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Abstract—Field Programmable Gate Arrays (FPGAs) are
widely used in many safety-critical applications mainly due to
their high computational efficiency and dynamic reconfiguration.
Although dynamic reconfigurability is often leveraged upon to
attain further flexibility and reliability, it comes with an area
overhead. In this paper, we provide a methodology to analyze the
trade-off between reliability and area in dynamically reconfigured
FPGA systems. We mainly aim to find the lowest area overhead
for a given fault recovery rate in different system modules. For
this purpose, we provide a generic model for system reliability
using Dynamic Fault Trees (DFTs) that considers partially
reconfigurable fallback units. The experiments are performed
on a fail safe Electronic Control Units (ECUs) based automotive
system. We use the FPGA partial reconfiguration to replace the
faulty ECU functionality. The results show that by setting a
suitable threshold for the reliability enhancement, the minimum
number of fallback units can be determined. This leads to an
enhanced system reliability with the most optimal area overhead.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have been exten-
sively used as an alternative to Application Specific Integrated
Circuits (ASICs) for embedded applications, due to their
high computational power, flexibility and low non-recurring
engineering costs [1]. However, the Static Random Access
Memory (SRAM) based technology, employed by most FPGAs,
increases their susceptibility to different types of faults [2],
especially Commercial Off-The-Shelf (COTS) FPGAs that are
not radiation hardened. For many embedded systems in domains
like aerospace and automotive, reliability is a very important
aspect. Thus, self healing and fault recovery techniques are
required to increase the reliability of those mission and safety
critical systems. A wide range of fault detection and correction
techniques [3], as well as fault tolerant methods analysis
are available for FPGAs [4]. Moreover, many works have
investigated methods for increasing the reliability and fault
tolerance of FPGAs [5], [6].

Dynamic Partial Reconfiguration (DPR) technology offers a
great flexibility of reconfiguring certain FPGA partitions at run-
time [7]. This feature can also be used for fast and autonomous
fault recovery of transient [8] and permanent faults (e.g. [9],
[10]) through swapping the functionality to other partitions.

This recovery provides higher availability and increased system
lifetime. However, the fact that DPR can tolerate faults at run-
time by providing spare Reconfigurable Partitions (RPs) that
can take over the faulty functionality is accompanied by an
increased FPGA resource utilization. Although FPGAs are
getting larger, area is still a great limitation specially when
the design cost is to be reduced. Moreover, the increased
resource utilization leads to higher power consumption and
longer reconfiguration time. Thus, enhancing the reliability of
limited size FPGAs is still a challenge.

Optimizing reliability enhancement techniques to decrease
the generated area overhead (FPGA resource utilization) is
addressed in the literature in various ways (e.g., [11], [12]). In
this paper, we propose to address this problem in a novel way
using dynamic fault trees (DFTs) models. A DFT is a reliability
model that can effectively capture the failure behavior of spare
parts in a given system. We develop DFT models and derive
a generic reliability expression to determine the number of
fallback partitions to be included in the design. We optimally
enhance the overall system reliability with the least possible
area overhead. This allows us to properly model the fallback
units of the system as spare parts and thus truly capture the
system behavior for any number of main and fallback units.

As a case study, we use a fail safe electronic control unit
(ECU) based automotive system to demonstrate the proposed
model. In such systems, it is possible to build optimized nodes
that combine ECUs and network controllers on a single FPGA
chip with low power consumption and small area [13]. The
system is composed of a number of ECUs, a Motor Control Unit
(MCU), a Throttle Sensor (THS) and a number of Fall Back
Units (FBUs). The overall system reliability is evaluated for the
case of single ECU and single FBU, single ECU and multiple
FBUs (with different failure rates), then for multiple ECUs and
multiple FBUs. We use the generic reliability expression to
evaluate the reliability enhancement for these different system
configurations. A trend can be observed for the number of
fallback units that can be added to enhance the system reliability.
We notice that adding additional units has a positive impact on
the reliability. However, the percentage of enhancement lowers
as additional components are added. Therefore, we propose
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Fig. 1. Fault Tree Gates: (a) AND, (b) OR (c) PAND (d) FDEP (e) Spare

to set a threshold for the required enhancement, based on the
system requirement, to minimize the number of fallback units.

The state-of-the-art literature shows that DPR was used
in different ways to provide fault tolerance and enhance
the reliability of FPGA based systems, also compromising
reliability enhancement against area and power is a prominent
problem. However, considering the interaction between system
components including partially reconfigurable fall back units
(replacing faulty modules) in calculating and enhancing the
overall reliability is considered a novel approach.

II. RELATED WORK

The state-of-the-art shows that FPGAs with their DPR
technology are widely used for automotive ECU systems.
An ECU using a fault tolerant communication controller was
presented in [14], where Partial Reconfiguration (PR) is used
to dynamically reconfigure a faulty controller. The authors
in [15] presented an architecture for implementing a fail-safe,
safety-critical ECU system on FPGAs. The FPGA is configured
to monitor the control circuits and detect faults. When a fault
is detected, the FPGA is dynamically reconfigured to replace
the faulty modules. Partial reconfiguration was also used in
other automotive technologies, like driver assistance systems
presented in [16]. A scheme for implementing safety-critical
ECU systems on reconfigurable hardware was proposed in [17].
Employing DPR and a custom network controller, the authors
of [17] presented a scheme that is adaptable to implement an
isolated fault-tolerant node or a back-up node to take over the
functionality of multiple failing nodes. A short recovery time
was achieved but with some area overhead. Another FPGA-
based ECU system was proposed in [13] for compute-intensive
non-critical functions, such as driver assistance for automotives.

The literature also investigated fault tolerance techniques for
FPGA based systems through DPR, trying to optimize the area
overhead and recovery time. A methodology exploiting DPR
to relocate faulty modules at run-time was presented in [18]
proposing a partitioning method as a solution to maximize the
number of permanent faults the system can tolerate, through an
algorithm that partitions the FPGA into tiles depending on the
logic resources required by each tile. The number of required
recovery tiles is equal to the maximum number of faulty tiles.
The algorithm decreases the area overhead and increases the
number of tolerable faults but with an increased computational
complexity where scalability is not possible. An Algorithm
Based Fault Tolerance (ABFT) approach was implemented in
[19] for fault recovery using DPR and a quantitative analysis
of the overheads was presented. The area overhead was shown
to be 10% with an execution time penalty of 24% over the
unprotected design in fault free situations.

The Maximum Empty Rectangle (MER) technique with
adjacency heuristic was presented in [11], where tasks are
allocated in DPR systems providing higher area utilization,
higher task acceptance ratio and lower fragmentation ratio. A
design flow was proposed in [6] employing a mechanism to
detect and recover from permanent faults reducing the number
of RPs with better utilization of FPGA resources. The design
flow methodology enables relocating modules on different RPs
without the need for multiple partial bitstreams. A new aging
sensor was deployed adding an aging effects mitigation unit.
The aforementioned techniques use DPR for enhancing the
reliability. They mostly investigate partitioning algorithms for
decreasing area overhead and fast recovery through smaller
reconfiguration time, but are in most cases accompanied with
high computational complexity and accordingly are not scalable
for larger or more complex systems.

An approach for defining the suitable number of spare units
needed by a system is studied in [12], where reliability and
performability modeling are carried out based on Markov
models. Power consumption is used as the penalty, showing
that an increase in the number of spares increases the system
reliability but on the other hand, leads to a poorer performability.
The presented method also lacks scalability as the complexity
of the Markov models significantly increases with the number
of system modules. DFT models have also been used in
the analysis of automotive systems. For example, in [20],
DFTs are used in the Safety analysis of vehicle guidance
systems. Furthermore, in [21], DFTs have been successfully
used in the analysis of a drive-by-wire system with brake and
throttle control units. However, to the best of our knowledge,
DFTs have not been used in minimizing the area overhead
incurred by adding redundant spare units. The novelty of
this work lies mainly in considering the relationship between
interacting system components and the effect of faulty elements
on the overall system reliability to be used in determining the
appropriate number of spare units for least area overhead.

III. DYNAMIC FAULT TREES

Reliability expresses the probability of continuing to provide
a reliable and correct service over a given period of time [22].
Several models are developed to capture the system reliability,
which vary depending on the properties that they capture.
Traditionally, Fault Trees (FTs) [23] and Reliability Block
Diagrams (RBDs) [24] are used to model the system failure
and reliability, respectively. However, these models cannot
capture the failure dependencies and spares that exist in real-
world systems. Dynamic reliability models, on the other hand,
are introduced to model the sequences of failure and spares
that affect the reliability of a given system, such as DFTs [23].

A DFT graphically models the failure behavior of a given
system [23]. The modeling starts by a top event that represents
the failure of a system or a sub-system. The DFT inputs
represent the basic events that model the failure of the
system components. The failure relationships between these
components are captured using DFT gates. These gates allow
capturing the failure dependencies that cannot be modeled



using the traditional fault trees. The AND gate (Figure 1(a)) is
a traditional gate, where its output fails with the failure of both
inputs. The output of the OR gate (Figure 1(b)) fails when at
least one of the inputs fail. The Priority-AND (PAND) gate
(Figure 1(c)) models the failure sequences, where its output
fails when both inputs fail in sequence. Failure triggers are
modeled using the Functional DEPendency (FDEP) gate of
Figure 1(d)). The spare gate, Figure 1(e), is used to model
spare parts in a given system. For example, after the failure
of the main part Y of Figure 1(e), the spare part X will be
activated to replace the main part. The spare part can have
three variants (hot, warm and cold) depending on its failure
behavior in the dormant state. The hot spare (HSP) has the
same failure behavior in both the dormant and active states,
while the cold spare (CSP) cannot fail in its dormant state. The
warm spare (WSP) is the general case, where the spare part
can fail in its dormant state with a certain dormancy factor.

DFTs can be analyzed qualitatively to identify the sources
and sequences of failure of the basic events that lead to the
failure of the top event. A quantitative DFT analysis can also
be conducted to express and evaluate the probability of failure
of the top event. These analyses provide deep insights about
the failure behavior of a given system and allow devising some
strategies to enhance the system reliability when conducted at
an early stage in the design process.

IV. PROPOSED METHODOLOGY

In this paper, we aim to minimize the number of fallback
units that can be added, and thus the overall area, to enhance the
system reliability. Therefore, we consider modeling the reliability
of the given FPGA based system using DFTs to study the effect
of the number of spare components on the system reliability.
An FPGA system mainly consists of main units with dedicated
functionality and fallback units that can be partially reconfigured
to replace one of the main parts after failure. First, we assume
a simple system with three main units (U1 — U3) and a single
fallback unit (F'BU). The DFT of this system can be modeled
using HSP gates, as shown in Figure 2. After the failure of
one of the main parts, F'BU can be reconfigured to replace
the functionality of the failed main part. The system fails when
at least two units fail (including the F'BU). This behavior is
equivalent to a 2 out of 4 voting gate, where its output fails with
the failure of at least two inputs. In other words, the system
continues to work if 3 out of 4 components are working. Thus,
the reliability of this system can be expressed as:

4
4 ) .
Relg(t) = R'(t) x (1= R(t))*™" 1
o) =3 () <m0 < a-roy
where (@ is the output of the DFT in Figure 2, R(t) is the
reliability of a single component until time ¢.

We extend this model to capture the possibility of having
m main units with n available F'BU s, as shown in Figure 3.
We need m out of m + n units to be working. We express the
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Fig. 3. Generic DFT Model

reliability of this system as:

m—+n
Relg(t) =Y <m N n) % Ri(t) x (1 — R(1))™" (2)
i=m ¢

For a given number of main units, we evaluate the reliability
enhancement by first finding the average system reliability with
a varying number of fallback units, over a given period of time.
For instance, consider the generic model of Figure 3, we first
fix the number of main units, and then we calculate the average
reliability with one, two, three, and so on fallback units. With
each additional iteration, we calculate the reliability enhancement
of the two consecutive averages. The problem lies in knowing
when to stop adding more fallback units. Thus, we propose to
set a threshold for the reliability enhancement and determine the
number of units that led to this enhancement. This means that
adding additional units beyond this number will not have any
significant impact on the reliability. The procedure to accomplish
the proposed methodology is described in Algorithm 1.

Algorithm 1 Finding the Number of Fallback Units
I:n<+1

2: t«+ [0,1]

3: th < threshold

4: Relenhancement < 00

5: while Relonhancement > th do

6: Angelnfl = Ziet Reln_l(l)/l

7: A'UgReln = Eiet Reln(i)/l
V9Rel, —AVGRel,,

8: Relenhancement = Avgrer.

9: n -+ +

10: end while

11: return n

We first start by setting the number of fallback units n to 1
and assigning a time period [0, /] over which we are interested
in finding the reliability of the system. Then, we decide the
threshold that will be used to determine when to stop adding spare



parts. The reliability enhancement is first set to a big value, i.e.,
oo, which allows us to enter the while loop for at least one time
unit. We continue adding more units as long as the improvement
in the reliability exceeds the threshold. After exiting the loop, n
will have the number of additional units that satisfy the condition.
In the following section, we describe how the proposed algorithm
can be used to minimize the number of additional fallback units
of a fail safe ECU based automotive system.

V. CASE STUDY: ECU BASED AUTOMOTIVE SYSTEM

Modern Automotive systems are complex distributed cyber-
physical systems handling critical and non-critical functions.
These system are based on distributed ECUs integrating process-
ing elements and peripherals to implement a variety of functions.
The complexity of modern automotive systems requires an
increased number of ECUs and extensive in-vehicle network
communication. Reliability of these systems is a prominent
problem and is usually handled through incorporating redundant
units increasing area and power. Accordingly we consider an
ECU based automotive system as relevant use case to show
how our approach can enhance the reliability with minimum
redundant area overhead.

A. Case Study Description

The use case system consists of three regular separate control
units connected through a communication link, as shown in
Figure 4. The operating scenario reads a throttle position and
controls the engine. The ECU is responsible for gathering the
throttle position data, measured and provided by the THS. Then,
the ECU converts the throttle position data into engine control
data, and forwards this data to the MCU, which is responsible
for controlling the engine. A fourth unit acts as a fallback unit
FBU in case of a failure of one of the regular control units.
This fallback unit-FBU is realized by using DPR. The size of
the reconfigurable block used for the fall back unit supports
resources to replace any of the other control units. Figure 5
shows a sequence diagram for the normal scenario. In this case,
the FBU does not have to perform any active functionality,
and it is only passively monitoring the data transfer on the
communication link to detect possible errors.

The FBU has to monitor all transferred data on the bus
and detect any failures (e.g., timeout, error flags, etc). In this
system we assume fail silent as the system units are either

Fallback Unit

THS: Throttle Sensor
MCU: Motor Control Unit
ECU: Electronic Control Unit

Fig. 4. Basic Concept for Failsafe ECU
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functioning correctly or they stop producing output. So the
bus monitor module implemented inside the FBU monitors the
signal activity on the bus and can recognize a faulty module.
Once an error is detected, partial reconfiguration is triggered
by the bus monitor module. After the reconfiguration is done,
the fallback unit completely takes over the functionality of the
faulty component. Due to the fail silent assumption, the faulty
device will not affect the behaviour of the system. Figure 6
shows a sequence diagram including a faulty MCU. The bus
monitor detects that the MCU is running into a timeout and
triggers a DPR to take over its functionality. After finishing the
reconfiguration, normal operation takes over again (see Figure
5), but the fallback unit serves as MCU now.
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The use case was implemented on a Zedboard, Zynq
7000 Evaluation Board and the ECUs are based on ARM
Cortex-M1/M3 controller which is suitable core for ECU
implementation due to the possibility of streamlined software
development. We consider the case of 1 ECU, 1 THS, 1
MCU and 1 FBU. The design utilizes around 11% of the
Zynq available hardware resources with the detailed resource
utilization key provided in Table I.

In order to minimize the number of fallback units of the

system, depicted in Figure 4, we need to create its DFT model.

We first use the model of Figure 2, where the system has an
ECU, MCU and THS with a single FBU. Then, according to our
proposed algorithm, with each iteration we add an additional
FBU. The system continues to work as along as there are three
functioning components. These components can be the main

parts, i.e., ECU, MCU and THS or their FBU replacements.

We compute the reliability for up to 100 iterations, assuming
exponential distributions with the same failure rate of 1 x 1073
for all components, as shown in Figure 7(a). The reliability is
enhanced with each additional component (iteration), but it is
evident that this enhancement does not increase significantly
when more units are added. We change the failure rates of
the components to 3 x 10~2 and repeat the analysis for 50
iterations to ensure that this trend is independent of the failure
rate, as shown in Figure 7(b). Clearly, the reliability trend is
similar to the one of Figure 7(a), which means that with each
additional spare unit the reliability improves.

We also consider the possibility of having more than three
main units with multiple FBUs, i.e., several ECUs. Thus, we

use the generic DFT of Figure 3 to model the system reliability.

Figure 7(c) depicts the reliability of the system with five main
units (3 ECUs, 1 MCU and 1 THS) and one FBU up to
100. We use the same failure rates as of Figure 7(a). It is
noticed that the reliability of the system is lower than that of
Figure 7(a), i.e., with only one ECU. Thus, this system requires
more FBUs in order to guarantee a certain level of reliability
enhancement. Therefore, as mentioned previously, we need to
determine the number of components to be added at which the
reliability enhancement will not be improved significantly. It is
worth mentioning that such generic results cannot be obtained
using Markov chains based tools, where the state space grows
exponentially with the number of system components.

The second phase of the algorithm is to calculate the reliability
enhancement with each iteration. We consider several variations
of the system, i.e., for different numbers of ECUs (4 to 8

TABLE 1
RESOURCE UTILIZATION, POST-IMPLEMENTATION

Type Used Available Percent [%] used
LUT 4827 53200 9.07

LUTRAM | 289 17400 1.66

FF 4832 106400 4.54

BRAM 16 140 11.42

DSP 3 220 1.36

10 25 200 12.50

BUFG 3 32 9.37

MMCM 1 4 25.00
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Fig. 7. System Reliability for Different Scenarios: a) Three Main Units and
up to 100 FBUs with Failure Rate of 1 x 10~2 b) Three Main Units and up
to 50 FBUs with Failure Rate of 3 x 10~3 ¢) Five Main Units and up to 100
FBUs with Failure Rate of 1 x 1073

ECUs). Based on Algorithm 1, we need to calculate the reliability
enhancement with each additional FBU (each iteration). Figure 8
shows the reliability enhancement calculated using the average
reliability. We notice that the enhancement drops significantly
with each added component and thus, adding more redundant
components to the system can have a negligible effect on the
reliability. According to the proposed algorithm, we need to set
a threshold for the enhancement. If we assume that our target
reliability enhancement threshold is 0.04, then, based on Figure 8,
we need 13.75 ~ 14 FBUs to achieve the target reliability
enhancement. It can be noticed that increasing the number of
main components in the system requires adding more FBUs to
achieve the same target reliability enhancement.
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VI. CONCLUSION

In this paper, we presented a methodology to minimize
the number of redundant fallback units (FBUs), i.e., spare
units, in an FPGA system using dynamic fault tree (DFT)
models. These FBUs replace the main faulty units in the
system using FPGA dynamic partial reconfiguration. We
proposed a generic DFT model that allows expressing the
reliability of a given FPGA system with generic numbers
of main and spare components. We proposed an algorithm
that can be used to calculate the required number of FBUs
based on a certain reliability enhancement threshold. This
enables analyzing several scenarios to minimize the number of
additional FBUs. We illustrated the efficiency of our proposed
methodology using a fail safe electronic control units (ECUs)
based automotive system. We showed that our DFT models
can be used to calculate the reliability enhancement of several
variations of the system, i.e., different numbers of ECUs and a
large number of FBUs. We minimized the number of required
FBUs to achieve a certain reliability enhancement. These results
cannot be obtained using Markov chains tools, where the
state space grows exponentially with the number of system
components. The novelty of this work lies mainly in considering
the relationship between interacting system components and
the effect of faulty elements on overall system reliability. The
developed reliability expression can be integrated into the
partitioning algorithm by including the developed reliability
calculations in partitioning to optimally divide the FPGA
resources among the FBUs. As a future work, we plan to
improve the developed reliability expression to adapt different
failure rates of the system components.
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