, j is defined as the sum of tokens arriving from the input data stream during
the time interval [0, t], t ∈ N0.

For instance, Ri, j (t) =
∑t

0 s1 in Figure 1.

Definition 2 (Output Function). The output function R′
i, j (t) from process pi to the

communication channel chi, j equals to the arrival function Ri, j (t) of chi, j.

For instance, R′
i, j (t) =

∑t
0 s1 = Ri, j (t) in Figure 1, which forms the basis for composi-

tional analysis.

Definition 3 (Service Function). The service function Ci, j (t) of the communication
channel chi, j by process pj is defined as the sum of tokens served and removed from
the buffer FIFOi, j via the data stream by pj during the time interval [0, t], t ∈ N0.

8It is based on the assumption that the worst case reconfiguration response (starting) time is Lperiod after
the runtime MCR.
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Fig. 5. Cumulative event models and derived buffer properties, which are consistent with the schedule in
Figure 3.

For instance, Ci, j (t) =
∑t

0 s2 in Figure 1.

6.2 Buffer Properties

While a process is executing, the extra buffer space reservation in scheduling test (see
the schedule in Figure 3) can be modeled with the demand function:

Definition 4 (Demand Function). The demand function Di, j (t) of the communication
channel chi, j is defined as the sum of R′

i, j (t) and the demanding space di, j (t) at time tag t
on FIFOi, j from the input side process pi, that is, Di, j (t) = R′

i, j (t) + di, j (t), di, j (t) ∈ {0, ni, j}.
For instance,

Di, j (t) =

{ ∑t
0 s1 + ni, j if pi is executing∑t
0 s1 if pi is stalling

in Figure 1.
A graphical interpretation of the definitions of Ri, j (t), Ci, j (t) and Di, j (t) is illustrated

in Figure 5, which is consistent with the schedule in Figure 3 for the example appli-
cation. Since process pi is always executing, Di, j (t) always demands ni, j tokens above
Ri, j (t). R′

i, j (t) is not shown since it is equivalent to Ri, j (t) (see Definition 2).
Consequently, we derive the following buffer properties.

Property 1 (Backlog). The backlog Bi, j (t) (tokens arrived but not yet served) in
buffer FIFOi, j is the vertical distance between Ri, j (t) and Ci, j (t) plus an offset of the
initial buffer tokens B0

i, j at time tag 0.

Bi, j (t) = Ri, j (t) − Ci, j (t) + B0
i, j, ∀t ∈ N0 (5)

Property 2 (Buffer Status). In scheduling, the buffer space in use B′
i, j (t) for FIFOi, j

(equals to Bi, j (t) + di, j (t)) is the vertical distance between Di, j(t) and Ci, j(t) plus an offset
of the initial buffer tokens B0

i, j at time tag 0.

B′
i, j (t) = Di, j (t) − Ci, j (t) + B0

i, j, ∀t ∈ N0 (6)
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6.3 Streaming Application Execution Semantics

Although an operational semantics of SDF is used in simulation [Stuijk et al. 2006],
the simulation based approaches are argued lacking scheduling policies for adaptive
systems as discussed in Section 4.3. Here, based on the definitions and properties
above, a full list of constraints to formalize the declarative execution semantics of
SDF streaming applications are formalized as the start point of our constraint based
analysis. These constraints hold during the whole lifetime of streaming applications
(∀t ∈ N0). Meanwhile, the designers can specify some specification dependent parame-
ters, for instance, the initial (tokens) offset B0

i, j for B′
i, j.

We assume that the data tokens remain on the input-side FIFO(s) when a process is
computing. At the end of execution, data tokens are removed from input-side FIFO(s)
and output result tokens are emitted into output-side FIFO(s) as well. Thus, the input
and output token ratios of each process can be formalized as the following constraint.

Constraint 1 (Token Ratios). For process pj, the input and output token ratios can
be formalized by R′

j,k(t) and Ci, j (t) as the following.

R′
j,k(t) · mi, j = Ci, j (t) · nj,k (7)

Constraint 2 (Computation Latency). Process pj has computation latency tC, j in
each execution instance.

Ci, j(t + tC, j) − Ci, j (t) = mi, j · K j(t + tC, j) (8)
D j,k(t + tC, j) − D j,k(t) = nj,k · K j(t + tC, j) (9)

where K j(t + tC, j) ∈ {0, 1}
in which K j(t + tC, j) denotes the incremental properties of Ci, j(t + tC, j) and D j,k(t + tC, j),
that is, K j(t + tC, j) has value ‘1’ if process pj finishes one instance of execution exactly
at time tag t + tC, j, otherwise it has value ‘0’.

Constraint 3 (Space Reservation). In the communication channel chj,k, the demand
function of process pj reserves vacant space tC,j slots in advance, which corresponds
to the semantics that the process can only execute when there are enough space in
output-size FIFO(s).

D j,k(t) = Rj,k(t + tC, j) (10)

Constraint 4 (Asynchronous Buffer). The incoming tokens in buffer FIFOi, j takes at
least tC, j slots to be served by process pj, which models the buffering behavior deter-
mined by the consumer process(es).

Ri, j (t) − Ci, j(t + �t) � 0, ∀�t ∈ [1, tC, j] (11)

Constraint 5 (Buffer Requirement). The buffer size γi, j of buffer FIFOi, j meets
the maximum buffer space requirement, which guarantees a conservative buffer
dimensioning.

γi, j � B′
i, j (t) (12)

6.4 Application Throughput Guarantees

For the input data stream s1 to process pj, a peak or average throughput ρin is
described as follows.

Constraint 6 (Source Input). For the source signal process pi with computation
latency tC,i, the data stream with a peak throughput ρin is constrained according to

Ri(t + tC,i) − Ri(t) � tC,i · ρin (13)
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Otherwise, a stable average throughput ρin can be verified at specified time instances
as follows

Ri(t0 + k · �t0 ) − Ri(t0) = k · �t0 · ρin, ∀k ∈ N (14)

in which the given t0 specifies the starting time instance for average throughput check-
ing, and �t0 determines the interval between different time instances.

The application output throughput ρout is subject to the following constraint.

Constraint 7 (Application Output Throughput). After some start-up time period τ0
(τ0 > 0) with no stable output tokens, a specified output throughput ρout should be
sustained at the application sink process pk.

Ck(τ0 + c · Lperiod) � ρout · c · Lperiod, ∀c ∈ N0 (15)

in which Lperiod is the length of the periodic phase in the schedule (see Figure 3).

However, the problem to determine the length of Lperiod that can provide optimal buffer
cost in this formulation is NP-complete itself. Empirically, we choose its length as
Lperiod = q · � rk

ρout
�, q ∈ N\{∞}, in which the incremental q leads to an increasing Lperiod

and rk is the repetition firing rate of process pk (see Equation (1)). Thus, Constraint 7
can only guarantee that the buffer cost is minimized (optimal) in implementation using
the given length of Lperiod. On the other hand, the length of Lperiod can be prespecified
(if validly) by the designer, which corresponds to the cost to implement a periodic static
schedule.

PROPOSITION 1 (THROUGHPUT GUARANTEES). For a consistent SDF streaming
application (see Section 3.2), a periodic phase (see the schedule in Figure 3) in its sched-
ule always exists. The required application throughput is guaranteed by the output
properties during this period.

PROOF. A consistent SDF streaming application could run infinitely. However, the
state space of application scheduling status (process and FIFO status, see Section 4.2)
is finite. Thus, some scheduling status will be revisited in a nonterminating schedule.
As we consider deterministic scheduling, the application schedule enters a periodic
phase when a repeated scheduling status is met. The output throughput during this
period could sustain infinitely, which guarantees the application throughput.

Furthermore, the periodic properties in the scheduling of SDF applications can be
modeled as the following.

Constraint 8 (Periodic Phase). We specify that, at time tag t′ after tinterR,i of the pre-
vious mode change, the process and FIFO status are repeatable at time tag t′ + Lperiod,
and the schedule enters a periodic phase with length Lperiod.

B′
i, j(t

′) = B′
i, j(t

′ + Lperiod), ∀FIFOi, j (16)

W ′
i(t

′) = W ′
i(t

′ + Lperiod), ∀pi (17)

where W ′
i(t

′) =
tC,i∑
k=1

k · Ci(t′ + k)

in which the variable W ′
i(t

′) and W ′
i(t

′ + Lperiod) is the encoding of the process status for
process pi in scheduling.

For instance, the process status of pi at time tag 4 and 10 have the equivalence W ′
i(4) =

W ′
i(10) = 2 in scheduling as illustrated in Figure 3.
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6.5 Reconfiguration Relevant Constraints

To capture the runtime reconfiguration of the reconfigurable process, we use a Boolean
function ξ (t) to denote the working mode at time tag t of the reconfigurable process
pj, that is, ξ (t) = 0 indicates that pj works in mode M1, otherwise pj is in (or being
reconfigured to) mode M2. Thus, the computation latency tC, j for the adaptive process
pj can be formulated.

Constraint 9 (Computation Latency - Adaptive). To be aware of the reconfiguration
decision ξ (t), the computation latency tC, j of the adaptive process pj is

tC, j = ¬ξ (t) · tM1
C, j + ξ (t) · tM2

C, j (18)

in which tM1
C, j and tM2

C, j denote the computation latency in working mode M1 and M2

for pj respectively,

However, Equation (18) can not be implemented in Gecode directly, since tC, j is not
an explicit variable in our model. Accordingly, the constraints for adaptive process
pj containing tC, j need to be rewritten correspondingly. For instance, Equation (8) is
equivalent to the following constraint applicable in Gecode.

¬ξ (t) · Ci, j(t + tM1
C, j) + ξ (t) · Ci, j(t + tM2

C, j) − Ci, j (t) =

mi, j · (¬ξ (t) · K j(t + tM1
C, j) + ξ (t) · K j(t + tM2

C, j)) (19)

Especially, the multiplication of two variables in Equation (19) can be captured by
a nonlinear arithmetic constraint (mult) in Gecode. Similarly, other SDF execution
semantics on computation and buffer resources can be extended to be reconfiguration
aware (for the reconfigurable process), which are omitted for clarity in this article.

Furthermore, we need to consider its computation stall during the reconfiguration
transition stage. Such a stall takes tR, j time, and can be described as a constraint as
follows.

Constraint 10 (Reconfiguration Stall). The computation of the adaptive process pj
stalls for tR, j time period after the reconfiguration starts at time tag t′.

C j(t′ + �t) − C j(t′) = 0, ∀�t ∈ [1, tR, j] (20)

6.6 Extensions of Constraint Based Formulation

The proposed formulation does not take into account models with multiple input and
multiple output (MIMO) processes or cyclic models. However, the extension of our
reconfiguration analysis methodology to such models is intuitive. Without loss of gen-
erality, we use the MIMO process pj in Figure 69 for illustration.

For MI channels chi, j and chl, j of process pj, the service functions are associated
with each other caused by the static input data token rate mi, j and ml, j of the same
consumer process pj. They have the linear relations as follows.

Constraint 11 (MI Linear Relation).

Ci, j (t)
mi, j

=
Cl, j (t)
ml, j

(21)

9For clarity in the graph, the FIFO modules on communication channels are omitted. Instead, a number of
dots are used to denote the initial buffer token numbers.
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Fig. 6. A cyclic MIMO application model.

Similarly, the MO channels chj,k and chj,l have the linear relations on the output and
demand functions according to output data token rate of the same producer process pj
as follows.

Constraint 12 (MO Linear Relation).

R′
j,k(t)

nj,k
=

R′
j,l(t)

nj,l
,

D j,k(t)
nj,k

=
D j,l(t)

nj,l
(22)

A MIMO model can be analyzed by traversing it with a set of paths, where each
path is a sequence of communication channels such that the output channels of a
process always succeed its input channels. A set of paths are complete only when
all the communication channels are covered. For instance, the paths (“chi, j → chj,k”
and “chj,l → chl, j”) in dashed lines complete the MIMO model in Figure 6. Based on
the complete set of paths, our methodology fits the MIMO application models well.

For directed cyclic graphs, the data tokens required for loop initialization can be
explicitly captured as the initial token offsets in Equations (5) and (6). For instance,
two initial tokens of communication channel ch j,l are denoted as B0

j,l = 2 and the actual
backlog of chj,l is B j,l(t) + B0

j,l.

7. EXPERIMENTAL RESULTS

Inspired by the success of NP-complete constraint solver Gecode [Gecode 2009], which
is a C++ library, we implement our constraint base analysis framework on it to ex-
ploit the state-space exploration techniques in constraint programming domain. Both
the example application of Figure 1 and an industrial application from Thales Com-
munications are considered for experiments. While both applications are pipelined
models, we refer to our work in [Zhu et al. 2009] for case studies on the scheduling of
cyclic applications with MIMO processes, in which the architecture platform is hybrid
CPU/FPGAs with no reconfigurations.

For different design options of the adaptive process(es), for instance, with different
specifications on tC, j and tR, j for process pj in Figure 1, the minimum buffer sizes of the
application are dimensioned without losing the application throughput guarantees. All
experiments are carried out on a HP xw4600 Linux workstation with a Quad-Core10

2.40GHZ processor and 4GB of RAM.

7.1 The Example Application

We assume the adaptive process pj in the example application has two different modes,
and both configurations have the same properties (i.e., the same input and output

10Only one core is actually utilized, since Gecode 2.1 used for this article does not support multithread
searching yet (see Section 8).
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Table I. Design Options for the Adaptive Process pj

options #1 #2 #3 #4 #5 #6 #7 #8

tR, j 2 3 4 5 10 15 20 40
tC, j 16 13 12 10 8 6 5 4
AM 0.5 0.8 1.0 1.3 2.5 3.8 5.0 10

data tokens, computation time and reconfiguration time). Thus, two iterations of the
working mode transitions (Figure 4) in reconfiguration analysis can traverse all the
reconfiguration scenarios.

We elaborate the model shown in Figure 1 with concrete specification parameters
(i.e., ni, j = 2, mi, j = 3, nj,k = 1 and mj,k = 2) and assume a minimum interval tinterR,j = 50
time slots between the two consecutive reconfigurations of pj.

First, we assume that different design options have varying reconfiguration time tR, j
but with a fixed latency tC, j = 10 (the bold numbers listed out in Table I), and evaluate
the FIFO sizes requirement. Figure 7(a) shows the minimal FIFO sizes needed upon
different tR, j, corresponding to different output throughput ρout. To consider the two
concerns tR, j and ρout separately, apparently, higher ρout demands larger FIFO sizes, so
do the design options with higher tR, j.

In the following scenario, instead, we choose the design options according to each
column listed in Table I. These design options show different implementation strate-
gies in the speed and area trade-offs, for instance, an adder can be implemented as
carry-lookahead adder (optimized for speed) or a ripple-adder (optimized for area).
Empirically, they conform to tR, j = kR · A M, j with kR = 10.0 and an assumed relation
tC, j ∝ � 1√

tR, j
�. Although, higher ρout (ρout = 1/8) still demands larger FIFO sizes, the

FIFO sizes are not monotonic to tR, j any more, as both tC, j and tR, j can affect the buffer
requirement to sustain ρout during reconfiguration. We can see that the design options
with tR, j close to 5 need less buffer.

With a given compression ratio kC = 4.0, the design costs are evaluated. As the de-
sign options after #5 simply show a fast monotonically increasing cost, we only present
the cost of design option #1-5 for clarity in Figure 7(c). We see higher throughput re-
quirement still leads to larger design costs. However, the design costs heavily depend
on the tC, j and tR, j trade-off, that is, the speed and time trade-off, and #2 with tR,i = 3
shows the minimum cost.

For this example application, the solutions finding time for each design option is
26–55ms, with peak memory 2.5–5.8MB.

7.2 An Industrial Application

To evaluate the potential of our methodology in adaptive systems, we use it on an in-
dustrial coding and modulation application from Thales communication, as illustrated
in Figure 8. The diagram shows a mix of digital and analogue modules, with a chan-
nel Coder preceded by a Cipher block, and followed by a digital modulator, a digital
up converter, a digital to analogue converter and an analogue filter. We focus on the
reconfigurable part, that is, the Coder with 3 modes of bursts BR, BL or BT and the
Cipher with 3 algorithms 1–3. The source of the Cipher algorithm is the input stream,
and the output stream from the Coder needs to sustain a stable throughput. The de-
sign objective in performance analysis is to minimize the buffer requirement without
losing the stable output transmission, when either or both of the two modules are in
reconfiguration.

The adaptive part of the abstract application model is illustrated in Figure 9(a),
in which the specification parameters are omitted for clarity. There are two
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Fig. 7. Experimental results of the example application.
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Fig. 8. The coding and modulation case study synopsis.

adaptive processes (modules): the Cipher pj and the Coder pk. Each of them re-
ceives the adaptation control signal sM, j or sM,k from the environment, and can change
the working modes among three possibilities (i.e., algorithm 1–3 for the Cipher, and
BT/BL/BR coder for the Coder). The input date stream has a peak throughput ρin, and
an average output throughput ρout is demanded.

We assume the reconfigurations of two adaptive Cipher and Coder are independent
of each other. To decouple the analysis, the buffer FIFO j,k between pj and pk has been
partitioned into two disjoint logic FIFOs FIFO′

j,k and FIFO′′
j,k, as shown in the dashed

box, to be analyzed individually. From the static data token ratios of the SDF model
and ρout, we derive the average output throughput requirement ρout′ of the Cipher,
which is also the average input throughput to the Coder. For the Cipher, the peak
input throughput and average output throughput are ρin and ρout′ respectively. In this
way, we decouple the analysis of two reconfigurable modules as follows.

(1) To find the minimum buffer sizes for the Cipher buffers FIFOi, j and FIFO′
j,k

to meet the average output throughput requirement ρout′ upon the peak input
throughput ρin (subject to Equation (13) in Constraint 6).

(2) To find the minimum play-out buffer FIFO′′
j,k and FIFOk,l for the Coder module

to meet the average output requirements ρout upon the average input throughput
ρout′ (subject to Equation (14) in Constraint 6).

Although the decoupled analysis (based on disjoint logic FIFOs) has the possibility
to over-dimension the physical FIFO size, it is a conservative approach without re-
strictions on the reconfiguration of different adaptive modules, that is, independent
of reconfiguration protocols. For instance, using this analysis approach, the Cipher
and Coder modules can be even reconfigured at the same time, when protocols of the
reconfiguration of consecutive modules are still lacking.

For both the Cipher and Coder, all the reconfiguration transition possibilities are
traversed (i.e., 3 × (3 − 1) = 6), and we choose the worst case as the conservative buffer
requirement.

In both Coder and Cipher modules, the design costs increase with the output
throughput, as shown in Figures 9(b) and 9(c). The design costs of different implemen-
tation strategies for the Cipher with varying tR, j are also shown in Figure 9(c), and we
can see the design costs are not monotonic to tR, j. It exemplifies that our framework
suits design trade-offs analysis in design options exploration, and can be applied on a
series of compositional adaptive processes (modules) as well.

Furthermore, the complexity of solution finding increases exponentially with prob-
lem size (compared with the example application). For the Coder, the solutions finding
time is 247–708ms and the peak memory is 22.4–54.4MB. For the Cipher, they are
352–408ms and 27.7–36.4MB respectively.
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Fig. 9. Industrial application and experimental results.

8. CONCLUSIONS AND FUTURE WORK

We present a constraint based performance analysis framework for adaptive real-
time streaming applications, with the implementation on a public domain constraint
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solver; Gecode [2009]. The experimental results show that our framework suits recon-
figuration analysis and design trade-offs analysis well. It can be used to exploit the re-
configurability of adaptive real-time streaming applications, without losing efficiency.
Especially, the industrial case study illustrates the capability of our methodology to
cope with the sequential composition of adaptive systems.

Future work. In this article, we have considered JIT adaptation on a single configu-
ration slot. On the other hand, for some applications, the prefetch adaptation with
multiple configuration slots might overcome the reconfiguration stall and further re-
duce the design cost. We plan to compare these two approaches using some industrial
applications, and verify the result with Virtex-4 FPGA implementations. So far, the
buffer dimensioning has been conducted without considering memory sharing between
different logic buffers. However, using some buffer merging algorithms, as proposed
in Murthy and Bhattacharyya [2004] and Govindarajan et al. [2002], the memory sizes
can be further reduced when different logic buffers are sharing the same physical
memory module. Such buffer sharing algorithms complement our analysis approach
and remain to be our future work. Furthermore, Gecode starts to support parallel
searching with multiple threads from version 3.1 [Gecode 2009]. Facing the increasing
problem size and complexity, we plan to adopt multiple threads and exploit heuristic
techniques in Gecode during the state-space exploration as well.
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