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Abstract—We analyze the scalability of the Release Consistency 

(RC) and Sequential Consistency (SC) models which are realized 

in the Network-on-Chip (NoC) based distributed shared memory 

multicore systems. The analysis is performed on the basis of 

workloads mapped on the different sizes of networks with 

different data sets. The experiments use a configurable platform 

based on a 2D mesh NoC using deflection routing algorithm. The 

results show that under the synthetic workloads using different 

distributed locks, the performance of the RC model is increased 

by 17.6% to 54.6% over the SC model in the 64-cores system. For 

the application workloads, as the network size grows from 1 to 64 

cores, the execution time under the RC model decreases relative 

to the SC model which depends on the application and its match 

to the architecture. The performance improvement of the RC 

model over the SC model tends to be higher than 50% observed 

in the experiments, when the system is further scaled up. 

Keywords- Scalability; Memory consistency; Release 

consistency; Distributed shared memory; Network-on-Chip 

I.  INTRODUCTION 

Parallelization as a key means to enhance performance and 

reduce power can be achieved at the computation, 

communication and memory architectures in the system [1]. 

The distributed nature of the Network-on-Chip (NoC) based 

systems can be exploited by using on-chip Distributed Shared 

Memory (DSM) architectures. Since the shared memory 

operations may be reordered in the network, the DSM system 

may show unexpected behavior. Memory consistency defines 

the execution order of the shared memory operations for the 

correct behavior of the DSM systems. Different memory 

consistency models [2] enforce different ordering constraints 

on the shared memory operations, implying different system 

performance. The Sequential Consistency (SC) model is a strict 

consistency model [3] and it cannot exploit the system 

optimizations. Therefore, several relaxed consistency models 

[2][4-7] are proposed to alleviate the ordering constraints on 

the memory operations to exploit these system optimizations.  

Memory consistency and cache coherence are two main 

issues in the DSM systems. The former issue arises due to the 

unconstrained shared memory operations, while the later issue 

is due to the different cached copies of the same shared data in 

the DSM systems. Different memory consistency models and 

cache coherence protocols are proposed to handle these issues. 

In some situations, when a cache is not used like in the hard 

real time applications or when these two problems have 

different requirements on the size of the cache block and the 

consistency object, independent implementation schemes for 

the two problems are preferred [8][9].  

This paper analyzes the scalability of the RC and SC models 

[8][9] which are realized in the Multicore NoC (McNoC) 

systems. The key performance metrics like execution time, 

performance, speedup, overhead and efficiency are evaluated as 

a function of the network size. The scaling behavior of both the 

RC and SC models are analyzed by mapping the workloads on 

the different sizes of the network with different data sets and 

also on the basis of application types and the system design 

perceptions (e.g. distributed locks and DSM architectures).  

For the experiments, a configurable McNoC platform is 

used with distributed locks, DSM and 2D mesh Nostrum NoC 

[10] using a deflection routing policy. The scalability study of 

the RC and SC models is performed in the McNoC systems 

with 1 to 64-cores. The experimental results show the scaling 

behavior of the RC and SC models in the McNoC systems.  
The rest of the paper is organized as follows. The next 

section overviews the related work. In section III, the SC and 
RC models, DSM based McNoC platform and the 
implementation of the SC and RC models are discussed. The 
simulation results and scalability analysis of the RC and SC 
models up to 64-cores systems are presented in section IV. In 
section V, our contributions are summarized. 

II. RELATED WORK 

In general multiprocessors DSM systems, several memory 

consistency models are discussed in the literature [2-7]. Adve 

et al. [2] discussed the memory consistency models from the 

system optimizations point of view. The SC model enforces a 

total order on the shared memory operations [3]. The total store 

ordering model relaxes the ordering constraint in the case of a 

write followed by a read operation. The partial store ordering 

model provides an additional relaxation among the write 

operations [2]. The Weak Consistency (WC) model [5] 

classifies the shared memory operations as data and 

synchronization operations. The data (read, write) operations 

issued between the two consecutive synchronization points can 

be reordered with each other. The RC model [6] further 

classifies the synchronization operations as acquire and release 

operations. The RC model is implemented in the DASH project 

[7] which depends on the directory based cache coherence 

protocol [11]. However, the directory based coherence 

protocols have some issues in the larger networks like, i.e., 

extra coherence traffic, directory overhead, additional latencies 

and complexities. In NoC based DSM systems, the proposed 

mechanism in [12] is very restrictive and allows one 

outstanding transaction of an initiator at a time in the network. 

The streaming consistency [13] is based on the software cache 

coherence protocol. However, polling the circular buffer at 



each request level is not a scalable approach. A protocol stack 

for on-chip interconnects is proposed [14] at different levels of 

the SoC design. They briefly outline the mechanisms to 

implement the RC model at the memory-mapped stack. But, 

the implementation detail is not discussed. The AXI [16] and 

OCP [18] protocols enforce the ordering models by using 

transactions IDs and thread IDs, respectively. In [16], 

transactions of the same master with different IDs can be 

reordered, but transactions with the same ID are not allowed to 

be reordered. In [18], tagged transactions of the same master 

using thread IDs are allowed to be reordered, but non-tagged 

transactions are strictly ordered. In [8], the SC model is 

realized in the McNoC systems by stalling the processor on 

the issuance of an operation till its completion. In [15], two 

Transaction Counters (TCs) based approach is adopted to 

realize the RC model in the McNoC systems. The TC1 and 

TC2 are used to keep track of the outstanding data operations 

issued in the non-critical and critical sections, respectively. In 

[9], a single TC based approach is used to realize the RC model 

in the McNoC systems. In this paper, we further analyze the 

scalability of the RC model [9] and SC model [8] in the 

McNoC systems. 

III. SC AND RC MODELS IN NOC BASED SYSTEMS 

The ordering constraints to be enforced on the shared 

memory operations under the SC and RC models are given in 

Figure 1(a) and (b). An arrow between the two variables 

indicates an ordering constraint between the operations on 

these variables. For example, G→H indicates that an operation 

on variable G is followed by an operation on variable H in the 

program and these two operations are not allowed to be 

reordered with each other. The variables to the left side of the 

assignment operators are written and those to the right are read. 

A. SC Model 

According to the SC model [3][8] (Figure 1(a)), the shared 

memory operations are completed in the program order. The 

sequential order is maintained by interleaving operations on 

lock (L) among processors in the system. The SC model 

enforces the global orders (Figure 1(c)) on the shared memory 

operations. We refer to these global orders in the later part. 
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Figure 1.  a) SC model     b) RC model     c) Global orders under SC model  

d) Global orders under RC model 

B.  RC Model 

The RC model [6][9] is a refinement of the WC model 

[10]. It classifies the synchronization operations as acquire 

and release operations. The acquire operation delays the 

following data operations until the lock is obtained and does 

not wait for the completion of the previously issued data (read, 

write) operations. The release operation is to inform about the 

completion of previously issued data operations and does not 

delay the subsequent data operations. According to the RC 

model (Figure 1(b)), the independent data (read, write) 

operations on (G, H) are allowed to be reordered with each 

other, with the acquire operation on lock (L) and with the data 

operations on (I, J) in the critical section. They are not 

permitted to be reordered with respect to the release operation 

on lock (L). The data operations (I, J) can be reordered and 

overlapped with respect to each other, but they are not allowed 

to be reordered with the acquire and release operations on lock 

(L). The data operations on (K, M) are allowed to be reordered 

with each other, with the prior outstanding release operation on 

lock (L) and with the prior outstanding data operations on (I, J). 

However, they are not permitted to be reordered with respect to 

the prior acquire operation on lock (L). The global orders to be 

enforced on the shared memory operations under the RC model 

are given in Figure 1(d).  

C. Platform Architecture 

A homogenous McNoC platform is shown in Figure 2(a). As 

demonstrated in Figure 2(b), each Processor-Memory (PM) 

node consists of a processor, transaction controller (TCTRL), 

Synchronization Handler (SH), Network Interface (NI) and the 

local memory. The platform uses 2D mesh packet switched 

Nostrum NoC [10] with an adaptive routing algorithm. It is a 

buffer-less network and only buffers are used at the NIs to store 

the packets before injection into and after ejection from the 

network. The NI connects a PM node to the network. It 

performs packetization, de-packetization, queuing, arbitration 

and communication over the network. The platform uses the 

DSM in the network. All shared parts in the local memories 

constitute the DSM in a single global address space. The local 

memory is connected to the local processor within the node and 

to the remote processors via the network. 

 

PM PM PM

PM PM

PM PM PM

PM

PM PM

PM

PM

PM

PMPM PM Node Processor

Sync. 

Handler

Router

Network 

Interface
Private Shared

Local Memory

Keep-transaction-going Transactions

TC

Transaction controller

A-Stack

PM : Processor-Memory

A-Stack : Address Stack

TC : Transaction Counter  
                           (a)                                                        (b)  

Figure 2.  a) Homogeneous McNoC      b) PM node 

The platform also uses the distributed locks in the network. 

The SH controls N locks maintained in the global address 

space. Every lock is accessed in a sequential order by multiple 

processors in the system. The synchronization (acquire, 

release) requests to the SH either come from the local processor 

or from the remote processor via the network. If the requested 



lock is available then it is acquired. Otherwise, a negative 

acknowledgement is sent back and the source node sends again 

the same request until the lock is gained. A release request 

makes the lock available for the next acquire on it. The data 

(read, write) operations to the local shared memory and 

synchronization (acquire, release) operations to the local SH 

are accomplished within the node. For the remote accesses, 

message passing is carried out to the remote node via the 

network. The customized interface (TCTRL) like any standard 

interface [15][17] integrates the processor with the rest of the 

system. It also implements the memory consistency protocols 

using the hardware structures (TC, Address-Stack). The 

TCTRL is developed specifically for the LEON3 IP-core [17] 

which is used in each node of the network.  

D. Implementation of the SC Model 

The SC model is implemented [8] by enforcing the required 

global orders (Figure 1(c)) on the shared memory operations.  

Program Order: is enforced by stalling the processor on the 

issuance of a shared memory operation till its completion. On 

the completion of a previously issued memory operation, the 

next operation is issued in the program.  

Sequential Order: The multiple processors mutually agree on a 

common lock to sequentially access the critical resource. 

E. Implementation of the RC Model 

The RC model is implemented [9] by enforcing the required 

global orders (Figure 1(d)) on the shared memory operations.  

Data → Release: To enforce this global order, a Transaction 

Counter (TC) is used in each node of the network to keep track 

of the outstanding data (read, write) operations issued before 

the release operation. The TC is incremented by the issuance of 

a data operation. It is decremented by the completion of a data 

operation. The issuance of a release operation is delayed by 

stalling the processor till the completion of previously issued 

outstanding data operations, i.e., (TC=0).  

Acquire → Data/Release: To enforce these global orders, the 

processor is stalled on the issuance of an acquire operation till 

the acquisition of the lock. The lock is gained by a processor 

before entering to the critical section and before trying to 

release it. 

Release → Acquire: This global order is enforced by 

sequential ordering on a lock in the multiprocessor system. The 

lock is released by a processor before the next acquire on it.  

Data operations to the same location: are constrained for the 

purpose of correctness. To that end, an address stack (A-Stack) 

is used in each node of the network to ensure the parallel 

program correctness [9].  

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

We experimented on a configurable cycle-accurate 

McNoC simulation platform constructed in VHDL (Figure 2). 

The LEON3 processor [17] is used in each node of the 

network. The size of the shared memory in each node is 16 

MB. The SH maintains 256 locks in each node of the network. 

The TC is 32 bits and the A-Stack can stack up to 64 addresses 

each with 24 bits. The size of the A-Stack is kept small and it 

is utilized efficiently. The addresses are popped from the A-

Stack continuously by the completion of operations in a 

pipelined manner. The packet formation in the NI uses 7 fields 

(96 bits). The buffering capacity at the NI is 64 packets. The 

Nostrum NoC [10] uses 2D mesh regular topology and 

deflection routing policy.  

We have developed some in-house synthetic and 

application workloads to evaluate the performance of the 

McNoC systems. Synthetic workloads are small in size and 

used to test a particular aspect of the system, while application 

workloads give accurate and deeper evaluations of the system 

[19][20]. The developed applications are light weight, specific 

to NoC/embedded architectures and communication centric. 

B. Performance Metrics for the Scalability Analysis 

To study the scalability of the RC and SC models in the 

McNoC systems (Figure 2), application workloads are mapped 

on the different sized networks. The performance metrics like 

execution time, performance, speedup, overhead and efficiency 

are evaluated as the network scales up. The execution time (ET) 

of a workload is the time from the start of the execution on the 

first processor to the end of the execution on the last processor 

in the system. The performance is the reciprocal of the ET. The 

speedup (SP) is the ratio of the single core execution time (Ts) 

and the execution time of the multicore (Tm) system. We 

define the communication overhead (OH) of the multicore 

system as: Nc*Tm-Ts, where Nc is the number of cores in the 

system. The efficiency (EF) of the multicore system is defined 

as the ratio SP/Nc. For the synthetic workloads, the ET of the 

multicore normalized to the single core is defined as (Nor-

ET1C). In the experiments, the effects of the network size on 

the ET, performance, SP, OH and EF are investigated under 

the RC and SC models in the McNoC systems.  

C. Synthetic Workloads  

To demonstrate the benefits of the distributed locks, we 

evaluate the RC and SC models with synthetic workloads 

manually mapped on the LEON3 processors in the systems 

(Figure 3(a)). The same sequence of transactions is generated 

by the processor in each node of the network. The workloads 

have both data and synchronization operations. For the lock 

and protected (critical section) data operations, hotspot traffic 

pattern is generated (Figure 3(b)). We consider an 8x8 

network. For k locks, the network is divided into k equal 

segments. All nodes within a segment synchronize over a 

common lock in a node that belongs to the same segment.  

     // unprotected data1 

     a = data1;      

     b = data2 ; 

     // Lock acquire 

     Acquire (L); 

     // protected data      

     c = data3;      

     reg1 = c;

     // Lock release

     Release(L)          

      // unprotected data2

     reg2 = a;  

     reg3 = b;  

(1,2) (1,3) (1,4)(1,1)

(2,3) (2,4)(2,1)

(3,2) (3,3) (3,4)(3,1)

(4,2) (4,3) (4,4)(4,1)

(2,2)

Synchronization 

node

Protected 

data node  Initially,  int  a, b, c = 0;

 
  (a)                                                      (b) 

Figure 3.  a) Sequences of transactions generated   b) Traffic Patterns 



      The performance of the RC and SC models are compared 

using different number of segments/locks in the 8x8 network 

(Figure 4(a)). As the number of segments/locks increase in the 

network, the performance quickly increases due to the fact that 

different segments synchronize over different distributed locks 

in the network. The average lock acquire wait time is reduced 

as the network traffic/congestion decreases. The performance 

is higher under the RC model compared to the SC model due 

to reordering and relaxation in the shared memory operations. 

The average performance under the RC model for 1 to 32 

locks is increased by 17.6% to 54.6% over the SC model. The 

ET of the 64-cores normalized to the single core (Nor-ET1C) is 

shown in Figure 4(b). The ideal Nor-ET1C is 1 by assuming 

zero communication overhead in the 8x8 system and the ET of 

the 64-cores system is equal to that in the single core system. 

Note that, the same sequence of transactions is generated by 

identical processors in the system. The deviation of the actual 

Nor-ET1C under both the memory models from the ideal case 

decreases as the number of the segments/locks increases in the 

network.  
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Figure 4.  (a) Performance  (b) Normalized ET of 64-cores to single core  

D. Application Workloads 

 

1) Bit Count 

Bit count application analyzes a data vector and calculates 

the number of set bits in each integer data item. After 

initialization these data items are read, analyzed and the output 

values are stored in the DSM. Different sizes vectors are used 

with (16, 32, 64, 128, 256, 512 and 1024) data elements. The 

network size is increased from 1 to 64 nodes. When a data 

vector of 16 elements is mapped on the 4x8 and 8x8 networks, 

only 16 nodes are involved in the computations. Similarly, 

when a 32 data vector is mapped on the 8x8, only 32 nodes 

perform the computations. For the rest of the data vectors all 

nodes perform the computation in the 8x8 network. Each node 

operates on the data items in the randomly selected node and 

also writes the output results into the same node.  

 

Figures 5~8 illustrate the ET, speedup, communication 

overhead and efficiency of the RC and SC models under 

different sizes of networks and different data sets. As 

illustrated in Figure 5, the Application workload ET (AET) is 

decreased as the system size is increased from 1 to 64 cores. 

This is due to the division of computation cost in the network. 

The RC model further decreases the AET compared to the SC 

model by reordering and overlapping the shared memory 

operations in the network. 
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Figure 5.  Execution Time under Bit Count Application 
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Figure 6.  Speedup under Bit Count Application 
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Figure 7.  Communication Overhead under Bit Count Application 
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Figure 8.  Efficiency under Bit Count Application 

The AET reduction also depends on the data set size. It is 

high under the larger data set due to the parallelization of the 

significant amount of computation cost in the system. For the 

1024 data set, the AETs in the single core system are 26.6 and 

13.6 times of that in the 64-cores system under the RC and SC 

models, respectively. Likewise, the speedup (Figure 6) grows 

faster under the RC model compared to the SC model as the 

system size is increased. The speedup under the RC model is 

even higher under the larger data set. It is because of the 

efficient handling of the communication overhead (Figure 7) 

under the RC model by allowing more outstanding operations 

in the network which are overlapped and pipelined with each 

other. For the 1024 data set, the overhead in the 64-cores 

system compared to the two-core system is 39.6 and 60.9 

times under the RC and SC models, respectively. The 

efficiency (Figure 8) is maintained high under the RC model 

compared to the SC model under different data sets when the 

network size grows up. In general, the RC model demonstrates 

better scalability and can efficiently utilizes the system 

resources in the larger networks. The execution time and 

overhead are lower and the speedup and efficiency are higher 

compared to the SC model.  
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Figure 9.  Bit Count:   a) AET  b) Speedup  c) Overhead d) Efficiency 

The average performance, speedup, overhead and efficiency 

under the RC and SC models are given in Figure 9. As shown 

in Figure 9(a), on average the performance in the 64-cores 

systems compared to the single core systems are 12 and 8.8 

times higher under the RC and SC models, respectively. 

 

2) Pattern Search 

The application searches data patterns (P) against the data 

elements (D), which are initialized in the shared memory 

across the network. Four different cases are simulated using 

different combinations of the patterns and data elements. The 

system size is increased from 1 to 64-cores. P32-D32: when 32 

patterns and 32 data elements are mapped on the 8x8 network, 

only 32 nodes participate in the computations. P32-D64: For 

32 patterns and 64 data elements, one pattern each in the 32 

nodes, while one data element each in the 64 nodes is 

initialized in the 8x8 network. Also, 32 nodes are involved in 

the computations. P64-D32: one pattern each in the 64 nodes, 

while one data element each in the 32 nodes is initialized in 

the 8x8 network. All 64 nodes perform the computation. P64-

D64: one pattern and data element each is mapped in the 8x8 

network and each node is involved in the computation. The 

outputs are the number of times that the patterns appear in the 

data elements, which are stored in the local node. 
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Figure 10.  Execution Time under Pattern Search Application 
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Figure 11.  Speedup under Pattern Search Application 
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Figure 12.  Communication Overhead under Pattern Search Application 
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Figure 13.  Efficiency under Pattern Search Application 

      For the pattern search application, Figures 10~13 

demonstrate the AET, speedup, communication overhead and 

efficiency of the RC and SC models under different sizes of 

networks and different data sets. As the system scales up from 

1 to 64-cores, the AET reduction is high under both the 

memory models for the (P64-Dx) cases, because these 

problem sizes fit well in to the increasing size of network 

compared to the (P32-Dx) cases (Figure 10). For instance, 

better scaling behavior can be observed under the (P64-D32) 

case, where the problem size fits well into the 8x8 network 

and each node is involved in the computation. Due to 

parallelization of more computation time among the nodes, the 

AETs are reduced more as the system size is scaled up. The 

AETs in the single core systems are 57 and 38.6 time of that in 

the 64-cores systems under the RC and SC models, 

respectively. The AET reduction under the RC model over the 

SC model is high by pipelining and overlapping the shared 

memory operations. Similarly, the speedup (Figure 11) grows 

quickly under the RC model compared to the SC model. After 

32 nodes the speedup levels off up to 64 nodes under the (P32-

Dx) cases, since the same amount of computation is performed 

in the 4x8 and 8x8 networks. The communication overhead 

(Figure 12) under both the memory models significantly 

increases under the (Px-D64) configurations when the network 

size is increased. It is due to the fact that for each pattern all 64 

data elements are searched which are distributed across the 

network. Also, as the network size is increased, the efficiency 

(Figure 13) is maintained high under the RC model compared 

to the SC model. Overall, the RC model again maintains low 

execution time and high speedup compared to the SC model. 

  

  
1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

5

10

15

20

25

30

35

P
e
rf

o
rm

a
n
ce

 (
K

ilo
-O

p
s/

S
e
c)

Network Size

 Performance(RC)

 Performance(SC)

 
1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10

20

30

40

50

60

S
p
e
e
d
u
p

Network Size

 Speedup(Ideal)

 Speedup(RC)

 Speedup(SC)

 
                                  (a)                                                         (b)  

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

O
ve

rh
e

a
d

(C
yc

le
s)

Network Size

 Overhead(RC)

 Overhead(SC)

 
1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.2

0.4

0.6

0.8

1.0

E
ff
ic

ie
n
c
y

Network Size

 Efficiency(Ideal)

 Efficiency(RC)

 Efficiency(SC)

 
                                  (c)                                                         (d)  

Figure 14.  Pattern Search:   a) AET  b) Speedup  c) Overhead d) Efficiency 

The average performance, speedup, overhead and efficiency 

under the pattern search application are given in Figure 14. 

The increase in the performance and speedup for both the 

memory models in the 64-cores systems over the single core 

systems are higher in contrast to the bit count application. This 

is because of the low computation to communication ratio. The 

computation time per input data is less (9 cycles) under the 

pattern search application compared to that under the bit count 

application (21 cycles). In addition, the communication is 

significant under the pattern search application, because the 

numbers of input and output data items are more compared to 

the bit count application. The increase in the average 

performance (Figure 14(a)) under the RC and SC models is 

31.4% and 19.2% higher than that in the bit count application 

(Figure 9(a)). The average speedup (Figure 14(b)) for the RC 

model is 43.1 (almost ideal), while for the SC model it is 28.2 

in the 64-cores system. The RC model compared to the SC 

model shows even better and more scalable behavior by 

allowing more outstanding data operations on the network 

which are reordered and overlapped with each other. The 

average communication overhead (Figure 14(c)) is controlled 

efficiently under the RC model with the increasing size of the 

network. The overhead reduction under the RC model over the 

SC model is quite high compared to the (Figure 9(c)). As long 

as the system size increases, the average efficiency (Figure 

14(d)) is maintained high (close to the ideal case 1) compared 

to the (Figure 9(d)). The average efficiency in the 64-cores 

system for the RC and SC models is 0.67 and 0.44, 

respectively. 



E. Summary of the Scalability Analysis of RC and SC models 
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Figure 15.  Bit Count:  Ratio of AETs (RC/SC) 
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Figure 16.  Pattern Search:  Ratio of AETs (RC/SC) 

In all our experiments, the execution time of RC model has 

been between 50% and 100% of the SC model. The specific 

numbers are highly sensitive to the application and depend on 

how well it matches to the platform. However, the observed 

trends suggest that the RC model scales inherently better with 

the network size than the SC model. As shown in Figure 15, 

the execution time is very similar for the small networks. As 

the network size grows, the execution time under the RC 

model decreases relative to the SC model and at some point 

(network size) the decrease flattens off. It depends sensibly on 

the application and its match to the architecture, when exactly 

this leveling off occurs. As long as the speedup increases, the 

benefits of the RC model over the SC model also increase, but 

when the nature of the problem makes it harder to utilize the 

additional parallelism, the benefits of the RC model over the 

SC model saturate as well. However, problems that scale well, 

like the 1024-bit count problem, continue to obtain increased 

benefits from the higher level of parallelism that the RC model 

offers compared to the SC model. We expect the trend shown 

in Figure 15 to continue for larger networks, which means that 

the performance benefits of the RC model continue to increase 

for well matched problems as long as the network size grows. 

Exactly, the same trend is visible in Figure 16. Thus, we 

conclude that the performance increase of the RC model over 

SC model can be significantly higher than 50% as observed in 

our experiments. 

V. CONCLUSION 

The scalability of the RC and SC models is analyzed in the 

NoC based DSM systems with 1 to 64 nodes based on the 

workloads mapping on the various sizes of networks with 

different data sets. The results show that under the synthetic 

workloads, the performance of the RC model is increased by 

17.6% to 54.6% over the SC model using distributed locks in 

the 8x8 network. Under the application workloads, as long as 

the system size scales up, the execution time under the RC 

model decreases relative to the SC model. It depends on the 

scaling of the problem size and how efficiently the RC model 

is utilized compared to the SC model. The performance gain 

for the RC model over the SC model is expected to be higher 

than 50% as observed in the results, when the network size is 

further increased. 
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