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Abstract—Deterministic network calculus (DNC) is not suitable
for deriving performance guarantees for wireless networks due
to their inherently random behaviors. In this paper, we develop a
method for Quality of Service (QoS) analysis of wireless channels
subject to Rayleigh fading based on stochastic network calculus.
We provide closed-form stochastic service curve for the Rayleigh
fading channel. With this service curve, we derive stochastic delay
and backlog bounds. Simulation results verify that the bounds
are reasonably tight. Moreover, through numerical experiments,
we show the method is not only capable of deriving stochastic
performance bounds, but also can provide guidelines for design-
ing transmission strategies in wireless networks.

I. INTRODUCTION

Network calculus is a theory dealing with performance
guarantees in packet switching networks [1], [2], [3], [4], [5].
With the abstraction of arrival curve for traffic flows and
service curve for network elements, it has been widely applied
in communication networks for performance analysis.

In general, network calculus has been developed in two
tracks: deterministic network calculus (DNC) and stochastic
network calculus (SNC). The DNC generally considers the
worst-case performance analysis through deterministic arrival
curve and service curve. Recently, it has been extended
and applied for worst-case performance analysis of sensor
networks by several researchers [6] [7]. However, since data
communication in wireless networks is unstable and irregular,
it is very difficult even impossible to find the deterministic
performance bounds. To incorporate nondeterministic service
provisioning, the performance bounds have to be comple-
mented with certain violation probabilities. SNC is such a tool
which can be employed in the design of wireless networks to
provide stochastic service guarantees.

In this paper, we propose a network calculus based approach
for Quality of Service (QoS) analysis of wireless channels
subject to Rayleigh fading. We develop a stochastic service
curve model for the Rayleigh fading channel. Based on this
model, we provide formulas to derive the probabilistic delay
and backlog bounds in the cases of deterministic and stochastic
arrival curves. The simulation results verify that the tightness
of the bounds are good. Furthermore, through numerical
experiments, we show the analysis method is not only capable
of deriving performance bounds with corresponding violation
probabilities, but also can provide guidelines for designing
transmission strategies of wireless networks.
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The rest of this paper is organized as follows. Section II in-
cludes related work. Section III presents the model of Rayleigh
fading channel and the stochastic service curve. Section IV
contains derivation of performance bounds. Simulations and
numerical experiments are implemented in Section V. Finally,
conclusions and future work are given in Section VI.

II. RELATED WORK

In general packet switching networks, network calculus
provides the means to deterministically reason about timing
properties and resource requirements. Systematic accounts of
network calculus can be found in books [3] [4].

DNC is recently extended and applied for performance
analysis and resource dimensioning of WSNs by several
researchers [6] [7] [8] [9] [10] [11]. In [6], Schmitt et
al. firstly applied network calculus to sensor network and
proposed a generic framework for performance analysis of
WSNs with various traffic patterns. They further extended
the general framework to incorporate computational resources
besides the communication aspects of WSNs [8]. In [7],
Anis et al. proposed a methodology for the modeling and
worst-case dimensioning of cluster-tree sensor networks. They
derived plug-and-play expressions for the end-to-end delay
bounds, buffering and bandwidth requirements as a function
of the WSN cluster-tree and traffic characteristics. In [10],
the authors presented a method for computing the worst-case
delays, buffering and bandwidth requirements while assuming
that the sink node can be mobile.

Research on SNC has the potential of providing insights
into stochastic service guarantees of packet networks [12] [13]
[14] [15]. In [13], Burchard ef al. introduced the concept of
statistical service curves as a probabilistic bound on the service
received by an aggregation of flows or a single flow. Ciucu ef
al. [12] extended the stochastic network calculus by providing
a network service curve formulation which is capable of
calculating stochastic end-to-end delay and backlog bounds
for a number of arrival and service distributions. In [16], Jiang
and Emstad proposed a server model to facilitate stochastic
service guarantee analysis and address the challenges of de-
lay guarantee, backlog guarantee, output characterization and
concatenation property. There are a lot of works providing
theoretic fundamentals of stochastic network calculus, but
few of them study the problem of mapping the theory to a
specific application. In [15], the authors presented a method for



analyzing wireless channels by modeling channels as Markov
chains. And they evaluated the delay tail distribution. However,
they did not give closed-form service curves for the channel.
Our work differs from previous work and mainly contributes
in the following way: we propose a method for stochastic QoS
analysis of the Rayleigh fading wireless channel. Moreover, a
closed-form service curve for the channel is derived.

III. MODELING OF THE RAYLEIGH FADING CHANNEL
A. Channel model

Fig. 1 shows the system model of a discrete-time flat-fading
Rayleigh channel [17], which can be expressed by,

Y = ||e’?X + Z (1)

where X and Y are the channel input and output, respec-
tively, Z is the independent and identically distributed (i.i.d.)
Gaussian noise; |h|e’¥ is a complex channel gain with
amplitude |h¢| which is a random variable with a Rayleigh
distribution, and phase ¢ is uniformly distributed in [0, 27).
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Fig. 1. System model of a fading channel.

Some assumptions about this model are: 1) Channel distrib-
ution information (CDI) is available both at the transmitter and
receiver; 2) Channel state information (CSI) is only available
at the receiver; 3) it is a slow-fading channel, i.e., the channel
state does not change during the transmission of a packet.

Let P,,, W, and Ny denote the average transmission power,
channel bandwidth, and power spectral density of the noise,
respectively. The channel capacity can be expressed as,

2

C' = Wlogy(1 +107/1%) = W log, (1 + %) . Q)
Since the transmitter does not know the instantaneous signal-
to-noise ratio (SNR) v; (in dB), it can not adjust its trans-
mission power according to the channel condition. Hence,
the transmission data rate can be considered as a constant
regardless of the SNR of the received signal and there is prob-
ability of outage. For a transmission data rate R, the outage
probability of a Rayleigh fading channel can be expressed by,

Pout(R) = Pr{C < R}

_ Ptm‘ht|2
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where the channel gain |h;| has a Rayleigh distribution with
probability density function (pdf)
2

flx)=a- exp(—%).
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By the transformation theorem, |h;|?

tribution with pdf,

has an exponential dis-

1 T
9(@) = 5 exp(—3).
Therefore, the outage probability is derived as,

1—2R/W
pout(R) =1-—exp (2108NR/10) s 4)

where SNR = 10log;([P:z/(NoW)] denotes the signal-to-
noise-ratio in dB.

B. Stochastic service curve

Since the channel capacity C' is a random, deterministic
service curve is not suitable for capturing its characteristics.
Thus, we use the stochastic service curve to characterize the
service capability of the channel, which is described by two
parameters: the data transmission rate R, and the error function
€. According to the previous analysis of the Rayleigh channel,
it can be modeled by the stochastic service curve (5(t),€),
where

1—2R/W
Bt)=R-t and €e(R)=1 exp( 5 SNR )

The violation probability function e defines the outage
probability of the channel. It also means that the probability
that the channel can not provide the transmission rate R is
less than €(R). e is mainly impacted by the transmission data
rate R and the SNR. R is determined by the modulation and
coding schemes of the transmitter. SNR is determined by the
transmission power and channel condition.

I'V. PERFORMANCE BOUNDS

This section presents the results of performance bounds with
traffic sources transmits data over the Rayleigh channel. We
consider two cases: 1) the source periodically transmits data,
which can be modeled by a deterministic arrival curve; 2) The
traffic source transmits data randomly, which can be modeled
by a stochastic arrival curve. Part of these derivations and
proofs are based on the results in [18]. Due to space limitation,
we do not present basic knowledge of network calculus. Please
refer to [4] for more details.

Let A(t) and D(t) denote the arrival process and departure
process!, respectively.

A. Deterministic arrival traffic

Theorem 1 Consider a traffic arrival process A(t) bounded
by a deterministic arrival curve «(t), and A(t) receives a
stochastic service curve (3(t), €), the performance bounds can
be derived as follows.

1) Backlog bound. The stochastic backlog bound B(t) is
expressed as:

Pr{B(t) > a0 A0)} < )
where o © 3(0) = sup;>o{a(t) — B(t)}.

'We call the input and output of the channel as arrival process and departure
process, respectively.



2) Delay bound. A stochastic upper bound for delay d(t) is
given by:
Pr{d(t) > h(a, B)} < e, (6)

where h(a, ) = sup;sof{inf[r > 0 : «at) < B(t + 7)]}
denotes the maximum horizontal difference between the arrival
curve and service curve.

Proof: Let t > s > 0. From known conditions, we have
B(t) = A(t) — D(t), a @ B(0) = supgsofa(t) — B(t)},
A(t) — A(s) < a(t —s), and Pr{D(t) < A® ()} < e
Consequently,

Pr{B(t) > a @ 3(0)}
—Pr {A(t) — D(t) > supla(7) — ﬁ(r)]}

>0

<Pr {A(t) —D(t) > sup [A(t) — A(t —7) — ﬁ(f)]}

0<7<t
—Pr {A(t) —D(t) > A(t)— inf [A(t—17)+ 5(7)]}

0<r<t
—Pr{D(t) < A2 B(t)} <e.
(7

Let 79 = h(a,3). Since the delay is defined as: d(t) =
inf{r > 0: A(t) < Dt + 1)}, we get Pr{d(t) > 10} <
Pr{A(t) > D(t+ 70)}. The problem becomes how to prove
the bound of Pr{A(t) > D(t + 70)}.

A(t) — D(t + 70)
=A(t) - A®B(t+70) + A® B(t +10) — D(t + 7o)
=A(t) — _if[A(s) + B(t+70 - 5)] ®
+[A®B(t+19) — D(t+ 7))
Let V =[A® B(t +70) — D(t + 70)], we have
A(t) = D(t + 1)

< swp [A(t) - A(s) —alt — s)]
0<s<t+79
+ sup [a(t—s)—Bt+T10—5)]+V ©)
0<s<t+19
< sup [a(t—s)—0Bt+70—9)]+V.
0<s<t+710

Since 7y is the maximum horizontal difference between «(t)
and beta(t), we get a(t — s) < B(t — s + 79). Therefore,

Pr{d(t) > 10} < Pr{D(t) < A®B(t)} <e. (10)

B. Stochastic arrival traffic

Apart from deterministic arrival curve, an arrival process can
be stochastically bounded, such as the exponentially bounded
burstiness (EBB) model [19]. We consider a stochastic arrival
curve model with parameters (p, a1, as) as following [13]:

Pr {Oililzt [A(t) — A(s) —a(t —s)] > 0} <aje "7,

(11)
where 0 < s <t,o0 >0, and a(t) =p-t+o.
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Theorem 2 Consider a traffic arrival process constrained
by a stochastic arrival curve, i.e., A(t) ~ («a(t), f(o)), where
alt) = p-t+ o and f(o) = aje”*29. A(t) receives a
stochastic service curve (/3(t), €). The performance bounds can
be expressed as follows,

1) Backlog bound. A stochastic backlog bound B(t) can be
derived by,

Pr{B(t) > a @ B(0)} < e+ f(0). (12)

2) Delay bound. A stochastic upper bound for delay d(t) is
given by:
Pr{d(t) > h(a, B)} < €+ f(0). (13)

Since the probability can not be bigger than 1, we define
€+ f(o) = min(e + f(0),1).
Proof: The backlog is defined as the amount of data stored
in the system. So we have,

B(t) = A(t) — D(t)
=A(t) - A p(t) + A B(t) — D(t)
— A(t)— int [A(s) + Bt — 5)] + [4® 3(t) ~ D(0)

< sup [A(t) — A(s) — B(t — s) — a(t — s) + a(t — )]
0<s<t
+[A®p(t) - D(t)]
< sup [A(t) — A(s) — a(t — )] + supla(t) — B(1)]
0<s<t >0
+[A® B(t) — D(t)].
(14)
|

The prove of delay bound is very similar to the case
with deterministic arrival curve (Eq. (9)). The difference is
in the last step of Eq. (9): for deterministic arrival curve,
Pr{supy<s<;[A(t) — A(s) — a(t — s)] > 0} = 0; while for
stochastic arrival curve, Pr{supy,<,;[A(t) — A(s) — a(t —
s)] > 0} < f(o). Therefore, the delay bound is given by
Pr{d(t) = h(ce, B)} < e+ f(0).

Although our work focuses on the EBB arrival model, it is
straightforward to extend the method for deriving performance
bounds for other types stochastic arrival curves as long as the
deterministic arrival curve and violation probability are known.

V. PERFORMANCE EVALUATION

This section presents both simulation and numerical results.
With simulation results, we validate the analytical approach.
We study the relations between performance bounds and chan-
nel characteristics through numerical results, which also can
provide hints on designing transmission strategies in wireless
networks.

A. Simulation results

In order to validate the correctness and tightness of the
network calculus based modeling and QoS analysis method,
we conduct simulations and compare analytical results with
simulation results. The parameters used in the simulation
are: channel bandwidth W = 30 kHz, SNR = 0dB,
packet size is 1 kbit. Each simulation is performed 50 runs



with different seeds. In each run, the simulation period is
20000 cycles and the source generate one packet every cycle.
The delay of every packet is recorded, and the backlog
is recorded in every cycle. Since we can not obtain the
violation probability from the simulation directly, we need
to map the simulation results to delay/backlog bounds with
corresponding violation probabilities. Let m 50 denote
the total number of runs, and n = 20000 denote the total
number of packets/cycles in one simulation run. Let d(7, )
(i=1,2,--- ,m;j =1,2,--- ,n) denote the delay of packet
j in simulation run i. We sort d(i,:) in descending order,
where d(i, :) represents the set of values of delay in simulation
run i. Let () = (1 —1) x k (I = 1,2,---,[1/k]) denote
the set of violation probabilities, where x is a scaler (In
the figures, we set x = 0.05). If the violation probability
is €o(l), the corresponding delay bound is computed by
do(l) = maxi<;<m[d(Z, [n X €(I)])]. For example, the delay
bound with violation probability €,(3) = 0.1 is computed as
d() (3) = MaXj<i<m d(Z, 2000)

In the first simulation, the traffic source sends packet
periodically with data rate r 10 kbps over the Rayleigh
fading channel. The arrival process can be modeled by an
affine arrival curve a(t) = rt + b, with b = 1 kbit. We study
and compare the analytical and simulation results of packet
delays under different violation probabilities.

Packt delay: simulation Simulation Results VS. Analytical Results

Stochastic Network Calculus

+ Simulation

Delay (s)
Delay (s)

—— Al Delays
- - -Delay with 10% Violation .

15 0 02 04 06 08
10" Delay Violation Probability

0 0.5

Packet count

Fig. 2. Simulation results: delay. Fig. 3.  Compare simulation and

analytical results.

Fig. 2 illustrates the packet delays in one simulation run,
where 20000 packets are sent by the source. From this figure,
we can see that the packet delays are very heterogencous,
varying from 0.01 s to 5 s. For the simulation data, we find
that there are very few packets experience high delays. So the
deterministic bound may be very loose and it is more mean-
ingful to derive the stochastic bound. From these simulation
results, we can derive the delay bounds with corresponding
violation probabilities using the mapping method proposed in
the previous paragraph. For example, we first sort the delay
d(7) (1 = 1,2,---,20000) in the descending order. If the
violation probability is 10%, the delay bound is d(2000) (since
2000/20000 = 0.1), which is 0.21 s (shown by the dashed line
in Fig. 2). The delay bounds with other violation probabilties
(as shown by '+’ marker in Fig. 3) can be computed similarly.

The analytical results can be computed by Eq. (6). Fig.
3 shows the comparison of analytical results and simulation
results. In this figure, the maximum, average, and minimum
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differences between the simulation and analytical results are
5.19%, 9.88% and 13.5%, respectively. From this figure, we
can see that all the simulation results are within the bound
of the analytical results. Moreover, the comparison indicates
that the performance bounds derived by network calculus is
reasonably tight.

Since the arrival process is constrained by a deterministic
arrival curve «(t) = rt + b, and the channel provides a
stochastic rate service curve with zero processing delay, the
backlog bound (Eq. (5)) is only determined by the burstiness of
the input. Hence, the analytical backlog bound is constant and
independent of the violation probability. In this case, we need
use empirical method to derive an empirical backlog bound
by combining the analytical and simulation results.

Simulation with Stochastic Arrival Traffic: In the second
simulation, the traffic arrival process is a stationary two-state
Markov process A(t), t = (i — 1)tg,i = 1,2,3,--- (to is
the inter-arrival time) with transition probabilities pio = 1076
and ps; = 1072, When in state 1, the source is gener-
ating no packet with probability 1/8 and no packet with
probability 7/8. When in state 2, the source is generating
no packet with probability 9/20 and no packet with prob-
ability 11/20. The packet size is 1 kbit. This process can
be characterized by the EBB arrival model as following,
Pr{sup[A(t) — A(s)] > p(t — s) + 0} < exp(—aq0), where
as =2.73¢ —3 and 0 < s <t [20].

Simulation Results VS. Analytical Results

—— Stochastic Network Calculus

+ Simulation: 6 = 10 kb
X% Simulation: 6 = 5 kb

Delay (s)

0 0.2 0.4 0.6
Violation Probability

Fig. 4. Compare simulation results with analytical results: Markov arrivals.

Fig. 4 shows the comparison of analytical results (by
network calculus) and simulation results. For the analytical
results, we set input burstiness 10 kbit. We implement two
simulations with input data rate p = 10 kbps, and burstiness o
equals to 5 kbit and 10 kbit, respectively. The input burstiness
denotes the number of packets that the source generate at
a time. For example, o 5 corresponds to ng = 5 and
to = 0.5 s, and 0 = 10 corresponds to ng = 10 and tg =1 s.
From the comparison, we can see that both simulation results
are within the bounds of analytical results, which validate the
correctness of the analytical method. Furthermore, with the
same setting of input burstiness, i.e., o = 10 kbit, the simu-
lation and analysis results are very close to each other. The



maximum, average, and minimum differences between them
are 8.25%, 10.5% and 15.8%, respectively. The comparison
indicates that the tightness of delay bound derived by network
calculus is good.

B. Numerical results

In the first experiment, we study the performance bounds
under the case of a periodic traffic source sending packets
over the Rayleigh fading channel. The traffic input process
is modeled an affine arrival curve [4], which is defined as
a(t) = rt+ b, where b and r represent the burst tolerance (in
bits) and the average data rate (in bit/s), respectively. In this
experiment, we set b = 1 kbit and 7 = 10 kbps.

o
©

o
o

I
IS

Violation Probability
o
N

N
oo

8 x10*

SNR (dB) 20 10 Tx Data Rate (bit/s)

Fig. 5. Delay bound under different SNR and transmission data rates.

-10 10

Tx Data Rate (bit/s)

Fig. 6. Violation probability of the delay and backlog bounds.

If R > r 2, the delay bound can be calculated by h(a, ) =
b/ R, and the backlog bound is @ §(0) = b. Fig. 5 shows the
values of delay bound varying with R € [10 kbps, 100 kbps]
and SNR € [-10 dB,20 dB]. The delay bound d is deter-
mined by the input burstiness b and the transmission data
rate R. From Fig. 5, we can see that with a fixed b, it
increases as transmission rate increases, and it is independent

2If R < r, both the delay and backlog would increase with time. It is
impossible and meaningless to find the finite delay and backlog bounds.
Therefore, we consider the case that R > r.
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of the SNR. The backlog bound is only determined by the
burstiness of the input traffic. However, the corresponding
violation probabilities of these two bounds are impacted both
by the transmission data rate and SNR (as shown in Fig. 6).
The violation probability increases as transmission data rate
increases and/or SNR decreases. There is a trade-off between
the delay bound and its violation probability. If we want to
reduce the transmission delay, a high transmission rate should
be chosen. But high transmission rate brings high violation
probability.

The analysis method not only can be used to derive perfor-
mance bounds and their corresponding violation probabilities,
but also can provide guidelines for designing modulation
and coding schemes, i.e., the designer can choose appropri-
ate transmission strategies according to performance require-
ments. For example, if the performance requirement is given
as: d < 0.02 ( as shown by the plane in Fig. 5) with violation
probability less than 10% (as shown by the plane in Fig. 6), we
can get the following system configurations: R > 50 kbps and
SNR > 14dB, which are the values constraining delay and
violation probability within the threshold. Hence, the designer
can choose corresponding transmission strategy (transmission
power, modulation and coding schemes) according to R and
SNR.

Numerical Results with Stochastic Arrival Traffic: In
the following experiments, we study the performance bounds
under the case of a random traffic source sending packets
over the Rayleigh fading channel. The traffic input process
is modeled by the EBB arrival curve (Eq. (11)). The values
of parameters are: a3 = 1, as = le — 3, and p = 10 kbps.
Similar to the previous experiment, we assume p < R.

2 SS
(5
0009220,
I,,ll;;;' ',

Violation Probability
o o o o

-10

Burstiness Constraint 8000
on Input (bits)

10000 20

SNR (dB)

Fig. 7. Violation probability of the delay and backlog bounds.

In this experiment, we fix the transmission data rate R =
30 kbps and change the values of input burstiness (o) and
SNR. Both the delay (d = o/R) and backlog (B = o)
bounds are linearly increasing with input burstiness. Their
corresponding violation probabilities are illustrated in Fig. 7,
where we can see that the violation probabilities decrease as
SN R and/or o increase. Hence, there are trade-offs between
performance bounds and their violation probabilities. High o
would cause low violation probability, but bring high delay



and backlog. Therefore, appropriate values of ¢ and SNR
should be chosen according to the performance requirements.

x 10*
Tx Data Rate (bit/s)

Burstiness Constraint8000
on Input (bits) 10000

10

Fig. 8. The delay bound.

-

o o
o ®

o o

Violation Probability

10

6000
Burstiness Constraint 8000

4
2 x 10
on Input (bits) 10000

Tx Data Rate (bit/s)

Fig. 9. Violation probability of the delay and backlog bounds.

In this experiment, we fix the SNR = 10 dB and change
the values of input burstiness (o) and transmission data rate
R. Similarly, the backlog bound is only determined by o. The
delay bound is shown in Fig. 8. The violation probabilities of
these two bounds are illustrated in Fig. 9.

From Fig. 8, we can see that the delay bound increases
as input burstiness increases, and it decreases as transmission
data rate increases. While the violation probability of the
bounds has an opposite behavior, i.e., it decreases as the
input burstiness increases and it increases as the transmission
data rate increases. Moreover, from these performance results
we can derive the system configurations which can meet the
requirements. For example, if the performance requirements
are defined as: d < 0.15s, B < 5 kbit with violation
probability less than 10%, then we should select the values
of SNR and o below the planes in Fig. 8 and Fig. 9.

VI. CONCLUSION

In this paper, we propose a method for modeling and QoS
analysis of wireless channels subject to Rayleigh fading. The
key challenge in analyzing wireless systems is the temporal
uncertainties inherent in fading channels. To this end this work
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applies stochastic network calculus to model Rayleigh fading
channels and derive stochastic delay and backlog bounds. The
analysis method is validated through simulations. Moreover,
numerical experiments show that the performance results
can be used to provide guidelines for design transmission
strategies. Our future work would focus on modeling wireless
channels with other types of fading.
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