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Abstract: Image processing systems exploit image information for a purpose determined by the
application at hand. The implementation of image processing systems in an Internet of Things (IoT)
context is a challenge due to the amount of data in an image processing system, which affects the
three main node constraints: memory, latency and energy. One method to address these challenges is
the partitioning of tasks between the IoT node and a server. In this work, we present an in-depth
analysis of how the input image size and its content within the conventional image processing
systems affect the decision on where tasks should be implemented, with respect to node energy
and latency. We focus on explaining how the characteristics of the image are transferred through
the system until finally influencing partition decisions. Our results show that the image size affects
significantly the efficiency of the node offloading configurations. This is mainly due to the dominant
cost of communication over processing as the image size increases. Furthermore, we observed that
image content has limited effects in the node offloading analysis.

Keywords: camera node optimization; intelligence partitioning; input changes; inter-task data
amount; IoT; WVSN

1. Introduction

Internet of Things (IoT) applications based on smart and distributed cameras have
gained considerable attention in the last decades and become very popular. There are
numerous applications that require the integration of Wireless Vision Sensor Networks
(WVSN), such as traffic monitoring in smart cities [1], security and inspection during
production in Industry 4.0 [2,3], the diagnosis of diseases in healthcare [4] and self-driving
cars in the automotive sector [5]. The continuous advancement in the different sectors
means that more and more applications require greater speed, greater autonomy, more
data and a smaller system size. As a consequence, WVSN systems must have low latency
and low power consumption.

The demands on WVSN make integrating image processing systems in IoT challenging
due to the main characteristics and somehow contrasting nature of image processing and
IoT. On the one hand, we have image processing systems that rely on high data volumes and
require significant processing capabilities while, on the other hand, we have the IoT, relying
on wireless communication and developed with focus on low data volume applications.
Thus, the contrasting nature of the two defines the core challenges in designing image
processing-based IoT systems.

To understand how the amount of data affects the processing in the camera node,
we need to analyze the relationship between the application requirements and the node
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constraints. For example, the smaller size requirement (to reduce weight in drones or hide
its location in vehicles) affects all camera components but especially the battery [6]; for
this reason, the autonomy of the camera could be compromised. In addition, a low latency
requirement in the IoT system requires a general increase in speed at the node, affecting
both the processing and communication parts and resulting in an overall increase of energy
consumption. Furthermore, the requirement of handling more data means using more
memory and increment in both computational and communication load, thereby affecting
both energy and latency at the node. Therefore, the smart camera node is undoubtedly a
crucial component in an IoT system with the data captured and processed by the system a
main factor affecting processing and communication requirements.

Image processing systems consist of a series of image processing tasks that are typically
sequential, and the initial input image is reduced as it progresses through the image
processing pipeline. As a result, the data volume is changing through the processing
stages, which has a significant importance in an IoT node if we consider node offloading.
From a node offloading perspective, the performance of an IoT node is defined by the
inter-dependencies of the processing and the communication component. In our previous
work, we have introduced our node offloading method, intelligence partitioning [7], which
relies on the computational and communication inter-dependencies to extract the optimal
partition point as a trade-off between energy efficiency and latency. Throughout that
analysis, we considered the input image as predefined; hence, its characteristics such as
size and content were not included in the performance analysis while searching for the
optimum partition point. The aim of this paper is to provide an analysis on how the
change of the input image in terms of size and content affects the choice of the optimal
partition point for node. To address this, we provide an analysis based on a traditional
image processing system which we have implemented on a RaspberryPi and measured
the energy consumption for different partition and input image configurations. Our aim
is to achieve a better understanding of how to optimize data-intensive IoT nodes. Thus,
we provide a method to study a broader design space for image processing systems with
intelligence partitioning which enables designers to choose appropriate input options.

As a motivating example, we propose an industrial biscuit inspection application.
The system to analyze combines IoT technology with computer vision; in this way, the
factory benefits from the advantages offered by both systems. On the one hand, IoT
technology makes the vision system able to work wireless. It also provides the factory with
the necessary flexibility to carry out future adaptations of the production system, avoiding
rewiring and costly installations. On the other hand, the vision system is responsible for
detecting cookies that do not meet the quality criteria (size and shape) and providing their
coordinates. The camera node must capture the images of the biscuits that are transported
by a conveyor belt at a certain speed, so image processing time is vital. In addition, the
autonomy of the system is important to avoid production stoppages due to battery changes.
To meet the latency and power demands, we decided to apply the system partition, where
the challenge is to find the optimal partition point that guarantees low latency and low
power consumption. Our hypothesis is based on the fact that the characteristics of the
image (size and content) will have a non-linear effect on the latency and power of the
system, thus affecting partition decisions. Through the study of this application, we
intend to understand and explain the importance of image size in partitioning decisions,
which together with the type of processing platform, type of communication and type of
optimization, will influence the latency and energy in each of the partitions. The challenges
found in the motivating example (reducing latency and power consumption at the node)
are currently found in most wireless vision systems, where limited node resources force us
to adopt creative design solutions (such as partitions).

The article is structured as follows. First, we analyze how the inter-task data amount
varies along the processing chain with respect to changes in the image. Next, we analyze
the dependency between processing time of a task and data to handle by this task to see
how changes in the amount of data affect the processing time. Then, we study and compare
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the latency and energy behaviors of the processing and communication components of each
partition point in an example image processing system. Finally, we look at how changes
in the image affect the optimal partitioning solutions based on the energy and latency
optimization objectives at the node.

2. Related Work

The integration of image processing systems in the context of IoT continues to pose
challenges. Energy and latency are often primarily responsible for the current research
effort [8–12] to contribute to the overall improvement of these systems. Smart cameras with
integrated image analysis capabilities are among the most challenging IoT nodes. The data
intensive nature of such systems can impose high energy consumption and long delays in
the wireless communication and the processing tasks. Thus, deploying low-latency/energy
data-intensive IoT nodes is a challenging task.

To address this, several approaches have been presented, relying on fine-tuned im-
plementations to improve the node latency and energy. Abas et al. [13] achieved energy
efficiency in the node by adapting the activity of the camera to the amount of remaining
battery charge. In addition, the system only records and transmits information when
events of interest are detected. Anagnostou et al. [14] presented an energy aware hardware
activation scheduler that activates functions as the energy is available. Qurabat et al. [15]
improved the energy efficiency proposing data reduction applied at two levels of network
design: the sensor nodes and the gateway. Dai et al. [16] managed to reduce latency at
the edge nodes by improving a low latency object detection algorithm. In the recent years,
the techniques and technologies based on Artificial Intelligence (AI) are being imposed in
the IoT field. Mohammadi et al. explained in their survey [17] how Deep Learning (DL) is
already being applied in each layer of the IoT systems (Device, Edge/Fog and Cloud). In
this survey, the authors highlighted four methods and technologies to incorporate DL on
IoT devices. From the point of view of computational efficiency, the Network Compression
and Accelerators stand out. Regarding the energy perspective, the Approximate Comput-
ing and Tinymote with DL are the most efficient. These works propose solutions for the
efficiency of the current node, but we want to address the problem at the system design
level, where we would take into account the amount of data processed and communicated
to achieve an advantage in terms of latency and energy.

During the past decade, other works proposed node offloading by distributing the
processing tasks between the node and a server. This approach opens up a new design
exploration dimension where image processing may be local, partially local or totally
remote. In their work, Pinto et al. [18] analyzed three scenarios to find out when it is
best to send data and when to process them locally. Khursheed et al. [19] investigated
the partition between hardware (Field-Programmable Gate Array or FPGA) and software
(micro-controller) but also between local and central processing in order to achieve an
optimal partition point that guarantees a minimum energy consumption in the camera
node. Imran et al. [20] descreased the execution time by parallelizing tasks in a FPGA.
In their work, they also considered the partition of the tasks in order to distribute the
processing load between the node and the server. In [21], Motlagh et al. proposed an
Unmanned Aerial Vehicle (UAV) as an IoT node where the energy savings are achieved by
moving local processing (on-board processing) to a Multi-Access Edge Computing (MEC)
node. Zhao et al. [22] presented a system partition approach based on Convolutional
Neural Networks (CNNs) by distributing the convolutional layers that contribute greatly
to inference latency. Although these works take into account processing scenarios, they do
not consider the effects on latency and energy due to changes in the system input.

The aforementioned works offer solutions that undoubtedly contribute to the improve-
ment and optimization of the camera node. However, these works do not consider changes
in the image in their analysis. From a data point of view, an image can vary with respect
to two dimensions: size and content. The size refers to the resolution of the image, which
directly influences the number of pixels to be processed. Content refers to features in the
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image that are relevant to the application. For example, in an object identification task,
the number of objects in an image might affect the processing and communication load,
subsequently affecting the efficiency of the optimization methods proposed.

Many authors have studied the effect that changes in image size and content have
on their systems. In [23], Wang et al. studied an image content weighting methodology
in order to improve image quality assessment (IQA) algorithms. Fookes et al. [24] ana-
lyzed the impact of image resolution on facial recognition performance showing that the
methodology proposed for super-resolution improves the recognition of low-resolution
and noisy facial images. In [25], Yan et al. developed a model to map pedestrians at differ-
ent resolutions. This way, the authors managed to reduce the average rate of false positives
in the context of detection in traffic scenes. In the work presented by Alhilal et al. [26], a
low complexity vision system was designed for the identification of objects in WVSN. The
proposed architecture is characterized by low power processing, thus achieving the energy
efficiency of the node. In [27], Gu et al. investigated the influence of viewing distance and
image resolution on IQA performance. Ur Rehman et al. focused on efficient image delivery
based on object detection [28]. Their work proposes a new object detection model to reduce
false transmission of images and transmitting only image segments instead of complete
images. The results showed considerable energy savings in the camera node compared to
more current techniques. Romic et al. [29] evaluated the performance of a stairs detection
system based on cameras in function of distinct image resolutions. The results showed
that the selection of an optimal resolution is essential to achieve the trade-off between
precision and processing speed. Yazidi et al. faced the challenge of data growth from the
IoT and the generation of Big Data by different platforms [30]. The authors conducted a
data size latency sensitivity study in order to measure the performance of the Apache Spark
framework (Spark is a fast parallel processing system in the Big Data environment) and
evaluate the computational complexity. Despite the existence of studies related to system
input changes, none of them addresses the problem of the impact of size and content of the
input images on both the latency and energy at the node. However, the fact that there is
a great research effort to cover the effect of input image changes on the implementations
highlights its importance.

Summarizing, none of the related works studied the effect that changes in the input
image could have on design decisions related to system deployment. Specifically, design
decisions related to system deployment would be affected by how changes in the image
are transferred through the system to affect energy and latency at different partitions. In
this work, we attack the problem of camera node optimization through intelligence parti-
tioning [7]. Intelligence partitioning targets finding a suitable cut-off point that optimizes
either latency or energy or both considering processing and communication in the sensor
node (Figure 1).

Figure 1. Intelligence partitioning.

In this article, we rely on the previously introduced intelligence partitioning method,
but we provide a more elaborate view of the problem, including variations in the input
image size and content. This is because image size and content could have an impact
on the inter-task data amount during the processing chain, affecting the workload of the
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processing tasks and the node efficiency. Therefore, we explore the use of intelligence
partitioning as a methodology for the camera node optimization, this way contributing to
the problem of implementing data-intensive, low-latency/energy camera nodes.

3. Theory
3.1. Intelligence Partitioning/Node Offloading

Intelligence partitioning is a method developed by Shallari et al. to improve the
energy efficiency of smart sensor nodes by analyzing the trade-off between processing and
communication [7]. It focuses on the prospective energy consumption variation due to
partitioning the processing trail at any given point, and allocating the processing tasks
between the sensor node and a remote processing unit. By taking into consideration a
variety of partition configurations and wireless communication technologies, it provides
insight into the inter-effects of processing and communication in the overall energy con-
sumption of the sensor node. However, the current approach only provides a partial view
of the problem, because in the analysis of the optimal partitioning point, the size of the
input data and subsequently the inter-task data amount between the processing tasks are
considered fixed.

The system inter-task data amount during processing could vary for two reasons. The
first concerns the content of the image. There are processing tasks that could be sensitive to
the content of the image. This is because normally the objective of an image processing
system is to detect objects in the image for subsequent counting, identification, classification,
etc. Therefore, there should be variations in the data amounts during processing that result
from the outputs of the system tasks that are dependent on the image content. The second
concerns the initial stages of design, where the image size must be selected. This decision
directly affects the data amount that the system must process and therefore should affect
the inter-task data amount during processing too.

Because of the close relationship between data, time and energy, we think that data
are the common factor in node constraints. For this reason, we believe that the choice of
system input size could have an effect on subsequent partitioning decisions.

3.2. Communication Model

Intelligence partitioning assumes that several tasks can be executed in different loca-
tions. As a result, data have to be exchanged between these locations depending on the
partitioning point. However, the energy and delay resulting from this transfer depend
on the inter-task data amount to exchange at each task as well as the chosen commu-
nication technology. Several technologies have been discussed in the context of IoT or
smart cameras.

In order to evaluate multiple technologies and their impact on the partitioning depend-
ing on the data change, we employ a framework that models the data transfer of various
IoT commuication technologies. Krug and O’Nils [31] introduced a modular framework
that allows us to evaluate and select the most suitable communication technologies for our
system. The models are implemented in Matlab and calculate the latency and energy per
data transfer for several communication technologies. The framework covers the functional
level of sensing which, in our work, corresponds to the camera node and is thus viable for
this task.

To calculate the energy and delay, Krug and O’Nils considered the communication
technology, the resulting protocol-specific timing based on the data amount to transfer
and corresponding real hardware transceivers. The amount of data to transfer is used to
determine the number of packets to be sent by the transceiver and thus determines its
activity. The energy consumption then depends on the resulting duration of each activity
as well as the corresponding power consumption of the selected hardware. As a result, the
models are able to provide the communication cost for an arbitrary data amount.

In order to observe the impact of the communication component at the partion points,
in this study, we chose a subset of models. We analyze an image processing system with
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a relatively high data amount to transfer compared to traditional IoT use cases. Due to
this, we selected the following communication technologies that are able to handle this
data amount: Bluetooth 5.0, 802.11n (Wi-Fi), LTE Cat.4, and LTE Cat.1. All technologies are
suitable for higher data rates and are used for smart camera applications, where LTE Cat.4
corresponds to traditional smartphone type communication. Other popular low power
communication technologies such as LoRa were not considered in this study as they are
not able to handle large data amounts required to send images or intermediate data. For
these technologies, the partitioning results in complete in-node processing always.

4. Methodology

We focus on sequential processing systems because the partitioning cut between
the sensor node and the cloud server has to be a single, directed vertex. More general
architectures can be transformed into an acyclic, sequential system by collapsing cycles
and fork-join structures into single processing nodes. Thus, our work is also applicable
to general processing architectures that can be transformed in this way into an sequential
architecture, which can be done if the overall processing algorithm has a single input and
a single output. Thus, our method is general but limited by the fact that a partitioning
cut can only be applied to directed vertices that separate the architecture graph into two
otherwise disconnected sub-graphs.

4.1. Optimization Problem

In an IoT system, the data are captured by the devices and sent to the cloud for
analysis, processing or both. Once the cloud computes a solution, the data could be sent
back to the same node or an actuator in order to achieve the system objective. In this article,
we limit the scope of the optimization problem to the sensor node, assuming it does not
expect data back. Therefore, we analyze both the time and the energy in order to optimize
and offload the node.

As mentioned before, image processing systems usually involve a set of smaller tasks
ti that form a complex processing function F:

F = {t1, t2, · · · , tN}. (1)

In a distributed system, a specific task ti of the function F is not bound to a specific
geographical location. Therefore, the actual execution of tasks is location independent [7].
Each task can be mapped to any node in the system: the camera node, a cloud server,
or an inter-task fog computational resource. Formally, the distributed function F has its
functionality distributed between node and cloud so that,

F = fNode ∪ fCloud and (2)

∅ = fNode ∩ fCloud

where the subsets fNode and fCloud are the different clusters of tasks composing the function
F that are executed at the receptive location. Because of this, both the latency and the energy
of the tasks are also given in different entities. The mapping of the computational and
communication load of a node between the different computational resources (Figure 2) is
defined as intelligence partitioning, =:

=(F) =


{ fNode, fCloud}
{LPNode , LCNode→Cloud}
{EPNode , ECNode→Cloud}

(3)

where LPNode and EPNode are the node latency and energy due to processing and LCNode→Cloud
and ECNode→Cloud are the latency and energy due to communication from the node to the cloud.
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Figure 2. Computational and communication load of a node.

Both latency and energy have a direct relationship with the data amount. The data
transfer (Di) between the processing tasks in the node make up the D function,

D = {D0, D1, · · · , DN} (4)

where D0 is the input image, D1,D2, ... are the data between the processing tasks, and DN
is the system output data. The data amount transferred between two computational layers
can be expressed as,

DNode→Cloud = Dj (5)

where j is the position of the system partition cut.
Our optimization problem is focused on the latency and energy; therefore, system

partitioning must allow a reduction of one or both of these. The latency in the node
(LNode), in a specific partition cut, depends on two components, the computation and
communication latencies. The computation latency (LP) can be defined as the accumulated
processing time of the tasks (t) that make up the system from its start to the partition
cut. The computational latency depends on the processing platform (PP) but also on the
data (Di) generated by the processing algorithms. The communication latency (LC) refers
to the time to transfer data from the partition point (Dj) and it depends on the intrinsic
characteristics of communication technology (CC). The node latency (LNode) is derived as,

LNode =
j

∑
i=1

(LP(Di−1, ti, PP)) + LC(Dj, CC) (6)

where Di−1 are input to ti and Di is the output. LP and LC are the measurement or
estimation function for the processing and communication latency, respectively. Like the
latency, the energy consumption in the node until the partition cut has two components, the
computation and communication energies. Therefore, the node energy (ENode) is derived as

ENode =
j

∑
i=1

(EP(Di−1, ti, PP)) + EC(Dj, CC). (7)

In Section 5.3.3, we will consider three specific objective functions for our study case in
order to minimize once latency (LNode), once energy (ENode) only, and once energy (ENode)
under delay constraints (MaxDelayConstrain).

4.2. Method for Analyzing Algorithm Image Sensitivity

According to Equations (6) and (7), the optimal partition points are data-dependent.
This means that both the latency and the energy of the partitions will vary based on the
inter-task data amount processed before the partition cut and the data amount transmitted
over the link in the partition cut.

The inter-task data amount through the system varies for two reasons that are closely
related. The first is due to the dependence of the data amount between processing tasks.
Since being the image introduced into the system, it undergoes a series of changes that lead
to a reduction of data. This reduction is due to the fact that each task exerts a reducing action
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that will affect the inter-task data amount to a lesser or greater extent. The second is due to
changes in the image. Normally, during the execution of the application, the image changes
in content, which refers to the number of objects. The objective of a processing system is
usually the recognition of objects for their subsequent labeling, counting, classification, etc.
So, there are processing tasks that would be sensitive to these changes in the image. Because
of this, a change in the number of objects could affect the data amounts in the outputs of
these tasks, producing variations in the inter-task data amount during the processing chain.
Another change of the image refers to its size. This type of change would also have an
effect on the data amount throughout the system. This is because, at the beginning of the
system, the tasks are in charge of processing pixels in order to isolate relevant information
for the application. Because of this, the data amount in the output will change relative to
the size of the image. Although normally the size of the input image does not vary during
the execution of the application, it would play a fundamental role in the design of the
system. This is because the number of objects is related to the resolution of the image, so
a higher resolution (larger image size) would allow increasing the number of objects per
image. Conversely, a large image size could affect communication and processing times,
thereby affecting the partition latency and energy. Therefore, we focus on two aspects of
the image: its size and its content in terms of the number of objects visible in the image.

We have analyzed the image sensitivity of the tasks by observing their outputs while
introducing multiple images into the system, with various sizes and number of objects. We
expect to see that the output of an image-sensitive processing task could vary based on the
input image size, its content, or both. However there could also be non-image sensitive
tasks in image processing systems. Accordingly, each algorithm has a characteristic image
sensitivity and that causes variations in the inter-task data amount, which in turn could
play a role in partitioning decisions.

4.3. Processing Time Behavior Analysis

The variation of inter-task data amount during the processing chain means that the
data in the inputs of the algorithms (Di−1) varies due to the dependency between the tasks.
These changes should affect the time it takes to execute each of the system tasks. The
processing time is an important aspect at a partition point because of its direct impact
on overall latency and energy (Equations (6) and (7)). For this reason, the processing
time behavior of the tasks with respect to the data amount could be another factor that
influences the best partitioning solutions. We have analyzed the processing time behavior
by measuring the time it takes to process the input data in each of the system tasks,
which varies depending on the input image and the data amount dependency between the
previous tasks. We are interested in observing how the processing task times behave to
analyze how they are influenced by the changes in the input image (Table 1). The variation
of the processing times will contribute in the partitions by increasing or decreasing their
delay based on the data amounts.

4.4. Partitioning Depending on System Architecture

In this work, we analyze the latency and energy of the partitions at different points in
the processing chain. To do this, we first analyze the tasks of the system separately, extract-
ing the amount of data at each tasks input and output as well as the related processing time
and energy. The partition points are dependent on the type of system architecture which
can be sequential or parallel. In a purely sequential system, the data amounts, latencies, and
energies of the partition points correspond to the inputs and outputs of the processing tasks.
This would greatly simplify the analysis of partitions. However, in a parallel architecture,
neither the data amount, nor the latencies, nor the energies of the partition points have
to correspond to the inputs or outputs of the processing tasks. Then, the analysis of the
partitions in a parallel architecture would require a previous serialization process.
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Table 1. Processing tasks, data out and processing time behaviors due to changes in image.

Changes in Data Out Due to: Processing
Time

# Output Type ∆ Img. Size ∆ Img.
Objects Behavior

t1 Color space YCbCr ∆Linear Constant ∆LinearSize
t2 Y channel ∆Linear Constant ∆LinearSize
t3 Array with 256 elements Constant Constant ∆LinearSize

t4 Binary image without
background ∆Linear Constant ∆LinearSize

t5 Binary image with detected
regions ∆Linear Constant ∆LinearSize

t6 Binary image with filled
regions ∆Linear Constant ∆LinearSize

t7 Binary image without particles ∆Linear Constant ∆LinearSize
t8 Non-binary labels image ∆Linear Constant ∆LinearSize
t9 2D features matrix Constant ∆Linear ∆LinearSize,Objects

t10 2D coordinates matrix Constant ∆Linear ∆LinearObjects

The serialization process consists of grouping the tasks in parallel forming compound
tasks. The time of the compound task is the maximum time between the tasks that compose
it and the energy is the sum of the energies of all the tasks compounding it. The data
amount in the output of the compound task is the result of summing the data in the outputs
of the tasks that compose it. Once the parallel architecture is serialized, the data amounts,
latencies, and energies between the compound tasks will correspond to specific points in
the processing chain.

Our application case is a serial architecture from a time and energy point of view, but
there is a parallel data stream where data are transferred between non-consecutive tasks
(Channel Separation and Image Segmentation). For this reason, we only apply serialization
from a data perspective. Figure 3 shows the system flow diagram where we have marked
the partition points from 1 to 10. Partition 1 (p1) corresponds to the system input data,
and number 10 (p10) to the output. We have observed that the data amount, time and
energy of the Image Histogram is too small when compared to the previous task (Channel
Separation) and the latter one (Image Segmentation). Due to this, the partition point after
Image Histogram will be practically the same (almost same latency and energy) as the
partition point after Channel Separation. Then, the time and energy in Image Histogram
will be accumulated in the next partition, that is in the output of Image Segmentation.

Figure 3. System flow diagram with numbers indicating the partition points to analyze.

5. Results

We have carried out an in-depth analysis of the latency and energy of different parti-
tions. We have first designed the system and a dataset for the purpose of the study. We then
ran the system for each of the dataset images and extracted data amounts and execution
times for each of the system tasks during processing. Finally, we set the optimization
objectives and analyzed the impact of varying the input image at various partition points
in the system.
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5.1. Application Case

Our case study is a biscuit inspection system. This system is responsible for analyzing
images and identifying whether biscuits are acceptable or not, depending on the visual
biscuit characteristics. The system is made up of ten processing tasks: Color Transformation,
Channel Separation, Image Histogram, Image Segmentation, Edge Detection, Image Region
Filling, Morphology, Component Labeling, Features Extraction and Classification. Figure 3
shows the system flow diagram, and the data types of the output from each processing
task are found in Table 1.

The primary input is an RGB image, which has a certain size and number of objects.
Then, the image is transformed from RGB to YCbCr color space. The Channel Separation
task receives the YCbCr image and separates the “Y” channel. The Image Histogram task
then uses this channel to compute a histogram, which is used for the next task. Image
Segmentation has two inputs, a 1D array coming from Image Histogram and the image
from Channel Separation. Initially, this task uses the 1D array to define the intensity level
that separates the background from the objects of interest; it computes a global threshold.
Sequentially, the threshold is used then to convert the input image into a binary image
without background (2D binary matrix). Next, we introduce the binary image into the
Edge Detection task, which applies a Sobel operator [32] to detect the edges of the objects.
The output of this task is a binary image showing the edges of the objects (2D binary
matrix). Next, we fill the objects regions by applying a Region Filling task. The output is
a binary image (2D binary matrix) with the regions defined in white. The Morphology
task captures the binary image with filled regions and applies the Open Operator [33] to
remove the image artifacts (biscuits crumbs). The Morphology results in an image whose
objects are only biscuits (2D binary matrix). The Component Labeling task is responsible
for differentiating the regions of the image by assigning distinct numerical labels to each of
the regions. Therefore, the output is a 2D matrix of non-binary labels. Next, the Feature
Extraction task analyzes the label matrix to extract the characteristics of the objects, as their
centroid, perimeter and eccentricity. Its output is a matrix where each row corresponds to
each object and the columns indicate the features. Finally, the Classification task analyzes
the features matrix in order to separate the good cookies from the bad ones. The system
output is a 2D matrix with the coordinates of the cookies and an additional bit indicating
their quality.

5.2. Experiment Description

The scope is to analyze the impact that variations in the input image could cause
to the optimal partition point, shifting it as a result of image size and content variations.
Due to the configuration of the camera layout for frame capture, the maximum number of
objects is limited to 18. Thus, we consider 10 different images containing 0, 2, 4, 6, 8, 12, 14,
16 and 18 objects, respectively. Similarly, we consider ten different image sizes between
292 × 436 and 2848 × 4288 pixels. Hence, 100 different images are used in the experiments,
as illustrated in Figure 4.

Figure 4. Sixty images of the 100-image dataset.
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As shown in Equations (6) and (7), both latency and energy at a partition point have
two components: processing and communication. The processing latency and energy at a
partition point is the sum of all the latencies and energies of the processing tasks until the
partition point; hence, all these tasks are implemented in the smart sensor node. Instead,
the communication latency and energy are defined by the resulting data size at any given
partition point. Therefore, the latency and energy at a partition point is the cumulative
processing time plus the communication time of the serialized system.

The image processing tasks in Figure 3 were implemented on a Raspberry Pi 2 model
B relying on the OpenCV libraries. We measured the power consumption for each image
processing task with on the UNI-T tester [34] and the accuracy is in the range of 10 mA
and 10 mV. Furthermore, we used the gettimeofday() function to record the execution
time in the range of microseconds for each image processing task. Based on these mea-
surements, we calculated the processing energy consumption for different partitioning
configurations.The measured variation in computational latency was less than 5% and
both energy consumption and latency measurements were obtained as an average of 10
measurements for each input image and processing configuration. In our analysis, we
have also used four wireless communication technologies: BLE 5, 802.11n, LTE Cat.1 and
LTE Cat. 4. For each data size resulting from the 10 input images and the inter-task data
sizes, we have calculated the latency and energy consumption based on the communication
model described in Section 3.2. First, we have extracted the data amounts based on the
sizes of the images and their content (Section 5.3.1). Then, we have used the communication
model described in Section 3.2 to generate both the time and the energy to communicate
such data.

5.3. Experimental Results

This section shows the results obtained through the experiments where we analyze
and characterize the processing and communication, pose the optimization problem and
finally study how the best partitioning solutions are affected.

5.3.1. Analysis of Inter-Task Data Amount

Table 1 summarizes how the data amount and the processing time of different tasks
depends on image size and number of objects.

From the data amount perspective, we see that outputs of tasks 1, 2, 4, 5, 6, 7 and 8
are just sensitive to the change of the image size, while tasks 9 and 10 are sensitive to the
number of objects. Task 3 is not sensitive to size or objects.

Figure 5 depicts the result of the inter-task data amount experiment and shows the
impact of image size and numbers of objects on the data amounts inside the processing
pipeline (Figure 5). We can see that the size of the primary input image has a much greater
effect than the number of objects in the image. Only tasks 9 and 10 are sensitive to the
number of objects.

5.3.2. Characterization of Processing and Communication

Table 1 shows the execution time of the tasks is also affected by the size (from task 1
to 9) and the objects (tasks 9 and 10) of the input image. The change in the execution time
of each task grows linearly with respect to its input. We see that the time in task 9 varies by
both image size and content, this is because Features Extraction analyzes pixels to provide
an output based on objects.

Figure 6 depicts the result of the Raspberry experiment and shows the impact of image
size and numbers of objects on the processing time of individual processing tasks during
the processing pipeline.
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(a) Data amounts with respect to image size for
an image with 18 objects.

(b) Data amounts with respect to image objects
for an image size of 2848 × 4288 × 3.

Figure 5. Data amounts along the system during the processing chain.

(a) Processing time with respect to image size
for an image with 18 objects.

(b) Processing time with respect to image ob-
jects for an image size of 2848 × 4288 × 3.

Figure 6. Processing times of tasks from the Raspberry implementation.

Changes in the inter-task data amount and processing times during processing lead us
to think that partition points might also be affected. Both latency and energy at a partition
point depend on two components: processing and communication (Equations (6) and (7)),
which vary differently depending on the size of the image and the number of objects.
Figures 7–10 break the analysis into processing and communication, considering delay
or energy.

We see that the processing times and energy incurred by tasks 9 and 10 are so small
when compared to the other tasks, that their effect is hardly noticeable in Figures 7–10.

Figure 9a shows the total latency of the partitions that results when summing the
processing and communication components of Figure 7a,b. However, Figure 9b shows the
total energy of the partitions that results from summing the processing and communication
components of Figure 8a,b. Both processing and communication strongly depend on the
image size, and communication dominates both latency and energy.
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(a) Proccesing latency with Raspberry. (b) Communication latency with LTE Cat.1.

Figure 7. Latency per partition along the system as a function of the image size for an image with
18 objects. The processing latency of partition j is the sum of the processing latencies of all tasks 1 to
j. The communication latency of partition j is the latency of communicating the output data of task j
over the wireless communication link.

(a) Proccesing energy with Raspberry. (b) Communication energy with LTE Cat.1.

Figure 8. Energy per partition along the system as a function of the image size for an image with
18 objects. What was mentioned in the caption of Figure 7 also applies to energy.

The number of objects affects the processing latency only for partitions 9 and 10
(Figure 10), where this effect is imperceptible in the plot as it is too small. Latency due to
object number is independent of the image size; therefore, it becomes more important as we
reduce the size. However, the effect of the number of objects on latency is very small, even
for small images. Similarly, the effect of the number of objects on the processing energy is
negligible. Therefore, we decided to ignore this effect in the remainder of our analysis.
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(a) Latency of the partitions based on
Equation (6).

(b) Energy of the partitions based on
Equation (7).

Figure 9. Total latency and energy per partition along the system as a function of the image size for
an image with 18 objects, using Raspberry for processing and LTE Cat.1 for communication.

(a) Proccessing latency with Raspberry. (b) Communication latency with LTE Cat.1.

Figure 10. Latencies of the partitions along the system as a function of the number of objects for an
image size of 2848 × 4288 × 3.

5.3.3. Optimization problem

As the partitioning decision involves a trade-off between energy and latency, we can
formulate different optimization problems.

Minimizing latency:
LPNode + LCNode→Cloud → Min (8)

Minimizing energy:
EPNode + ECNode→Cloud → Min (9)

Minimizing energy under a latency constraint:

LPNode + LCNode→Cloud ≤ MaxDelayConstraint

EPNode + ECNode→Cloud → Min
(10)

Figure 11 shows the best partitioning solutions for each optimization goal. Each of the
figures present four different communication technologies (BLE5, Wifi, LTE Cat.4 and Cat.1)
and a single processing platform (Raspberry). The graphs show the optimal partitions for
the different image sizes, and we note that the optimal point is different for different image
sizes, at least for some communication technologies.
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(a) Optimal partitions for minimum latency. (b) Optimal partitions for minimum energy.

(c) Optimal partitions for minimum energy un-
der latency constraint.

Figure 11. Partitioning solutions for three different objective functions, four different communication
protocols and ten different image sizes.

In Figure 12, we show the times and energies of the partitions as a function of the
image sizes in order to observe how the change in the partitioning solutions occurs. Then,
the cases in Figure 12a–c correspond to the cases seen in Figure 11. However, as the
case of LTE Cat.4 is repeated in Figure 11b,c, Figure 12c only shows the case for BLE5
communication. It is by applying the optimization functions to each of these graphs when
we observe the changes in the best partitioning solutions. We have marked the partitioning
solutions with circles that meet the optimization objective.
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(a) Latency minimization for LTE Cat.1 (b) Energy minimization for LTE Cat.4

(c) Energy minimization under a delay constraint
for BLE5

Figure 12. Latency and energy for three communication technologies and all possible partitions. The
optimal partition points are marked with circles.

6. Discussion
6.1. Impact on System-Wide Energy and Latency

The intelligence partitioning aims at finding the optimal system partition point with
respect to system latency and node energy. For that reason, we analyze the partition
points from the time and energy perspectives, according to the objective functions in
Equations (8)–(10).

We have observed that changing the size of the input image leads to a chain of effects
that ultimately alter the latencies and energies of the system. First, changes in image size
affect the inter-task data amount along the system during the processing chain (Figure 5).
This is due to some processing tasks are sensitive to image size, its content, or both (Table 1).
The data amount at the partitioning point directly affects communication latency and
energy, and consequently, they are data-dependent (Figures 7b and 8b). In turn, the latency
is also affected due to its dependency on the input data of the processing tasks (Figure 7a).
Finally, due to the relationship between time and energy in the processing platform, the
processing energy varies with processing time (Figure 8a).

6.2. Impact on Optimal Partition Point Selection

Figure 11 presents three cases where the partitioning solutions change due to changes
in the image size. The partitioning solution change could be related to how the contribution
of the processing and communication components influences partition time and energy. In
Figures 7 and 8, we see that the processing and communication behaviors at the partition
points are completely different. For this reason, in early partitions, where the data amount
in partition points is greater (Figure 5), there would be a small accumulated processing
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time, but a lot of communication. In addition, near the end of the system, there are small
data amounts to be sent, but a lot of accumulated processing time. Due to this difference
in data dependency, the best partitioning solution in latency, energy or both may vary
with respect to the size of the image. To demonstrate this, Figures 13 and 14 show the
contribution of the processing and communication of partitions 4 and 9 depending on the
latency and energy in function of the image size.

(a) With communication technology LTE Cat.1 (b) With communication technology LTE Cat.4

Figure 13. Contribution of the processing and communication components to the time and energy of
partitions 4 and 9 depending on the image size.

(a) Latency constraint with communication tech-
nology BLE5

(b) Minimum energy under the latency con-
straint with communication technology BLE5

Figure 14. Contribution of the processing and communication components to the time and energy of
partitions 4 and 9 depending on the image size.

Figures 13a,b and 14 correspond to the cases presented in Figure 12a–c. The time and
energy of communication of partition 9 is not visible because the data size in partition
9 is very small, only reaching a maximum of 288 Bytes in comparison to 1.53 MBytes in
partition 4. So, the time used to send data in partition 9 is around microseconds, which
is much lower than partition 4, which is in seconds. The same observation applies to
communication energy.

From Figure 13a,b, we see that partition 4 is dominated by communication, while
partition 9 is dominated by processing, because, in partition 4, there is a large data amount
to be sent, requiring more time and energy compared to the processing part up to that
point. However, the processing dominance of partition 9 is due to the small data amount
to be sent, but in the final stage of the processing, a lot of processing time and energy has
been spent.
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Figure 14a shows the latency perspective, with the latency constraint marked with a
purple line (1 s). We note that due to communication dominance, partition 4 only meets
the time constraint from size 292 × 436 × 3 to 1144 × 1720 × 3. However, partition 9 meets
the time constraint of sizes 292 × 436 × 3 to 2280 × 3432 × 3.

Figure 14b shows the energy perspective. This time we have marked the partition
points that do not meet the delay constraint with an “x”. This way, we see that although a
lot of processing energy is expended in partition 9, due to the delay constraint, this is the
best partitioning solution for size 1144 × 1720 × 3 to size 2280 × 3432 × 3.

Both the processing and communication time and energy are dependent on the data,
so the best partitioning solutions are closely related to the image size. Hence, the best parti-
tioning solution is different for different image sizes. In addition, the type of optimization
problem also influences the optimal solution.

6.3. How to Make Partition Decisions Based on Image Size?

In this work, we have analyzed the impact of the size and content of the image on
the deployment of system tasks. We have shown that the size of the image influences
partitioning decisions and studied why, which is our main contribution. We have created
this section so that designers can take advantage of this knowledge and thus apply it, to
achieve a more effective node offload.

Our study shows that the best implementation depends on the details of the applica-
tion requirements (such as minimum image resolution, power and energy budgets), and
the communication technology and protocol used. Because the optimal partitioning choice
is sensitive to all these parameters, we advocate a systematic and quantitative exploration
of the design space (Figure 15).

Partitioning analysis:

1. Select or create a typical image of the application in question. Subsequently, scale the
image in order to have a dataset with different resolutions.

2. Run the system for each of the images in the dataset and:

• Measure the amount of data at the outputs of each of the tasks in the system;
• Measure the execution time and processing energy at the outputs of each of the

tasks in the system;
• Measure the communication time and energy at the outputs of each of the tasks

in the system employing the communication framework [31].

3. If the system is not purely sequential, serialize and assign the times, energies and
amounts of data to the composite tasks.

4. Apply Equations (6) and (7) to calculate the time and energy of the partitions.
5. Apply the optimization objective in order to find the image size that allows the

optimal partitioning point.

Figure 15. Example of partitioning analysis. In this example, we evaluate partition 3 with respect to
a set of four images which vary in size. The partition analysis must be done on all possible partition
points of the system.
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To summarize, the latency and energy consumption for both processing and communi-
cation are dependent on the image size and the inter-task data amount, which define where
would be the most optimal partitioning point for a given scenario. These results prove that
the inter-task data amount has a major importance in the design space exploration of data
intensive IoT nodes, as the one introduced in our recent work [35].

7. Conclusions

We have applied intelligence partitioning with the purpose of offloading an image
processing-based IoT node with respect to node energy and to reduce latency. This work
shows that the optimal partitioning point depends heavily on the selection of the input
image size, but is hardly affected by the number of objects in the image. In addition, the
optimal partitioning point also depends on the specific objective function.

The reason why size affects partitioning points is due to two aspects. The first is that,
during processing, there are more tasks processing pixels than processing data referring
to objects. Because of this, the cumulative effect of pixel processing is much larger than
processing dedicated to objects making size more relevant. The second aspect concerns the
communication of data at the point of partitioning. We have found that data communication
dominates over processing in both energy and time resource consumption at the node. In
this way, the relevance of image size is enhanced because the largest amounts of data to be
sent are found in the partitions made at the beginning of the processing stage. In addition,
due to the reduction effect of the algorithms, the amount of data to be processed in the
object processing stage is much lower than in the pixel stage, so sending data is less costly,
making objects less important.
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