VELS: VHDL E-Learning System for Automatic
Generation and Evaluation of Per-Student
Randomized Assignments

Martin Mosbeck
Institute of Computer Technology,
TU Wien, Vienna, Austria
martin.mosbeck @tuwien.ac.at

Abstract—Learning digital design with VHDL requires ex-
tensive practice with solving many assignments independently,
which is difficult to provide in a university setting with high
student-teacher ratio. Automated assessment systems can help
by facilitating a flexible, satisfying learning environment for
students.

This paper describes the VHDL E-learning system VELS, its
implementation, and our experience over the last three years with
approximately 1000 students. VELS is a flexible system with key
features including a uniform task system with parameterized
tasks, non-static testbenches, communication over email, a tool
that aids in creating new tasks, flexible configuration possibilities
with different course modes, exchangeable simulator backend and
multi language support.

I. INTRODUCTION

As today’s electronic hardware is becoming ever increas-
ingly complex, comprehensive knowledge of hardware model-
ing with description languages like VHDL is becoming crucial.
To learn how to design hardware with the help of hardware
modeling languages, students need active involvement with the
language and tools to grasp the used abstractions and concepts
and be allowed to make errors.

Like software programming, learning hardware modeling
requires practice with adequate tasks. Students have to itera-
tively improve their knowledge by trying different approaches
on given tasks. This implies the need for adequate, frequent
and ideally instant feedback on students’ solution designs.
Providing feedback and adequate tasks is a common problem
area due to large classes and different types of learners
concerning pace, space and study time scheduling.[1, 16]

To address this problem field and to provide an improved
learning experience to students, we have developed a VHDL
E-Learning System (VELS) at the Institute of Computer
Technology, TU Wien, Austria with the following key features:

o The system is usable for students via email.

o Tasks are parameterized, so different students will rarely
get exactly the same task.

« A task creator tool aids teachers to easily build new tasks.

978-1-5386-7656-1/18/$31.00 (© 2018 IEEE

Daniel Hauer
Institute of Computer Technology,
TU Wien, Vienna, Austria
daniel.hauer @tuwien.ac.at

Axel Jantsch
Institute of Computer Technology,
TU Wien, Vienna, Austria
axel.jantsch@tuwien.ac.at

o The system supports a variety of course configurations
for different target audiences.

o The used simulator is exchangeable with low effort.

o It supports multi language task descriptions to use one
task in multiple courses held in different languages.

o Testbenches are non-static, each submission is tested by
a new testbench.

Implementation and incorporation of enhancements from
using the system for three years with approximately 1000
students have lead us to a modular, flexible system for teachers
and students. VELS is open source, licensed under the GPLv2
and can therefore be used and extended by other institutions.
Up to now 20 different tasks ranging from a simple truth
table, modeling parts of a CPU to the modeling of a system
communicating with other systems via a synchronous protocol
have been implemented.

VELS was inspired by the Eudyptula Challenge [4], "a se-
ries of programming exercises for the Linux kernel, that started
from a very basic "Hello world” kernel module, moving up in
complexity to getting patches accepted into the main Linux
kernel source tree.’[4]. Students interact with the system via
email to get tasks, solve given tasks and submit them to receive
feedback. The multi threaded submission system autosub [21]
handles submissions, collects statistics and interacts with the
task system. A task itself is a sum of scripts and templates
that use the common task system facilities.

Task specific generators create parameterized task descrip-
tions for each student. Randomized parameters guarantee an
individual task description and the language template system
allows different languages for the same task. Task specific
testers communicate over a uniform simulator abstraction
interface with a chosen simulator (e.g. ghdl) and assemble
meaningful feedback for students. Teachers can configure
courses over a web configuration interface, monitor students’
progress and create new tasks aided by a task creator tool.

This paper describes VELS and its implementation and
the experience we have made during the last three years
deploying it in undergraduate and graduate courses. Section
IT provides an overview of automatic assessment in general

and comparable VHDL systems. Section III describes VELS,
the implementation choices we made, its parts and how the
system and its tools can be used. Our experience deploying
the system for three years are summarized and illustrated in
Section IV. Finally, Section V concludes the paper with a
summary of challenges we faced, points out limitations, and
lists plans for further improvement.

II. RELATED WORK

Learning to model hardware using a hardware modeling
language involves acquiring complex knowledge combined
with acquisition of practical skills. Novice designers lack the
competences related to designing and implementing problem
solutions, skills that can only be acquired through contin-
uous formative assessment that assists in gaining a deeper
understanding of the target field [16, 17]. Research on au-
tomatic assessment of programming exercises isS an ongoing
research field since more than 50 years [8] as it offers a
chance to overcome issues related to manual assessment of
exercises [2]. With manual assessment each student solution
has to be evaluated, tested and graded by an instructor. Manual
assessment is a time consuming task resulting in an enormous
workload for large classes. Given exercises tend to be big, span
several topics and the assessment procedure shows difficulties
ensuring consistency and accuracy [18].

Automatic assessment can provide many small exercises
and consistent immediate feedback to students resulting in a
motivating environment, that allows to incrementally acquire
practical skills and considers diversity factors between students
such as working habits and prior knowledge [1]. Surveys
show that automatic assessment is a factor to improve stu-
dents performance and learning experience [15]. Nevertheless
deploying automatic assessment entails new challenges as
tasks, testing and feedback have to be of high quality to be
useful to students [20, 16]. Tasks have to be specified more
precisely as no instructor can compensate for ambiguous task
descriptions [16]. Test cases have to be carefully chosen to
ensure adequate and complete test coverage [18]. This implies
that part of the saved workload shifts to designing good
tasks [20]. Altogether automatic assessment systems have to
be carefully designed to be flexible, easy to use, extendable
and allow task reuse.

The following surveys [9, 19, 18] give a good overview
of existing systems, without distinguishing between hardware
modeling assignments and classical programming assignments
due to their similarity. Specifically for hardware modeling
language courses several systems have been proposed.

Kumar et al. [13] developed a light-weight IDE based on
jEdit, GHDL and GTKWave that allows local simulation of
given tasks and submission to an Apache Tomcat server based
platform that checks the submission concerning correctness.
Multiple submissions of different users can be handled in
parallel. Tasks are static and stored in a problem database
that can be accessed through a teacher server applet. Students
submissions are checked with predefined test vectors against
a model solution design.

Gutierrez et al. [6, 7] developed an extension ”CTPracticals”
to the common Moodle learning management system [14],
which they use to teach hardware modeling in the context of
computer architecture. CTPracticals both offers an interface
for students and instructors. Students solve given statical
assignments called practicals by uploading their solutions in
a zip file. Submissions are checked by testers consisting of
a fixed testbench, a command script to interface a simulator
backend and a file containing expected outputs and other
needed files. Students access feedback concerning their sub-
missions over the Moodle system, instructors can manage
teams, access several statistics and update grades. The system
offers a multi language feature for task descriptions, an exten-
sive logging system and is flexible concerning what language
the solutions are written in and what simulation backend is
used (e.g. Matlab, Modelsim VHDL, Logisim circuits).

Jelemenska et al. [11] also implemented their assessment
system inside the Moodle environment. Students are parti-
tioned into groups and can access tasks and upload solutions
over Moodle. Instructors create tasks and assign them to
assignment categories. Automatic random association between
users and a task of an assignment category aims to prevent
students in the same group to get the same task. Similarly to
Gutierrez et al.[6, 7] this system uses predefined testbenches
and comparison to a reference model. A later version [12]
also incorporates a content aspect comparing significant parts
of students solutions to the reference so students can be given
points if they “used components, keywords or parts of the
language that were required by the assignment”[12].

Compared to these systems VELS introduces a few new key
features:

o The task system enables to design parameterized tasks so
that students get different versions of a task.

o All communication is handled via email, a technology all
students know well.

¢ A uniform interface makes it easy to create support for a
new simulator backend, without having to change tasks.

e A tool that intuitively assists in defining new tasks
significantly reduces the time to design a new task.

o A flexible course configuration web interface allows a
wide variety of different courses. Courses can be held in
strict task queue or request mode, tasks can have own start
and end date, chosen language and simulator backend.

e As a new testbench is created for each submission,
consecutive submissions are tested differently, ensuring
that students’ submissions fulfill the task specification.

III. THE VELS SYSTEM

VELS is an E-learning system built from multiple parts
working together: 1) a multi threaded submission deamon
system called autosub, 2) the task system with common
interfaces and conventions, 3) a VHDL task creator tool, 4)
the course configuration and status web interface VELS_WEB
and 5) existing tasks.

The following subsections depict the parts of the system to
give an overview on how the system works, can be configured

- Task(s)
Mailbox
IE generator
templates,
scripts
SMTP
tester

Fig. 1. Overview of the different threads of the autosub system and how they
work together with the task system and email mailbox.

and used. Detailed implementation and instructions on how to
use the system can be found in the freely available codebase
[21] and the system usermanual [22]. VELS runs on a Linux
server system and has been tested on Debian 7, 8 and 9.

A. Autosub submission system

The autosub submission system is the core of VELS. It is
the communication endpoint for both incoming and outgoing
emails and therefore is in charge of fetching, processing and
archiving students’ emails. It also has to manage users, per
user customized tasks and submissions and communicate with
task specific generators and testers to generate tasks and test
user submissions.

Autosub is built as a multi-thread server daemon imple-
mented in Python3 with each thread being in charge of a
subtask. This approach was taken to ensure progress even
if testing of a submission takes long. An overview of the
different threads and how they work together can be seen in
Figure 1. A fetcher thread is in charge of fetching student
emails and deciding which system actions to take depending
on the email’s subject. If the user has to be provided with
a task description the generator thread is notified, which in
turn communicates with the generator of the requested task.
If a user provides a submission for a task one of multiple
worker threads is notified to communicate with a tester. As
testing is the bottleneck of the system, multiple worker threads
ensure parallel testing of multiple users’ submissions. The
fetcher, worker and generators can produce textual output and
attachments which the sender thread assembles to an email and
sends to the student who initiated the action. If the autosub
system does not understand which action to take, the student
is informed on how to use the system. Users whose email
address is not whitelisted are prevented from using the system.
Autosub is equipped with a central logging system to monitor
and quickly identify the source of errors.

Figure 2 depicts the typical flow triggered by a user re-
questing a task. The user sends an email with the subject
“"Request Task <N>”, with <N> being the unique task
number of the task. This triggers the task specific generator,
that creates a parametrized variant of the task identified by
the task parameters. Consequently the triple (user id, task
number, task parameters) is saved in the UserTasks database
and together with the help of templates a language specific
description file, a specific entity file and an empty behavior file

is created. All these files are saved on the server and assembled
to an email which is sent to the user. To submit a solution for
a task, the user sends an email with the subject “Result Task
<N>” and attaches his or her solution behavior file to start the
testing flow (Figure 3). The task specific tester is triggered to
generate a custom testbench for the user specific task variant.
The testbench, the entity file and the submitted behavior file
then are fed to a chosen simulator backend, controlled by
the common tester via a simulator interface, that abstracts
the specifics of the chosen simulator. If the test passes, an
email with subject ”Success Task <N>" is sent to the user.
In case the test fails an email with subject “Failure Task
<N>” containing simulator error messages, specific behavior
feedback and, optionally, a signal wavefile is assembled and
sent to the user.

B. Task system & creating a new task

To use a task with aufosub it has to follow a minimal
uniform structure. This base structure ensures uniformity and
streamlines the creation of new tasks. Each task is located in
its own directory and at minimum has to supply a generator
and a tester. In case of the already implemented tasks, both
are executable shell scripts which call other helper scripts and
use task template files.

A generator has multiple responsibilities: generate random
task parameters for a task, create VHDL files, provide a task
description, save the created files and add information to the
database to identify user, task files and task parameters. A
tester is given the student’s submission and the task infor-
mation to generate a custom testbench with randomized test
vectors, test the student’s design and indicate correctness of
the submission or create feedback on what is wrong.

Tasks in VELS evolve around the model that students have
to program the behavior of one or multiple entities to solve
a given problem. Therefore the first step to create a new task
is to establish the general parameters of the task: a unique
name and the entities, the behavior of which the student has
to design including their ports. Next the VELS task creator
wizard can be used to generate a skeleton version of the task.

As the wizard creates all the mandatory files and fills them
with both task independent content and the given general task
parameters, the user can focus on the individual key points of
the task. These points include:

o Complete the task description by adding the concrete
problem definition (including text, figures, tables, etc.)
and support all wanted languages.

« Implement the task generating logic in the provided skele-
ton generator including the task specific parameters which
will later be randomized during the task generation.

o Complete all entity templates which should be given to
the students.

o Implement the testbench generating logic in the provided
skeleton tester and program a testbench template. Design-
ing the testbench and its feedback is the key feature for
a good task.

templates

email from user
Request Task <N>

=]

—

UserTasks
table

Fig. 2. System flow of a

email from user

generator

description.pdf

@ entity.vhdl
behavior.vhdl

user task folder

email to user
Description Task <N>

<5

task parameters

student requesting a task.

Result Task <N>

E user task folder

’ 1
\ userid!
| task nr

@ behavior.vhdl

@ entity.vhdl

simulator
; K

@ testbench.vhdl :

feedback feedback

simulator
interface

control control

[]task parameters

UserTasks
table

query

email to user
Failure Task <N>
Errors:

email to user
Success Task <N>

Fig. 3. System flow of a student submitting a task solution.

C. Course configuration and status

A course operator of a new course has to configure VELS
at two points: a system configuration file and VELS_WEB,
the course configuration and status web interface. While the
configuration file is used to configure connection credentials to
the email server and general system parameters, VELS_WEB
is used to configure the task list for the course and monitor
students’ progress and course statistics.

VELS offers two distinctive course modes: linear mode and
request mode. Linear mode allows courses which want to force
a strict queue of tasks. Upon registering the student gets the
first task of the queue. A student only advances to the next
task if he or she solved the current one. The second course
mode offered by VELS is the request mode. It gives students
more freedom by allowing to individually request tasks. Tasks
of a course have to be assembled in a task list, with each
task having its own configuration consisting of: a unique task
number, start time and deadline, name of an existing VELS
task, language and simulator backend. Individual start times,
deadlines and the two modes of VELS allow the creation of
many different course types. Moreover, VELS can be used as
a system to hold exams in a closed laboratory environment.

Concerning status and monitoring both the autosub submis-
sion system and VELS_WEB offer a number of functionalities.
Per student progress can be accessed via VELS_WEB to
see which tasks a student is doing, how many submissions
a student has done per task and which submission was the

first successful. Used testbenches and each submission are
saved by the autosub system to enable analysis of students’
learning experience. In addition, VELS_WEB offers statistics
at a global scale, for example the success ratio for each task.

IV. DEPLOYMENT AND RESULTS

A. Deployment and usage

VELS has been used at the Institute of Computer Tech-
nology, TU Wien, Austria during the last three years and
its continuous improvements were based on the students and
lecturers feedback. VELS has been implemented in two differ-
ent courses, namely "Microcomputer” and “Digital integrated
circuits”. While "Microcomputer” is an undergraduate course
in the “Electrical Engineering and Information Technology”
bachelor program held in German, “Digital integrated circuits”
is a graduate course in the “Embedded Systems” master
program held in English. Consequently these two courses
presuppose quite different foreknowledge and have different
learning targets.

In the “Microcomputer” course, students have their first
contact with hardware description languages thus the focus
is to convey the basic knowledge of VHDL and its main con-
structs. The implemented VELS tasks therefore have to be very
simple to support the students’ first VHDL experiences (e.g.
multiplexer, Pulse Width Modulation (PWM) generation, etc.).
The tasks were continuously introduced during the semester
based on the lecture progress and related code examples were

presented in the accompanying lecture. The VELS course
configurations have varied over the last three years, including
both the request and linear mode. During the first two years
the tasks had been mandatory for being admitted to the end
exam. In the last year this mode was changed and it was by the
students’ own choice to complete the tasks. VELS was also
used for the end exam in the "Microcomputer” course. During
the first two years the students had to pass one given VELS
task. In the last year’s exam students were provided with two
tasks out of 14 available tasks and had to pass at least one
of them. In total approximately 750 students signed in for the
“Microcomputer” VELS course over the last three years and
600 students used it in their end exam.

As the “Digital integrated circuits” course is part of the mas-
ter program, the students already have some foreknowledge
about hardware description languages. The learning target
therefore focuses on the deeper understanding of VHDL and
the VELS tasks need to be more complex (e.g. ALU, single
cycle CPU, synchronous communication etc.). Similar to
the ”Microcomputer” course students where provided with a
number of VELS tasks during the semester, but VELS was not
used for the end exam. In total, approximately 200 students
signed in for the “Digital integrated circuits” VELS course
over the last three years.

Figure 4 gives a graphical overview of VELS activity
for the course Digital integrated circuit” during the winter
semester 2017. VELS handled over 3000 received emails. The
figure affirms that automated assessment with VELS ensures
continuous learning of students.

Table I illustrates the students’ submission behavior and the
variability in the difficulty of tasks. For the eight assignments
in the course "Microcomputer” during the winter semester
2017 the table shows the number of submissions, the num-
ber of successful submissions and the number of successful
students. Students did not have to finish these tasks to pass
the course, but the tasks were recommended as a preparation
for the end exam. Although the tasks have not been mandatory,
VELS was faced with a big number of submissions resulting
in over 15.000 fetched emails. While the average success
rate was high, a clear difference in the complexity of the
particular tasks can be observed. By comparing the number of
correct submissions and the number of students, who passed
a task, it can be seen that some students even have requested
and completed the same task multiple times, indicating that
students enjoyed interacting with the system to improve an
already correct solution.

B. Results and experience

The evaluation of the two courses shows very good accep-
tance of the VELS system. Both students and lecturers quickly
felt confident with the system and its interface. The email
based system makes VELS independent of the used operating
system and therefore supports all the different students’ per-
sonal setups. Combined together with online simulators (e.g.
EDAplayground [3]) the students were able to use the VELS

TABLE I
SUBMISSIONS AND SUCCESS RATES OF THE COURSE "MICROCOMPUTER”
DURING THE WINTER SEMESTER 2017

Submissions Students
Task nr. Sum Passed Rate | Sum Passed Rate
1 1215 317 26 % 242 195 81 %
2 905 326 36 % 242 185 76 %
3 623 294 47 % 242 188 78 %
4 1967 313 15% 242 176 73 %
5 1318 240 18 % 242 160 66 %
6 1411 115 8 % 242 84 35%
7 795 247 31 % 242 147 61 %
8 1805 141 7 % 242 80 33 %
4000
3000 -
“ z
T 2000 - 1
= 1
1 1
1 1
1000 - ! !
1 1
1 1
1 1
! . L |
Oct 2017 Nov 2017 Dec 2017 Jan 2018

Fig. 4. Number of received emails during the winter semester 2017 for the
”Digital integrated circuits” course. Each vertical line pair represents the start-
and end-date of one task group.

system on any PC setup without the need to install a complex
development tool.

Summarizing the lecturers feedback, the following should
be noted:

o Maintaining the system and providing new tasks during
the semester is easy and intuitive.

o VELS configuration is flexible, allowing courses with
different languages, modes and simulator backends.

o The task creator tool saves time and ensures uniform task
setups.

o Creating new tasks and especially their testbenches is the
key point for a fruitful use of VELS and takes some
time and experience. Students have to be provided with
meaningful error feedbacks.

o Supervising the students is still necessary and therefore
the possibility to ask and answer questions on specific
tasks is a very useful feature of VELS.

Students feedback was collected with the universities in-
ternal feedback system. Notable comments (translated from
German) include:

o I especially liked ... the voluntary practice opportunity
via VELS.”

o I especially liked ... the VELS exercises were good for
practicing.”

o "Sometimes the VELS comments are not really helpful, if
no explicit tips are given about what behavior is wrong.”

V. CONCLUSION & FUTURE WORK

After three years of continuous development and improve-
ments VELS now is a fully operational VHDL E-learning
system. The email based interface, individually randomized
tasks, multilingual task descriptions, different course modes,
individual textual submission feedback and the task creator
wizard have led to a good reception among both students
and lecturers. While VELS helps the students to continuously
improve their skills by providing small tasks with an instant
assessment, it does not replace human teaching. Students still
need to learn the basic structures and constructs of hardware
description languages, but can enhance and strengthen their
knowledge with E-learning systems like VELS.

One very important point for an optimal outcome of VELS
is the quality of each task. Compared to manual assessment
the task description and specifications must be more detailed,
unambiguous and easy to understand. Beside the task de-
scription special attention has to be payed on designing the
testbench and its feedback algorithm. Students need to get a
comprehensive feedback from the system.

The points mentioned above also indicate the limits of
VELS. The size of a task is limited by the possibility to create
an unambiguous description with an optimal feedback. The
larger and complexer a task gets, the more possible mistakes
have to be considered and the bigger the feedback algorithm
has to be. In any case, it will be impossible to take every
potential submission mistake into account and therefore a
human contact point should be provided in parallel.

VELS is open source, licensed under the GPLv2 and still
getting continuously enhanced. Some further improvement
ideas include: building a synthesis tool interface for testers
to allow e.g. feedback concerning resource consumption, a
plagiarism checker, partial grading based on correct coding
approaches, an interface to make the system usable with
Moodle and bundling the system as a Debian package.

ACKNOWLEDGMENT

VELS is a big project that would not have been possi-
ble without the contributions of following people: Andreas
Platschek provided the basis for the first version of autosub,
Hedyeh Kholerdi and Gilbert Markum implemented tasks and
Gilbert Markum devised the simulator abstraction interface.

VELS received funding as a VHDL E-Learning Platform
from the Institute of Computer Technology[10], autosub re-
ceived funding as an E-Learning Best Practice Project from
the FH Campus Wien Teaching Support Center [5].

REFERENCES

[1] M. Amelung, K. Krieger, and D. Rosner. “E-
Assessment as a Service”. In: IEEE Transactions on
Learning Technologies 4.2 (Apr. 2011), pp. 162-174.

[2] B. Cheang et al. “On automated grading of program-
ming assignments in an academic institution”. In: Com-
puters & Education 41.2 (2003), pp. 121-131.

[3] EDA Playground. https://www.edaplayground.com/.

(4]
(5]
(6]

(7]

(8]

[9]

[14]

[15]

[16]

Eudyptula Challenge. http://eudyptula-challenge.org/.
Accessed: 2018-04-04.

FH Campus Wien Teaching Support Center, Austria.
https://www.th-campuswien.ac.at/.

E. D. Gutiérrez et al. “An Experience of e-assessment
in an Introductory Course on Computer Organization”.
In: Procedia Computer Science 18 (2013). 2013 Interna-
tional Conference on Computational Science, pp. 1436—
1445.

E. Gutiérrez et al. “A new Moodle module supporting
automatic verification of VHDL-based assignments”.
In: Computers & Education 54.2 (2010), pp. 562-577.
J. Hollingsworth. “Automatic Graders for Programming
Classes”. In: Commun. ACM 3.10 (Oct. 1960), pp. 528—
529.

P. Thantola et al. “Review of recent systems for au-
tomatic assessment of programming assignments”. In:
cited By 165. 2010, pp. 86-93.

Institute of Computer Technology, TU Wien, Austria.
https://www.ict.tuwien.ac.at/.

K. Jelemenska and P. Ci¢dk. “Improved Assignments
Management in Moodle Environment”. In: INTED2012
Proceedings. 6th International Technology, Education
and Development Conference. Valencia, Spain: IATED,
May 2012, pp. 1809-1817.

K. Jelemenska, P. Cicak, and M. Gazik. “VHDL models
e-assessment in Moodle environment”. In: 2016 Inter-
national Conference on Emerging eLearning Technolo-
gies and Applications (ICETA). Nov. 2016, pp. 141-
146.

A. Kumar, R. C. Panicker, and A. Kassim. “Enhancing
VHDL learning through a light-weight integrated en-
vironment for development and automated checking”.
In: Proceedings of 2013 IEEE International Conference
on Teaching, Assessment and Learning for Engineering
(TALE). Aug. 2013, pp. 570-575.

Moodle Learning Management System. https://moodle.
org/.

R. Pettit et al. “Are automated assessment tools helpful
in programming courses?” In: vol. 122nd ASEE Annual
Conference and Exposition: Making Value for Society.
122nd ASEE Annual Conference and Exposition: Mak-
ing Value for Society. 2015.

V. Pieterse. “Automated Assessment of Programming
Assignments”. In: Proceedings of the 3rd Computer
Science Education Research Conference on Computer
Science Education Research. CSERC ’13. Arnhem,
Netherlands: Open Universiteit, Heerlen, 2013, 4:45—
4:56.

A. Robins, J. Rountree, and N. Rountree. “Learning and
Teaching Programming: A Review and Discussion”. In:
Computer Science Education 13.2 (2003), pp. 137-172.
R. Romli, S. Sulaiman, and K. Z. Zamli. “Automatic
programming assessment and test data generation a
review on its approaches”. In: 2010 International Sym-

[19]

[20]

[21]

[22]

posium on Information Technology. Vol. 3. June 2010,
pp. 1186-1192.

D. M. Souza, K. R. Felizardo, and E. F. Barbosa.
“A Systematic Literature Review of Assessment Tools
for Programming Assignments”. In: 2016 IEEE 29th
International Conference on Software Engineering Ed-
ucation and Training (CSEET). Apr. 2016, pp. 147-156.
T. Staubitz et al. “Towards practical programming exer-
cises and automated assessment in Massive Open On-
line Courses”. In: 2015 IEEE International Conference
on Teaching, Assessment, and Learning for Engineering
(TALE). Dec. 2015, pp. 23-30.

VELS and autosub. https://github.com/autosub-team/
autosub.

VELS usermanual. https://github.com/autosub- team/
autosub/blob/master/doc/doc_pdf/usermanual.pdf.

