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Abstract— Power management of NoC-based many-
core systems with runtime application mapping becomes
more challenging in the dark silicon era. It necessitates
a multi-objective control approach to consider an upper
limit on total power consumption, dynamic behaviour of
workloads, processing elements utilization, per-core power
consumption, and load on network-on-chip. In this paper,
we propose a multi-objective dynamic power management
method that simultaneously considers all of these parame-
ters. Fine-grained voltage and frequency scaling, including
near-threshold operation, and per-core power gating are
utilized to optimize the performance. In addition, a dis-
turbance rejecter is designed that proactively scales down
activity in running applications when a new application
commences execution, to prevent sharp power budget vi-
olations. Simulations of dynamic workloads and mixed
time-critical application profiles show that our method is
effective in honoring the power budget while considerably
boosting the system throughput and reducing power bud-
get violation, compared to the state-of-the-art power man-
agement policies.

Keywords— Dark Silicon, Power Management, NoC-
based Manycore Systems, Runtime Mapping

I. Introduction

Number of transistors on a chip is still scaling up steadily
(about 2.8 times) for every technology node generation.
However, power budgets have not increased on par with
technology scaling, thus limiting the number of usable tran-
sistors on a chip (only 1.4 times) [1]. This leaves a section
of chip area inactive, termed as Dark Silicon [2], while the
rest can operate at full throttle (voltage and energy).
Recently, efforts have been made to minimize the ef-

fect of dark silicon by utilizing near-threshold computing
(NTC) (i.e., Dim Silicon [3]). NTC increases the num-
ber of simultaneously active cores, at the expense of much
lower operating frequency [3]. In order to implement an
efficient NTC-based approach, an intelligent and stable
power management mechanism using feedback control is
required. The previous work on feedback-based dynamic
power management for multi-core and many-core systems
can be classified into two main categories: i) the techniques
which use workload and network characteristics as feed-
back (e.g., queue utilization and injection rate), and then
adjust voltage/frequency of processing elements, routers,
or voltage/frequency islands (VFI) accordingly (e.g., the

techniques presented in [4] and [5]), and ii) power budgeting
(i.e., capping) techniques which utilize chip/per-core power
measurement and per-core performance counters (i.e., core
utilization) as feedback, and then apply DVFS or per-core
power gating (PCPG) techniques to optimize the system
performance within a fixed power cap (i.e., TDP). The
approaches presented in [6] and [7] are two examples of
power capping techniques which fall into the second cate-
gory. However, both of them are proposed in the context of
bus-based multi-core architectures where there is no con-
cern regarding network congestion and saturation.
Even though all the techniques in these categories effi-

ciently save and control the power consumption for their
target platforms, they are not comprehensive and multi-
objective enough for the dark-silicon era. The reason is
that the techniques in the first category do not consider
any safe upper bound on the total system power consump-
tion (i.e., TDP) at runtime, and therefore, they do not
feed any power metric back to the management unit. The
power capping techniques from the second category are
also unable to address the power management issues in
the dark silicon era where many-core systems are typically
NoC-based and multiple applications are running simulta-
neously. We believe, in this context, dark silicon awareness
necessitates an efficient multi-objective feedback-based con-
trol approach which considers workload characteristics, per-
core power and performance measurements, network-load,
and total chip power consumption all together.
In this paper, we provide a comprehensive dark silicon

aware power management platform for NoC-based many-
core systems under limited power budget and running dy-
namic workloads (i.e., supporting runtime mapping). This
platform benefits from a multi-objective feedback con-
troller providing PCPG and per-core DVFS considering
workload characteristics, network congestion, and power-
performance characteristics of processing elements. It also
provides a proactive runtime application mapping (RTM)
technique to reject the disturbance which happens when a
new application is mapped onto the system in runtime.
The rest of the paper is organized as follows: In Sec-

tion II, related work is presented. Our proposed power
management platform for NoC-based manycore systems is
presented in Section III. Experimental results are provided
in Section IV. Finally, Section V concludes the paper and
discusses potential future work.

II. Related Work

In [6], a hierarchical power management framework for
asymmetric multi-core architectures is demonstrated for
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Fig. 1: Overview of our multi-objective dark silicon aware power management system

ARM big.LITTLE [8] mobile platforms. In this architec-
ture, cores have different size and processing power while
having the same instruction set architecture (ISA). Ma et
al. [7] have done a similar attempt to exploit power gat-
ing and DVFS for power capping in symmetric multi-core
processors. Their technique is demonstrated on the AMD
Opteron 6168 processor and is called PGCapping. These
platforms are energy efficient, yet they suffer from the lack
of scalability as both the ARM big.LITTLE and AMD
Opteron platforms are bus-based and are limited to a fewer
number of cores (i.e., multicore).
In [3], the advantages of near-threshold computing in

mitigating the dark silicon is presented. In [4], a control
based approach is proposed to minimize dynamic power in
MPSoC made of multiple, voltage frequency islands (VFIs).
Their goal is to determine optimal operating frequencies for
both PEs and routers. This work is not dark silicon aware
either, as they do not utilise feedback from power sensors
to avoid violating the TSP/TDP.
Haghbayan et al. [9] present a power management tech-

nique for many-core systems using power feedback from
the system to meet the TDP bound. This technique is also
categorized into the class of single objective control ap-
proaches as it lacks feedbacks from workload characteristics
and per-core performance measurements from the system
during DVFS process. Lack of information regarding per-
formance and packet injection rate of PEs, can easily lead
to inefficient core selection for DVFS purpose, as applying
DVFS to an under-utilized PE results in a totally differ-
ent power-performance behaviour compared when it is ap-
plied to a busy PE. In addition, the technique presented in
[9], is designed for fixed TDP and does not benefit from a
dedicated disturbance rejector to handle sudden overshoots
when new applications commence execution.

III. Power Management Platform

Each application in the system is represented by a di-
rected graph with inter-dependent tasks. Mapping of an
application onto the system is defined as a one-to-one func-
tion from the set of application tasks to the set of tiles.
Sequential tasks are assumed as a single task which can
be mapped to a same core to reduce inter-core traffic. We
also use a simple mathematical model for representing ap-
plications running on the system. We denote by Appli-
cation Matrix the matrix whose entry (i, j) ∈ [M ] × [N ]
corresponds to the task’s application ID running on the
tile located in row i and column j in a mesh-based NoC
topology.

A many-core system using our proposed multi-objective
power management approach is shown in Figure 1. It is
a framework supporting parallel execution of multiple ap-
plications dynamically entering and leaving the system at
runtime. The Runtime Mapping Unit (RMU) allocates sys-
tem resources connected through the network to incoming
application tasks in an efficient way. It also provides infor-
mation of the existing application(s) running on the system
(RAI) to efficiently manipulate the actuators (e.g., priority
vector, application matrix, number of active cores). In or-
der to notify the central power manager (i.e., Controller),
RMU asserts an interrupt signal indicating that an applica-
tion is about to be mapped onto the system. The priority
of an application correlates to the level of expected QoS.
Our power management provides DVFS and power gat-

ing on a per-core basis. The power manager does not scale
the voltage and frequency (VF) of on-chip interconnection
network components (e.g., routers, links), to ensure that
there is no waiting time and gainless static power consump-
tion of the consumer PEs.
Application Power Calculator: We assume that each

tile is equipped with a power sensor to report the current
power consumption of the core to the central manager to
form the Tile Power Matrix. It should be noted that many
of today’s platforms are equipped with power meters [6].
We read the rate of packet flow at link level and send

its aggregate value to the central control, using a light-
weight power meter within the router micro-architecture
presented in [10]. In our power management platform, the
Application Power Calculator (APC) unit calculates the
current power consumption of each application based on
the Application Matrix provided by DMU and Tile Power
Matrix, measured by the core and router power meters. By
masking the Application Matrix on the Tile Power Matrix,
the APC block calculates the current power consumption
of each application, forms the Application Power Vector
(APV ), and passes it to the Controller Unit.
Application Processor Utilization Calculator:

Each PE is also equipped with a simple performance
counter which reports the utilization of the corresponding
PE during the previous timing window [7]. Likewise APC,
Application Processor Utilization Calculator (APUC) unit
calculates the aggregate processor utilization for individ-
ual applications based on the Processor Utilization Ma-
trix, forms the Application Processor Utilization Vector
(APUV ), and passes it to the Controller Unit.
Application Buffer Utilization Calculator:
In our platform, each router is equipped with a buffer



utilization meter. The buffer utilization meter measures
router congestion levels in its recent history. More pre-
cisely, it measures the traffic dynamically by calculating
the moving average of packet flow in every link of a router.
The buffer utilization level of each router (Router Buffer
Utilization Matrix in Figure 1) is transferred to the Ap-
plication Buffer Utilization Calculator (ABUC ). By mask-
ing the Application Matrix (provided by the RMU) on the
Router Buffer Utilization Matrix, ABUC calculates the av-
erage buffer utilization level for each application and sends
it to the controller unit.
Application Injection Rate Calculator: Inspired

from [11], we also consider applications’ network intensity
in order to classify them into intensive and non-intensive
categories in the power management process. We use ap-
plication injection rate as a metric that closely correlates
to network intensity. It should be noted that DVFS has
a throttling effect on the system as voltage and frequency
(VF) upscaling results in increasing packet injection rate,
and likewise, VF downscaling leads to decreasing packet
injection rate. The injection rate of each task running on a
tile is measured at the tile’s network interface for its recent
history and transferred to the Application Injection Rate
Calculator (AIRC ). By masking the Application Matrix
(provided by the RMU) on the Tile Injection Rate Ma-
trix, AIRC calculates the average injection rate for each
application and sends it to the controller unit.
TSP Lookup Table: Pagani et al. [12] reason that

using a single and constant value as a power constraint
(i.e., TDP) can result in large performance losses. They
present a new power budget concept called Thermal Safe
Power (TSP) which is a function of number of active (i.e.,
non-dark) cores in a system. We use TSPworst which is
calculated for the worst-case mapping (i.e., assuming all
the active cores are physically packed and influencing the
temperature of their adjacent cores) and thus it is safe. In
our system, TSPworst values for different number of active
cores are pre-calculated and stored in a small lookup table
(a one-dimensional array).

A. PID Controller Unit

We employ Proportional Integral Derivative (PID) con-
troller for actuator manipulation. The general formula for
the PID controller is as follows:

PIDout(t) = Kpe(t) +Ki

∫
e(t) dt + Kd

de(t)

dt
(1)

Where PIDout(t), e(t), Kp, Ki, and Kd are the controller
output, error, proportional gain, integral gain, and deriva-
tive gain, respectively. The gains of the PID controller
are appropriately adjust after several Matlab simulations.
Two key factors were considered in our simulations viz., the
system stability and the system robustness against power
disturbance.
In manycore systems using runtime task mapping, there

are often three influential behaviors in the total power trace
curve: 1) when an application enters the system, 2) when
an application leaves the system and 3) when there is no
incoming or outgoing application to/from the system yet
power consumption changes due to different changes in
intra-application task behaviours such as task dependen-
cies and varying switching activities. We address all the
three behaviors. The PID controller can efficiently han-

dle the second and third behaviours. However, when an
application enters the system (i.e., the first behaviour), a
high overshoot may easily happen especially if the appli-
cation size is large and demands several dark cores to be
activated. This situation is separately handled by the dis-
turbance rejector unit in a proactive way which is discussed
in the later sections.

B. Power Allocator

Our power allocator attempts to scale the voltage and
frequency of processing elements (VPEs, FreqPEs) dynam-
ically by monitoring different feedbacks from the system,
see Algorithm 1. As the first step, the TSP is divided by
the number of active cores in the system (#activeCores),
extracted from RAI, and the result is assigned to the per-
core power limit variable (PCPowerLimit). If TDP is cho-
sen over TSP, this line can be ignored as TDP calculation is
conservative enough to consider worst-case per-core power
limit as well. Next, the IRClassifier function classifies
all the applications into intensive (Iset) and non-intensive
(NIset) sets in terms of network intensity, based on Ap-
plication Injection Rate Vector (AIRV ). The detailed clas-
sification algorithm can be found in [11]. Similarly, BU-
Classifier function classifies all the applications into con-
gested (Cset) and non-congested (NCset) sets. An appli-
cation is tagged as congested if the average buffer utiliza-
tion of its associated routers is larger than a predefined
threshold (e.g., 75%). In this way, every application is
tagged at runtime with a 2-bit label which can get one
of these values: NI NC (non-intensive, non-congested),
NI C (non-intensive, congested), I NC (intensive, non-
congested), and I C (intensive, congested). These tags are
variable and updated in every iteration.
Difference between instantaneous power consumption

and TSP/TDP is Error value, transferred to the PID
controller. After classifications, voltage and frequency
downscaled or upscaled is performed, based on magni-
tude of PIDout such that system’s power consumption
is closer to TSP/TDP . V Fdownscaler and V Fupscaler

functions are used to scale the voltage and frequency
of target applications. When a new application to be
mapped arrives, Power Allocator receives a newApp inter-
rupt from the mapping unit. This interrupt is serviced by
the proactiveDistRej function implemented in the Distur-
bance Rejecter module which proactively scales currently
running applications.
Downscaler: VF downscaling process of PEs is explained

in Algorithm 2. We consider the entire application space
(Cset ∪ NCset) to choose the target application set to be
downscaled. When there is an overshoot, applications with
the lowest priority are chosen by the LPapps function, let-
ting the high priority applications run at a higher QoS
level. Among them, applications that are tagged as con-
gested (Cset) are chosen to minimize congestion and im-
prove network throughput. PEs residing in a congested
area can dissipate unnecessary power (particulary static)
due to low network throughput. As VF downscaling has
also the effect on throttling of packet injection, alleviat-
ing the network congestion for such applications and save
power. In case of unavailability, congested set is replaced
by non-congested set (NCset). These are further narrowed
down to the application with the lowest performance loss to
power reduction ratio by the lowDprf−pwr function which
is presented in detail in the following. Finalized target ap-



Algorithm 1 Power Allocation Algorithm
Inputs: PIDout, RAI, ABUV , AIRV , APV , APUV , TSP ,
newApp interrupt, Error
Output: VPEs, FreqPEs, terminatedApp
Global Variables: DV FSList, Iset, NIset, Cset, NCset,
PCPowerLimit
Constant values: bufferUtilizationLimit
Body:

1: PCPowerLimit← TSP
#activeCores ; // calculating per-core power limit

2: (Iset, NIset) ← IRClassifier (AIRV , RAI); // classify I and NI
3: (Cset, NCset)← BUCassifier (ABUV , RAI); // classify C and NC
4: if newApp interrupt then {// interrupt - new application to be

mapped}
5: (VPEs, FreqPEs, terminatedApp) ← proactiveDistRej (Error,

RAI, ABUV , APV , APUV );
6: else
7: if PIDout < 0 then
8: (VPEs, FreqPEs, terminatedApp) ← V Fdownscaler (RAI, ABUV ,

APV , APUV , PIDout, PCPowerLimit);
9: else
10: (VPEs, FreqPEs, terminatedApp) ← V Fupscaler (RAI, ABUV ,

APV , APUV , PIDout, PCPowerLimit);
11: end if
12: end if

Algorithm 2 Voltage and Frequency Downscaling Func-
tion
Inputs: RAI, ABUV , APV , APUV , PIDout, PCPowerLimit
Outputs: VPEs, FreqPEs, terminatedApp
Variables: availableApps, targetApp, failedDV FS, appSet
Body:

1: availableApps ← Cset ∪ NCset; // application space
2: while true do
3: targetApp ← ∅; // the application targeted for DVFS
4: appSet ← LPapps (availableApps, RAI); // low priority apps
5: appSet ← appSet ∩ Cset;
6: if appSet = ∅ then {// consider congested apps}
7: appSet ← appSet ∩ NCset; // consider non-congested apps
8: end if
9: targetApp ← lowDprf−pwr (appSet, APV , APUV , PIDout);
10: (VPEs,FreqPEs,failedDV FS) ← DV FS(targetApp, PIDout,

PCPowerLimit);
11: if failedDV FS then
12: remove targetApp from availableApps; continue;
13: if availableApps is empty then
14: terminatedApp ← targetApp; break;
15: end if
16: else
17: DV FSList ← targetApp; break;
18: end if
19: end while

plication (targetApp) is then downscaled by the DV FS
function as per PIDout and PCPowerLimit.
Upscaler: VF Upscaling of processing elements is pre-

sented in Algorithm 3. When there is an undershoot,
first, the set of applications that are already downscaled
and applications that are non-intensive and non-congested
(availableApps ∩ NIset ∩ NCset) are chosen. The ground
for this selection is that upscaling voltage and frequency
of a PE residing in a congested area and having a high
injection rate may result in zero performance gain if on-
chip communication network is the bottleneck. That is the
reason why in VF upscaling process, in contrast with down-
scaling, a higher priority is given to congestion than appli-
cation priority in the algorithm. If there is no NI NC ap-
plication in the system, I NC applications will be the next
candidates set (DV FSList ∩ Iset ∩ NCset). Among these,
applications with the highest priority are picked by the
HPapps function to meet system’s QoS demands. These are
further narrowed down to the application with the highest
performance gain to power increase ratio (HighDprf−pwr).
The chosen target application is then upscaled by the
DV FS function as per PIDout and PCPowerLimit.
highDprf−pwr and lowDprf−pwr functions: These

Algorithm 3 Voltage and Frequency Upscaling Function
Inputs: RAI, ABUV , APV , APUV , PIDout, PCPowerLimit
Outputs: VPEs, FreqPEs, terminatedApp
Variables: availableApps, targetApp, failedDV FS, appSet
Body:

1: targetApp ← ∅;
2: availableApps ← DV FSList;
3: while targetApp = ∅ do
4: appSet ← availableApps ∩ NCset ∩ NIset; // non-congested/non-

intensive apps
5: if appSet = ∅ then
6: appSet← availableApps ∩ NCset ∩ Iset; // non-congested/intensive

apps
7: if appSet = ∅ then
8: appSet ← availableApps;
9: end if
10: end if
11: appSet ← HPapps(appSet, RAI); // high priority apps
12: targetApp ← highDprf−pwr (appSet, APV , APUV , PIDout);
13: (VPEs,FreqPEs,failedDV FS) ← DV FS (targetApp, PIDout,

PCPowerLimit);
14: if failedDV FS then
15: remove targetApp from availableApps;
16: targetApp ← ∅; continue;
17: end if
18: end while
19: remove targetApp from DV FSList;

functions search for an application with the highest or low-
est performance-power ratio (i.e., Dprf−pwr) in a given
set to be the target of VF upscaling or downscaling. In
[7], product of core utilization (Util) and aggregated fre-
quency (Freq) is used as a high-level computational ca-
pacity metric. In this metric, the frequency is weighted
to deduct the idling cycles. We extend this metric by ag-
gregating core utilization in an application (appUtil), pro-
vided by APUC, to calculate the performance of an appli-
cation. After calculating Dprf−pwr for all the applications
in appSet, lowDprf−pwr and highDprf−pwr functions use a
simple quicksearch algorithm to find the application with
the lowest and highest Dprf−pwr value as the target appli-
cation for DVFS, respectively.
Proactive Disturbance Rejection (PDR): Whenever a

new application is mapped onto the system, it is likely
to cause a sudden change in overall power consumption
that shoots above the TSP/TDP . Such sporadic rises
in power consumption can be minimized by proactively
scaling down applications that are currently running on
the system. Algorithm 4 details the PDR function. If
the Error is positive, indicating that new application
can be accommodated, the predicted power consumption
(appPredictedPower) is calculated based on number of
tasks (N extracted from RAI ) of the new application and
average power consumed by actively running cores (Pavg).
The difference between Error and appPredictedPower is
the proactiveError, which is fed back to a proportional
controller with gain K ′p. Here, the integral and derivative
terms are removed because when such sporadic rises oc-
cur, history-based (i.e., integral term) or prediction-based
(i.e., derivative term) decision making will most likely affect
the controller’s response. Output of the controller (Pout)
determines the extent by which currently running applica-
tions are to be scaled so that the new application can be
mapped without violating TSP/TDP . If the (Error > 0)
and (proactiveError > 0), indicating availability of power
budget for the new application, it is mapped as is without
any further scaling. If (Error > 0) and (proactiveError
< 0), indicating that power allocation to new application
would violate TSP/TDP , currently running applications
are downscaled by V Fdownscaler based on Pout.



Algorithm 4 Proactive Disturbance Rejection (proac-
tiveDistRej()).
Inputs: Error, RAI, ABUV , APV , APUV , PCPowerLimit
Outputs: VPEs, FreqPEs, terminatedApp
Variables: failedDV FS, appPredictedPower, proactiveError, Pout,
Pavg

Constant values: K′
p

Body:

1: appPredictedPower ← N × Pavg ;
2: proactiveError ← Error - appPredictedPower;
3: if proactiveError < 0 then
4: Pout ← K′

p × proactiveError;

5: (V (PEs), Freq(PEs), terminatedApp) ← V Fdownscaler (RAI,
ABUV , APV , APUV , Pout, PCPowerLimit);

6: end if

IV. Experimental Evaluation

We perform the experiments on our in-house cycle-
accurate many-core platform implemented in SystemC us-
ing Noxim [13] as communication architecture. As PE
baseline design, we use Niagara2-like in-order core speci-
fications obtained from McPAT [14]. Physical scaling pa-
rameters were extracted from the Lumos framework (by
Wang and Skadron) [15]. Lumos is a framework to an-
alytically quantify the power-performance characteristics
of many-core systems especially in near-threshold opera-
tion. Lumos is open source and publicly available [16].
The physical scaling parameters have been calibrated by
circuit simulations with a modified Predictive Technology
Model [17]. Moreover, we have imported other models and
specifications such as power modeling, voltage-frequency
scaling, thermal design power (TDP) calculation, and near
threshold computing parameters from the Lumos frame-
work. Our manycore platform was reinforced to support
runtime application mapping by implementing a central
manager (CM) residing in the node n0,0. The network size
is 12×12 and the the chip area is 138mm2.
We model two application categories – non-realtime

(lowest priority) and soft realtime (highest priority). Sev-
eral sets of non-realtime applications with 4 to 35 tasks
are generated using TGG [18] where the communication
and computation volumes are randomly distributed. We
model MPEG4 and VOPD multimedia applications as soft
realtime applications.
In our multi-application manycore system, a random se-

quence of applications enter the scheduler FIFO. This se-
quence is kept fixed in all experiments for the sake of fair
comparison. The probabilities of selecting soft realtime and
non-realtime applications from the application repository
are 30% and 70%, respectively. CM selects the first node
using SHiC [19] method, and maps the application based
on its real-time attributes. The soft realtime applications
are mapped contiguously. In addition to the runtime map-
ping unit, our multi-objective power management platform
(including the controller, AIRC, ABUC, etc.) is also im-
plemented in software (i.e., soft coded) as a part of the
CM. As the control interval can be long (i.e., millisecond
scale) compared to the system clock period (i.e., nanosec-
ond scale), the control traffic overhead is negligible. For
example, a NoC system running at 750MHz can be as large
as 75000 cores, while the time for control packet collection
is <1% of sampling interval of 10ms.
For the DVFS purpose, we use 15 VF levels (similar

to Intel SCC) including near-threshold operation extracted
from the Lumos framework. The frequency of the on-chip
communication network (e.g., routers) is set to the maxi-

mum level to demonstrate that even at the maximum NoC
speed, the network can get congested and should be taken
into account in power management along with the other
parameters. For the TSP calculation, we follow the same
floorplan style, chip thickness, silicon thermal conductivity,
and heat sink model as [12]. We set ambient temperature to
45◦C, a threshold temperature that triggers thermal man-
agement to 80◦C, maximum chip power consumption from
the power supply to 300W, and the power consumption of
an inactive core to 0.3W.
We compare different characteristics of the manycore

system under four different management scenarios: 1) our
multi-objective controller (MOC) with proactive distur-
bance rejection (PDR), 2) PGCapping [7] where only core’s
power-performance ratio is considered as feedback for the
PCPG and per-core DVFS actuation, 3) DSAPM [9] where
no information regarding performance and packet injection
rate of PEs is used as feedback, and 4) without TSP/TDP
constraint. Without TSP/TDP constraint is the scenario
where the system is not limited in terms of maximum power
consumption. This is the situation when, in reality, the
chip is damaged due to overheating. To perform a fair com-
parison, we enable PGCapping and DSAPM techniques to
use the same 15 VF levels for per-core DVFS actuation.
Power consumption of the system under the aforemen-

tioned power management scenarios to honor constant
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Fig. 2: The power consumption of the system using (a) without
TSP/TDP constraint, (b) MOC with PDR, (c) DSAPM, and (d)

PGCapping power management policies to honor TDP
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Fig. 3: The power consumption of the system using (a) MOC with
PDR, (b) DSAPM, and (c) PGCapping power management policies

to honor TSP



TDP is presented in Figure 2. The dashed black curve rep-
resents maximum power budget for the system (i.e., TDP).
The TDP value is set to 126W which is calculated based
on the chip power density. Deviation of power consump-
tion from the baseline reflects either violation or under-
utilization of power budget. Power consumption in case
of the PGCapping, DSAPM and without-constraint power
managements mostly tend to overshoot or undershoot from
TDP. The without-constraint power management does not
consider any upper bound on power consumption, subse-
quently it violates the TDP constraint right through.
PGCapping benefits from the cores’ power-performance

values, fed back by the controller and thus increases the sys-
tem throughput to some extent. However, it suffers from
the under-utilization issue as it does not consider the net-
work congestion and applications injection rates. DSAPM
considers network congestion, however it also suffers from
the under-utilization issue as it is agnostic of cores’ perfor-
mance value and applications’ injection rates. Moreover,
both PGCapping and DSAPM techniques refuse to prop-
erly handle occasional overshoots due to new application
arrivals. Evidently, MOC with PDR stays in close prox-
imity with TDP and hence has the best power manage-
ment mechanism in comparison with the others. In cases
where power consumption exceeds TDP, the MOC con-
troller rapidly reduces the power consumption by a proper
voltage and frequency scaling. The control system is stable
even for large fluctuations in power consumption that occur
with arrival of intense applications. Figure 3 demonstrates
the aforementioned power management scenarios to honor
dynamic TSP values. As can be observed from the figure,
the conclusions we made for Figure 2 are also valid for dy-
namic TSP, the MOC-based system is stable even when
budget is changed at runtime. In the figure, TSP does not
radically change (often between 141W and 149W) as the
system is mostly busy and the majority of cores are active.
To assess the efficiency of our platform, we compare the

normalized throughput for the set of applications under
MOC (with PDR), PGCapping, and DSAPM policies, as
shown in Figure 4(a). The results reveal that our pro-
posed method can significantly improve the overall system
throughput for different power budget types (up to 29%
compared with PGCapping and up to 15% compared with
DSAPM). The results reveal the advantage of our proposed
multi-objective controller which considers both the compu-
tation and communication aspects in power management.
Figure 4(b) shows TDP/TSP violation for different power
management policies over time. We measure violation as
the ratio of time for which power consumption exceeded
TDP/TSP (resulting in a violation) to the entire simula-
tion time. It can be observed that the proposed disturbance
rejection technique honors the TDP/TSP constraints for
more than 99% of the simulation time.
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Fig. 4: MOC vs. PGCapping vs. DSAPM, (a) normalized
throughput, (b) TDP/TSP violation for different dynamic power

managements

V. Conclusions

In this paper, a multi-objective feedback controller sys-
tem was proposed to protect many-core systems against
overshooting of power consumption from a certain limit.
The target framework is a NoC-based manycore system
using runtime application mapping where applications en-
ter and leave the system at runtime. The feedbacks to the
controller are the processing elements’ power-performance
measurements, application workloads, and network con-
gestion. Comparing the total system power with the
maximum power budget, the controller efficiently changes
voltage and frequency of appropriate processing elements,
down to near threshold operation. The results showed im-
proved system throughput and TDP/TSP violation, for
the proposed platform when compared to state-of-the-art
power management policies.
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