
Performance Analysis of Reconfiguration in Adaptive
Real-Time Streaming Applications

Jun Zhu, Ingo Sander and Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

{junz, ingo, axel}@kth.se

Abstract

We propose a design optimization framework for adap-
tive real-time streaming applications. The main contribu-
tion is a hybrid approach for performance analysis com-
bining formal analysis and simulation using a two-phase
framework. We formulate the scheduling problem of adap-
tive streaming applications with ILP analysis, and use the
simulation based on the synchronous model of computation
to ensure throughput guarantees. We finally illustrate the
capabilities of our methodology by experiments.

1. Introduction

Partially reconfigurable FPGAs allow to dynamically re-
program a part of the FPGA on the fly, while the rest con-
tinues its operation without being affected. This feature
enhances the adaptive capability of many embedded signal
processing and multi-media streaming applications working
in dynamic environments.

However, this combination of flexibility and efficiency
does not come for free. Adaptivity adds another dimension
of complexity to the design process, while the system per-
formance during reconfiguration still needs to be satisfied.
Thus, to ensure the system’s performance during reconfig-
uration, without losing efficiency, is a key challenge for fu-
ture design methodologies to exploit the full potential of
adaptivity.
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Figure 1: A minimal adaptive streaming application model

A minimal adaptive streaming application model is il-
lustrated in Figure 1, which we use as a tutorial example in
this paper. Nodes denote the computation processes. Edges
associated with FIFOs denote the communication channels
with finite storage, which decouples the input data streams
from output data streams of each communication channel
(e.g. FIFO i decouples s1 from s2).

Processes read tokens from the input-side FIFOs, and
emit the result data tokens to the output-side FIFOs at the
end of the computation. The input/output token numbers
are fixed [7] and denoted as symbols at each side of the
communication channels, e.g. process pi has mi input to-
kens and ni output tokens. Meanwhile, the adaptive process
pi responds to the adaptation control stream sm,i, and can
switch between two different working modes A and B, as
shown in the dashed box. While the stream source pin pro-
vides a peak data rate ρin (on the communication channel
cutting by the dashed-line), an average output data rate ρout

needs to be guaranteed by the application even during the
reconfiguration of process pi. The adaptation control sig-
nal sm,i might either come from an external controller or be
retrieved from the data streams.

We propose a hybrid approach for performance analy-
sis combining formal analysis and simulation using a two-
phase framework. We implement our framework and use
several adaptation scenarios on both the tutorial and indus-
trial applications to show its capabilities.

The rest of the paper is structured as follows. Section
2 discusses the related work. We introduce the architec-
ture model of our target platform, a reconfigurable FPGA in
Section 3. Section 4 introduces the formal models we use
for steaming applications. Section 5 proposes our frame-
work for adaptive systems and its implementation. Section
6 shows the experimental results. Finally, Section 7 con-
cludes the paper.

2. Related Work

Models of computations have been widely used as a for-
mal base in streaming applications design. Synchronous



data flow (SDF) [7] is used to describe the functionalities,
and schedule applications with bounded buffer sizes. To
provide timing guarantees, Govindarajan et al. [5] and Stu-
ijk et al. [10] apply a timed SDF model for buffer require-
ment minimization with performance guarantees.

The synchronous model of computation has been very
successful in the context of industrial safety-critical real-
time systems [1]. We adopt this model in the recent work
[8] for the modelling of adaptive systems. However, design
efficiency of adaptive real-time embedded systems has not
been addressed.

Network calculus [2] and real-time calculus (RTC) [3]
are both a collection of methods in deterministic queuing
theories. They formalize the incoming workloads and pro-
cessing capabilities as cumulative functions of time, and
suit system analysis of performance guarantees and buffer
dimensioning. Although RTC further extends network cal-
culus from network domain to the real-time embedded sys-
tem domain, none of them takes adaptive systems into con-
sideration.

Our approach in this paper is close to the spirit of a
hybrid method in [6], which combines RTC formal analy-
sis with cycle accurate simulation to speed up performance
analysis. Our approach is different in that it uses formal
semantics in both integer linear programming (ILP) and the
synchronous model based simulation, and targets the design
efficiency of adaptive real-time embedded systems, which
has not yet been covered by others work to the extend of
our knowledge.

3. Architecture Model
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Figure 2: Overview of a reconfigurable FPGA using just-
in-time reconfiguration with a single configuration slot.

Our target architecture is a partially reconfigurable
FPGA as illustrated in Figure 2. For discussion, we divide
the configuration-related FPGA area (excluding the non-
reconfigurable area) into three parts.

The reconfigurable area is the space for configurations
that are only needed for a limited amount of time at run-
time. It can be used to store several configurations at the
same time. However, here we focus on a “just-in-time”-
approach (JIT), which uses a single configuration slot. Ev-
ery time a system function is needed, the function is loaded
into the reconfiguration slot. The configuration memory is

used to store all configurations of different working modes
in a compressed format (with the ratio kC) that can be
loaded into the reconfigurable area at run-time. It can either
be a local memory, or an external memory (Flash, DDRAM,
SRAM, etc.). The configuration controller enables recon-
figuration. The only unit we use for area is logic elements
(LE). Area requirements in form of memory elements are
converted into logic elements.

During reconfiguration a bit-stream is loaded from the
configuration memory into a part of the reconfigurable
area. The reconfiguration time tR,i is both technology and
stream-size dependent. To abstract from technology details,
we assume that tR,i grows linearly with the size of the bit
stream AM,i of the configuration i, thus tR,i = kRAM,i.
The configuration time tR,i lies typically in the area of mil-
liseconds and can not be neglected. The consequence may
be that there is a need for extra buffers with area ABuffer ,
which includes the output buffer to sustain the output rate
during reconfiguration and possibly an extra buffer to store
input data tokens.

The total area cost for the JIT configuration is

AJIT=ACC+
Pi=n

i=1 AM,i+kC ·max(AM,1,...,AM,n)+ABuffer (1)

4 Formal models on streaming applications

In this section, we illustrate two formal models on
streaming application. One is the synchronous model (in
Section 4.1), which provides a simulation mechanism and
performance guarantees for regular (non-adaptive) stream-
ing applications. The other is the ILP formulation (in Sec-
tion 4.2), which fits well the changing working modes of
adaptive systems but is in lack of performance guarantees.
In this paper, we assume the time period always starts with
0.

4.1 Synchronous model

In the synchronous model, time slots are numbered with
n ∈ N0. The data stream s is a time indexed set of events,
s = {e0, e1, · · · , en, · · · }. Each event en = (n, vn) repre-
sents the number vn ∈ N0 of data tokens present during the
time slot n.

For an application model, the process computation la-
tency list T contains computation time tC,i to execute each
process pi once. The storage capabilities are captured in
a FIFO size list Γ, which contains the storage capacity γi

in data tokens for each FIFO i. For instance, the example
application in Figure 1 has T = [tC ,in , tC,i, tC ,out ] and
Γ = [γi, γout ].

We use self-timed scheduling [9], which means a pro-
cess executes only when the input-side FIFOs have suffi-
cient data tokens and the output-side FIFOs have enough



vacant space. In the scheduling test, a process pi needs to
demand and reserve a vacant space di,t ∈ {0, ni} at time
tag t from the output-side FIFOs. While a process is com-
puting, the data tokens remain on the input-side FIFOs until
the computation is completed.

1 2 3 4 5 6 87 90 10111213

1 0 0 0 000000000 2
12 2 21 10 0 0 0 0 012

2 4 4 6 6 5 5 4 4 6 6 5 52
2 20 0 0 0 1 1 2 2 2 1 1 2

2 1 2 2 22 221 1 1 1 1 1
time tagSpecifications parameters:

with Lperiod = 6
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Figure 3: A self-timed schedule of the example application
with specified specification parameters

The example application is instantiated as a non-adaptive
system (i.e. sm,i is neglected) with the parameters on the
left side of Figure 3, which implies an input peak data rate
ρin = nin

tin
= 1 to process pi. The corresponding self-

timed schedule is shown on the right side, in which the
process and FIFO status are listed in separated rows. The
time evolution is depicted in corresponding columns and
advances 1 per column. At each time tag, a process in
executing (shadowed) state has a number to denote the re-
maining execution time slots, a stalling (non-shadowed)
process status is denoted as 0, and a FIFO status is de-
noted as the occupied storage space in tokens. As the sched-
ule advances to time tag 10, the application encounters the
same process and FIFO status list (T ′ and Γ′) as at time
tag 4 (i.e. T ′

10 = T ′
4 = [2, 2, 0] and Γ′

10 = Γ′
4 = [6, 1]),

and enters a periodic phase. The periodic phase has length
Lperiod = 6, in which the sink process pout always runs 1
time. Thus, process pi guarantees an average output data
rate ρout = 1·mout

Lperiod
= 1

3 .

4.2 ILP analysis of streaming applications

We construct our event model as cumulative functions on
the synchronous data streams (Section 4.1), which is similar
to [4, 3]. We call the combination of a process pi and its
adjacent input-side FIFO(s) FIFO i a processing resource
pri.

We assume without loss of generality that a specified
processing resource pri has the adjacent preceding process-
ing resource prin and adjacent succeeding processing re-
source prout , as illustrated in Figure 1. The input/output
workloads and processing capabilities of pri are character-
ized as the following cumulative functions:

Definition 1 (Arrival function) The arrival function Ri(t)
of the processing resource pri is defined as the sum of tokens
arriving from the input data stream(s) (e.g. s1 in Figure 1)
during the time interval [0, t], t ∈ N0.

Definition 2 (Output function) The output function R′
i(t)

of the processing resource pri equals to the arrival function
of the adjacent succeeding processing resource prout , thus
R′

i(t) ≡ Rout(t).

Definition 3 (Service function) The service function
Ci[s, t] of the processing resource pri is defined as the sum
of tokens served by pi and removed from the buffer FIFO i

via the data stream(s) (e.g. s2 in Figure 1) during the time
interval [0, t], t ∈ N0.

To describe the extra buffer demanding and reservation
in the scheduling test (see Section 4.1), we define

Definition 4 (Demand function) For the processing re-
source pri with the output function R′

i(t), the demand func-
tion Di(t) is defined as the sum of R′

i(t) and the demand-
ing space di,t at time tag t on the FIFO(s) (e.g. FIFOout

in Figure 1) of the adjacent succeeding processing resource
prout , i.e. Di(t) = R′

i(t) + di,t, di,t ∈ {0, ni}.

We derive the backlog Bi(t) (tokens received but not
served) in FIFO i of the processing resource pri to be

Bi(t) = Ri(t)− Ci(t), ∀t ∈ N0 (2)

In self-timed scheduling, the buffer space required B′
out(t)

on the output-side FIFO FIFOout of the processing re-
source pri (equals to Bout(t) + di,t) is

B′
out(t) = Di(t)− Cout(t), ∀t ∈ N0 (3)

We assume the JIT configuration of the adaptive process
pi takes tR,i time and two succeeding configurations have
the minimal interval tinterR,i . We formalize the semantics
of the streaming application in self-timed scheduling with
the ILP formulation, with the full list of constraints given
in the Appendix. The ILP analysis can formulate the de-
sign requirements as objective functions subject to different
constraints (changing scenarios), which fits well the varying
working modes of adaptive systems. However, the ILP anal-
ysis can only provide guarantees within the upper-bound
time t considered for the Constraints (in Appendix), thus
might lead to optimistic buffer dimensioning.

5 Framework and implementation

We aim at a hybrid approach for adaptive systems
with performance guarantees. A generic-framework, which
combines ILP analysis and the simulation in the syn-
chronous model of computation, is illustrated in Figure 4.
The inputs to the framework are the streaming application
specifications (e.g. application model, adaptation strategy,
specification parameters, ρout , etc). The workflow can be
described by the following steps:
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Figure 4: Generic framework

Step 1: When the problem is feasible, the ILP analysis out-
puts the buffer Γ required for the given specifications;
otherwise, the specifications need to be revised (which
is out of the scope of this paper).

Step 2: Using the result Γ from ILP analysis, the perfor-
mance guarantees are checked in the simulation, i.e.
whether a periodic phase could be found in the appli-
cation schedule as in Figure 3.

Step 3: If the termination conditions (guarantees are found
or maximum execution time) are met, it stops and out-
puts the results; otherwise, it increases the considered
t in ILP analysis by ∆t, and goes back to Step 1.

Apparently, only when the guarantees are met in Step 3, the
output results are valid. As the initial value of t and ∆t are
application model dependent, empirically, we run the syn-
chronous simulation with some sufficient deadlock avoiding
buffer Γ first and choose both t and ∆t as the periodic phase
length Lperiod .

We decompose the adaptation scenarios into two phases
and build a buffer dimensioning exploration framework as
the following:

Phase I: To find the minimal backlog Bmin requirement
to sustain the stable transmission during the configura-
tion, i.e. to minimize the following objective function
(Eq. 4)

min : Bmin,i (4)

subject to Constraint 1 - 7 (in Appendix).

Phase II: To find the minimal buffer sizes, which could
accumulate backlog no less than Bmin,i in buffer
FIFOout after tinterR,i , i.e. to minimize the follow-
ing objective function (Eq. 5)

min : γi + γout . γi > B′
i(t), γout > B′

out(t),∀t ∈ N0

(5)
subject to Constraint 1 - 6 and Constraint 8 (in Ap-
pendix).

The minimal buffer sizes dimensioned by the exploration
can guarantee the performance of the adaptive streaming
applications.

In our implementation, we use the public domain tool
lp solve as the ILP solver, and use the ForSyDe syn-
chronous library [8] for simulation purpose. A Python script
is used to glue them together. The script generates the ILP
model for lp solve, retrieves the output, and invokes the syn-
chronous simulation to check the throughput in both phases
in our framework.

6. Case Study

In this section, we use the implementation of our
methodology for several experiments on both the example
application of Figure 1 and an industrial applications from
Thales Communications. For different specifications of the
adaptive process(es), e.g. tC,i and tR,i for the processing re-
source pri, the minimum buffer sizes of the application are
dimensioned, while the application throughput requirement
ρout is guaranteed.

6.1 The example application

We assume the adaptive process pi in the example ap-
plication has two different modes, and both configurations
have the same properties (i.e., the same mi, ni, tR,i, tC,i,
etc). We elaborate the model shown in Figure 1 with con-
crete numbers (i.e. nin = 2, mi = 2, ni = 3, mout = 1 and
t1 = 1) and assume the two succeeding reconfigurations of
p1 have a minimum interval tinterR,i = 50 slots.

options #1 #2 #3 #4 #5 #6 #7 #8
tR,i 2 3 4 5 10 15 20 40
tC,i 16 13 12 10 8 6 5 4
AM 0.5 0.8 1.0 1.3 2.5 3.8 5.0 10

Table 1: Design options for the adaptive process pi

First, we assume that different design options have vary-
ing reconfiguration time tR,i, as listed out in the second row
of Table 1, but have a fixed latency tC,i (i.e. tC,i = 10),
and evaluate the FIFO sizes requirement. Figure 5a shows
the minimal FIFO sizes needed upon different tR,i, corre-
sponding to three output data rates ρout . To consider the
two concerns tR,i and ρout separately, apparently, higher
ρout demands larger FIFO sizes, so do the design options
with higher tR,i.

Instead, in the following scenario, we choose the design
options according to the reconfiguration properties listed
out in Table 5b, which conforms to tR,i = kRAM,i with
kR = 10.0 and an assumed relation tC,i ∝ d 1√

tR,i
e. These

design options show different implementation strategies in
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Figure 5: Experimental results of the example application
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Figure 6: Industrial application and experimental results

the speed and area trade-offs, e.g. an adder can be imple-
mented as carry-lookahead adder (optimized for speed) or a
ripple-adder (optimized for area).

Although, higher ρout (i.e. ρout = 1/8) still demands
larger FIFO sizes, the FIFO sizes are not monotonic to tR,i

any more, as both tC,i and tR,i can affect the buffer require-
ment to sustain ρout during reconfiguration. We can see that
the design options with tR,i close to 5 need less buffer.

With a given compression ratio kC = 4.0, the design
costs are evaluated. As the design options after #5 simply
show a fast monotonically increasing cost, we only present
the cost of design option #1-5 for clarity in Figure 5c. We
see higher throughput requirement still leads to larger de-
sign costs. However, the design costs heavily depend on the
tC,i and tR,i trade-off, i.e. the speed and time trade-off, and
#2 with tR,i = 3 shows the minimum cost.

6.2 An industrial application

To evaluate the potential of our methodology in adaptive
systems, we use it on an industrial application. We focus on
the reconfigurable part of the application model as shown in
Figure 6a, in which the specification parameters are omitted
for clarity. There are two adaptive processes (modules): the
Cipher pi and the Coder pj . Each of them receives the adap-
tation control signal sm,i or sm,j from the environment, and
can change the working modes among three possibilities

(i.e. algorithm 1-3 for the Cipher, and BT/BL/BR coder
for the Coder). The input/output constraints are captured
by ρin and ρout . The design objective is to minimize the
buffer requirement to sustain the stable transmission with
ρout , when either or both of the two modules are in config-
uration.

We decouple the two reconfigurable modules and solve
them individually. The first one is to find the minimum
buffer sizes for the Cipher buffers FIFO i and FIFOj to
meet the throughput requirement ρout′ , which is derived
from the requirement from ρout . The second step is to
find the minimum play-out buffer FIFOout for the Coder
module, within the input constraints ρout′ and the output
requirements ρout . Especially, for both the Cipher and
Coder, all the reconfiguration possibilities (changing from
one mode to the other, i.e. 3 × (3 − 1) = 6) are explored,
and we choose the worst case buffer requirements to guar-
antee other adaptations.

The results of different implementation strategies tR,i

are shown in Figure 6b and 6c. For the Cipher, the design
costs are not monotonic to tR,i. In both modules, the design
cost increases with the throughput ρout′ or ρout .

It shows that our framework works for adaptive systems
with a series of adaptive processes (modules) as well.



7. Conclusion

The experimental results show that our framework suits
well to exploit the adaptivity of different design options,
without losing efficiency, of real-time streaming applica-
tions. Especially, the industrial case study shows the capa-
bility of our methodology to cope with the sequential com-
position of adaptive systems.

In the future, we plan to extend our general approach on
more implementation alternatives on adaptation strategies
and target architectures.

Appendix

List of linear constraints

If not explicitly clarified in the linear constraints below,
∀t ∈ N0. We assume the designer will specify some initial
values (e.g. Ci(0) = 0 in this paper), which are thus not
constrained (considered) in the following semantics.

Constraint 1 For the processing resource pri, R′
i[t] and

Ci[t] follow the static input/output tokens ratio as

R′
i[t] ·mi = Ci[t] · ni (A-1)

Constraint 2 The incoming tokens to the processing re-
source pri takes at least tC,i slots to be served.

Ri(t)− Ci(t + ∆t) > 0, 1 6 ∆t 6 tC,i (A-2)

Constraint 3 For the processing resource pri, the demand
function reserves vacant space tC ,i slots in advance.

Di(t) = Rout(t + tC,i) (A-3)

Constraint 4 The buffer size γi of the processing resource
pri satisfies the maximum buffer space requirement.

γi > Din(t)− Ci(t) (A-4)

Constraint 5 The processing resource pri have computa-
tion latency tC,i and input/output data tokens mi and ni.

Ci(t+tC,i)−Ci(t)=mi·kCi ,t+tC ,i
, kCi ,t+tC ,i

∈{0,1} (A-5)
Di(t+tC,i)−Di(t)=ni·kDi ,t+tC ,i

, kDi ,t+tC ,i
∈{0,1} (A-6)

Constraint 6 For the processing resource pri with compu-
tation latency tC,i, the arrival function differential does not
exceed the peak data rate ρin .

Ri(t + tC,i)−Ri(t) 6 tC,i · ρin (A-7)

Constraint 7 Especially, for the processing resource pri

using JIT adaptation after tinterR,i , the reconfiguration
takes tR,i time (the processing capability stalls).

Ci(t + tR,i)− Ci(t) = 0, t > tinterR,i (A-8)

Constraint 8 Especially, for the processing resource pri

using JIT adaptation after tinterR,i , the backlog is required
to have a minimum amount of Bmin,i .

Bi(t) > Bmin,i , t > tinterR,i (A-9)
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