
Scalability Analysis of Release and Sequential

Consistency Models in NoC based Multicore Systems
Abdul Naeem, Axel Jantsch and Zhonghai Lu

Department of Electronic Systems, KTH-Royal Institute of Technology, Sweden

E-mail: {abduln, axel, zhonghai}@kth.se

Abstract—We analyze the scalability of the Release Consistency

(RC) and Sequential Consistency (SC) models which are realized

in the Network-on-Chip (NoC) based distributed shared memory

multicore systems. The analysis is performed on the basis of

workloads mapped on the different sizes of networks with

different data sets. The experiments use a configurable platform

based on a 2D mesh NoC using deflection routing algorithm. The

results show that under the synthetic workloads using different

distributed locks, the performance of the RC model is increased

by 17.6% to 54.6% over the SC model in the 64-cores system. For

the application workloads, as the network size grows from 1 to 64

cores, the execution time under the RC model decreases relative

to the SC model which depends on the application and its match

to the architecture. The performance improvement of the RC

model over the SC model tends to be higher than 50% observed

in the experiments, when the system is further scaled up.

Keywords- Scalability; Memory consistency; Release

consistency; Distributed shared memory; Network-on-Chip

I. INTRODUCTION

Parallelization as a key means to enhance performance and

reduce power can be achieved at the computation,

communication and memory architectures in the system [1].

The distributed nature of the Network-on-Chip (NoC) based

systems can be exploited by using on-chip Distributed Shared

Memory (DSM) architectures. Since the shared memory

operations may be reordered in the network, the DSM system

may show unexpected behavior. Memory consistency defines

the execution order of the shared memory operations for the

correct behavior of the DSM systems. Different memory

consistency models [2] enforce different ordering constraints

on the shared memory operations, implying different system

performance. The Sequential Consistency (SC) model is a strict

consistency model [3] and it cannot exploit the system

optimizations. Therefore, several relaxed consistency models

[2][4-7] are proposed to alleviate the ordering constraints on

the memory operations to exploit these system optimizations.

Memory consistency and cache coherence are two main

issues in the DSM systems. The former issue arises due to the

unconstrained shared memory operations, while the later issue

is due to the different cached copies of the same shared data in

the DSM systems. Different memory consistency models and

cache coherence protocols are proposed to handle these issues.

In some situations, when a cache is not used like in the hard

real time applications or when these two problems have

different requirements on the size of the cache block and the

consistency object, independent implementation schemes for

the two problems are preferred [8][9].

This paper analyzes the scalability of the RC and SC models

[8][9] which are realized in the Multicore NoC (McNoC)

systems. The key performance metrics like execution time,

performance, speedup, overhead and efficiency are evaluated as

a function of the network size. The scaling behavior of both the

RC and SC models are analyzed by mapping the workloads on

the different sizes of the network with different data sets and

also on the basis of application types and the system design

perceptions (e.g. distributed locks and DSM architectures).

For the experiments, a configurable McNoC platform is

used with distributed locks, DSM and 2D mesh Nostrum NoC

[10] using a deflection routing policy. The scalability study of

the RC and SC models is performed in the McNoC systems

with 1 to 64-cores. The experimental results show the scaling

behavior of the RC and SC models in the McNoC systems.
The rest of the paper is organized as follows. The next

section overviews the related work. In section III, the SC and
RC models, DSM based McNoC platform and the
implementation of the SC and RC models are discussed. The
simulation results and scalability analysis of the RC and SC
models up to 64-cores systems are presented in section IV. In
section V, our contributions are summarized.

II. RELATED WORK

In general multiprocessors DSM systems, several memory

consistency models are discussed in the literature [2-7]. Adve

et al. [2] discussed the memory consistency models from the

system optimizations point of view. The SC model enforces a

total order on the shared memory operations [3]. The total store

ordering model relaxes the ordering constraint in the case of a

write followed by a read operation. The partial store ordering

model provides an additional relaxation among the write

operations [2]. The Weak Consistency (WC) model [5]

classifies the shared memory operations as data and

synchronization operations. The data (read, write) operations

issued between the two consecutive synchronization points can

be reordered with each other. The RC model [6] further

classifies the synchronization operations as acquire and release

operations. The RC model is implemented in the DASH project

[7] which depends on the directory based cache coherence

protocol [11]. However, the directory based coherence

protocols have some issues in the larger networks like, i.e.,

extra coherence traffic, directory overhead, additional latencies

and complexities. In NoC based DSM systems, the proposed

mechanism in [12] is very restrictive and allows one

outstanding transaction of an initiator at a time in the network.

The streaming consistency [13] is based on the software cache

coherence protocol. However, polling the circular buffer at

each request level is not a scalable approach. A protocol stack

for on-chip interconnects is proposed [14] at different levels of

the SoC design. They briefly outline the mechanisms to

implement the RC model at the memory-mapped stack. But,

the implementation detail is not discussed. The AXI [16] and

OCP [18] protocols enforce the ordering models by using

transactions IDs and thread IDs, respectively. In [16],

transactions of the same master with different IDs can be

reordered, but transactions with the same ID are not allowed to

be reordered. In [18], tagged transactions of the same master

using thread IDs are allowed to be reordered, but non-tagged

transactions are strictly ordered. In [8], the SC model is

realized in the McNoC systems by stalling the processor on

the issuance of an operation till its completion. In [15], two

Transaction Counters (TCs) based approach is adopted to

realize the RC model in the McNoC systems. The TC1 and

TC2 are used to keep track of the outstanding data operations

issued in the non-critical and critical sections, respectively. In

[9], a single TC based approach is used to realize the RC model

in the McNoC systems. In this paper, we further analyze the

scalability of the RC model [9] and SC model [8] in the

McNoC systems.

III. SC AND RC MODELS IN NOC BASED SYSTEMS

The ordering constraints to be enforced on the shared

memory operations under the SC and RC models are given in

Figure 1(a) and (b). An arrow between the two variables

indicates an ordering constraint between the operations on

these variables. For example, G→H indicates that an operation

on variable G is followed by an operation on variable H in the

program and these two operations are not allowed to be

reordered with each other. The variables to the left side of the

assignment operators are written and those to the right are read.

A. SC Model

According to the SC model [3][8] (Figure 1(a)), the shared

memory operations are completed in the program order. The

sequential order is maintained by interleaving operations on

lock (L) among processors in the system. The SC model

enforces the global orders (Figure 1(c)) on the shared memory

operations. We refer to these global orders in the later part.

Program

order

 = G

H =

Acquire (L);

I =

 = J

Release (L);

 K =

 M =

Sequential

Consistency Acquire

Data

Acquire

Release

Data

Release

Release

Acquire

Release

Consistency

 = G

H =

Acquire (L);

I =

 = J

Release (L);

 K =

 M =

Sequential

Order

 (a) (b) (c) (d)

Figure 1. a) SC model b) RC model c) Global orders under SC model

d) Global orders under RC model

B. RC Model

The RC model [6][9] is a refinement of the WC model

[10]. It classifies the synchronization operations as acquire

and release operations. The acquire operation delays the

following data operations until the lock is obtained and does

not wait for the completion of the previously issued data (read,

write) operations. The release operation is to inform about the

completion of previously issued data operations and does not

delay the subsequent data operations. According to the RC

model (Figure 1(b)), the independent data (read, write)

operations on (G, H) are allowed to be reordered with each

other, with the acquire operation on lock (L) and with the data

operations on (I, J) in the critical section. They are not

permitted to be reordered with respect to the release operation

on lock (L). The data operations (I, J) can be reordered and

overlapped with respect to each other, but they are not allowed

to be reordered with the acquire and release operations on lock

(L). The data operations on (K, M) are allowed to be reordered

with each other, with the prior outstanding release operation on

lock (L) and with the prior outstanding data operations on (I, J).

However, they are not permitted to be reordered with respect to

the prior acquire operation on lock (L). The global orders to be

enforced on the shared memory operations under the RC model

are given in Figure 1(d).

C. Platform Architecture

A homogenous McNoC platform is shown in Figure 2(a). As

demonstrated in Figure 2(b), each Processor-Memory (PM)

node consists of a processor, transaction controller (TCTRL),

Synchronization Handler (SH), Network Interface (NI) and the

local memory. The platform uses 2D mesh packet switched

Nostrum NoC [10] with an adaptive routing algorithm. It is a

buffer-less network and only buffers are used at the NIs to store

the packets before injection into and after ejection from the

network. The NI connects a PM node to the network. It

performs packetization, de-packetization, queuing, arbitration

and communication over the network. The platform uses the

DSM in the network. All shared parts in the local memories

constitute the DSM in a single global address space. The local

memory is connected to the local processor within the node and

to the remote processors via the network.

PM PM PM

PM PM

PM PM PM

PM

PM PM

PM

PM

PM

PMPM PM Node Processor

Sync.

Handler

Router

Network

Interface
Private Shared

Local Memory

Keep-transaction-going Transactions

TC

Transaction controller

A-Stack

PM : Processor-Memory

A-Stack : Address Stack

TC : Transaction Counter
 (a) (b)

Figure 2. a) Homogeneous McNoC b) PM node

The platform also uses the distributed locks in the network.

The SH controls N locks maintained in the global address

space. Every lock is accessed in a sequential order by multiple

processors in the system. The synchronization (acquire,

release) requests to the SH either come from the local processor

or from the remote processor via the network. If the requested

lock is available then it is acquired. Otherwise, a negative

acknowledgement is sent back and the source node sends again

the same request until the lock is gained. A release request

makes the lock available for the next acquire on it. The data

(read, write) operations to the local shared memory and

synchronization (acquire, release) operations to the local SH

are accomplished within the node. For the remote accesses,

message passing is carried out to the remote node via the

network. The customized interface (TCTRL) like any standard

interface [15][17] integrates the processor with the rest of the

system. It also implements the memory consistency protocols

using the hardware structures (TC, Address-Stack). The

TCTRL is developed specifically for the LEON3 IP-core [17]

which is used in each node of the network.

D. Implementation of the SC Model

The SC model is implemented [8] by enforcing the required

global orders (Figure 1(c)) on the shared memory operations.

Program Order: is enforced by stalling the processor on the

issuance of a shared memory operation till its completion. On

the completion of a previously issued memory operation, the

next operation is issued in the program.

Sequential Order: The multiple processors mutually agree on a

common lock to sequentially access the critical resource.

E. Implementation of the RC Model

The RC model is implemented [9] by enforcing the required

global orders (Figure 1(d)) on the shared memory operations.

Data → Release: To enforce this global order, a Transaction

Counter (TC) is used in each node of the network to keep track

of the outstanding data (read, write) operations issued before

the release operation. The TC is incremented by the issuance of

a data operation. It is decremented by the completion of a data

operation. The issuance of a release operation is delayed by

stalling the processor till the completion of previously issued

outstanding data operations, i.e., (TC=0).

Acquire → Data/Release: To enforce these global orders, the

processor is stalled on the issuance of an acquire operation till

the acquisition of the lock. The lock is gained by a processor

before entering to the critical section and before trying to

release it.

Release → Acquire: This global order is enforced by

sequential ordering on a lock in the multiprocessor system. The

lock is released by a processor before the next acquire on it.

Data operations to the same location: are constrained for the

purpose of correctness. To that end, an address stack (A-Stack)

is used in each node of the network to ensure the parallel

program correctness [9].

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We experimented on a configurable cycle-accurate

McNoC simulation platform constructed in VHDL (Figure 2).

The LEON3 processor [17] is used in each node of the

network. The size of the shared memory in each node is 16

MB. The SH maintains 256 locks in each node of the network.

The TC is 32 bits and the A-Stack can stack up to 64 addresses

each with 24 bits. The size of the A-Stack is kept small and it

is utilized efficiently. The addresses are popped from the A-

Stack continuously by the completion of operations in a

pipelined manner. The packet formation in the NI uses 7 fields

(96 bits). The buffering capacity at the NI is 64 packets. The

Nostrum NoC [10] uses 2D mesh regular topology and

deflection routing policy.

We have developed some in-house synthetic and

application workloads to evaluate the performance of the

McNoC systems. Synthetic workloads are small in size and

used to test a particular aspect of the system, while application

workloads give accurate and deeper evaluations of the system

[19][20]. The developed applications are light weight, specific

to NoC/embedded architectures and communication centric.

B. Performance Metrics for the Scalability Analysis

To study the scalability of the RC and SC models in the

McNoC systems (Figure 2), application workloads are mapped

on the different sized networks. The performance metrics like

execution time, performance, speedup, overhead and efficiency

are evaluated as the network scales up. The execution time (ET)

of a workload is the time from the start of the execution on the

first processor to the end of the execution on the last processor

in the system. The performance is the reciprocal of the ET. The

speedup (SP) is the ratio of the single core execution time (Ts)

and the execution time of the multicore (Tm) system. We

define the communication overhead (OH) of the multicore

system as: Nc*Tm-Ts, where Nc is the number of cores in the

system. The efficiency (EF) of the multicore system is defined

as the ratio SP/Nc. For the synthetic workloads, the ET of the

multicore normalized to the single core is defined as (Nor-

ET1C). In the experiments, the effects of the network size on

the ET, performance, SP, OH and EF are investigated under

the RC and SC models in the McNoC systems.

C. Synthetic Workloads

To demonstrate the benefits of the distributed locks, we

evaluate the RC and SC models with synthetic workloads

manually mapped on the LEON3 processors in the systems

(Figure 3(a)). The same sequence of transactions is generated

by the processor in each node of the network. The workloads

have both data and synchronization operations. For the lock

and protected (critical section) data operations, hotspot traffic

pattern is generated (Figure 3(b)). We consider an 8x8

network. For k locks, the network is divided into k equal

segments. All nodes within a segment synchronize over a

common lock in a node that belongs to the same segment.

 // unprotected data1

 a = data1;

 b = data2 ;

 // Lock acquire

 Acquire (L);

 // protected data

 c = data3;

 reg1 = c;

 // Lock release

 Release(L)

 // unprotected data2

 reg2 = a;

 reg3 = b;

(1,2) (1,3) (1,4)(1,1)

(2,3) (2,4)(2,1)

(3,2) (3,3) (3,4)(3,1)

(4,2) (4,3) (4,4)(4,1)

(2,2)

Synchronization

node

Protected

data node Initially, int a, b, c = 0;

 (a) (b)

Figure 3. a) Sequences of transactions generated b) Traffic Patterns

 The performance of the RC and SC models are compared

using different number of segments/locks in the 8x8 network

(Figure 4(a)). As the number of segments/locks increase in the

network, the performance quickly increases due to the fact that

different segments synchronize over different distributed locks

in the network. The average lock acquire wait time is reduced

as the network traffic/congestion decreases. The performance

is higher under the RC model compared to the SC model due

to reordering and relaxation in the shared memory operations.

The average performance under the RC model for 1 to 32

locks is increased by 17.6% to 54.6% over the SC model. The

ET of the 64-cores normalized to the single core (Nor-ET1C) is

shown in Figure 4(b). The ideal Nor-ET1C is 1 by assuming

zero communication overhead in the 8x8 system and the ET of

the 64-cores system is equal to that in the single core system.

Note that, the same sequence of transactions is generated by

identical processors in the system. The deviation of the actual

Nor-ET1C under both the memory models from the ideal case

decreases as the number of the segments/locks increases in the

network.

1 2 4 8 16 32

0

50

100

150

200

250

300

P
e
rf

o
rm

a
n
c
e
 (

K
ilo

-O
p
s
/S

e
c
)

No. of Locks

 Performance(RC)

 Performance(SC)

1 2 4 8 16 32

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
-E

T
1
C

No. of Locks

 Nor-ET1C (Ideal)

 Nor-ET1C (RC)

 Nor-ET1C (SC)

 (a) (b)

Figure 4. (a) Performance (b) Normalized ET of 64-cores to single core

D. Application Workloads

1) Bit Count

Bit count application analyzes a data vector and calculates

the number of set bits in each integer data item. After

initialization these data items are read, analyzed and the output

values are stored in the DSM. Different sizes vectors are used

with (16, 32, 64, 128, 256, 512 and 1024) data elements. The

network size is increased from 1 to 64 nodes. When a data

vector of 16 elements is mapped on the 4x8 and 8x8 networks,

only 16 nodes are involved in the computations. Similarly,

when a 32 data vector is mapped on the 8x8, only 32 nodes

perform the computations. For the rest of the data vectors all

nodes perform the computation in the 8x8 network. Each node

operates on the data items in the randomly selected node and

also writes the output results into the same node.

Figures 5~8 illustrate the ET, speedup, communication

overhead and efficiency of the RC and SC models under

different sizes of networks and different data sets. As

illustrated in Figure 5, the Application workload ET (AET) is

decreased as the system size is increased from 1 to 64 cores.

This is due to the division of computation cost in the network.

The RC model further decreases the AET compared to the SC

model by reordering and overlapping the shared memory

operations in the network.

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10000

20000

30000

40000

50000

E
xe

cu
tio

n
 T

im
e

 (
C

yc
le

s)

Network Size

 AET-RC(16) AET-SC(16)

 AET-RC(32) AET-SC(32)

 AET-RC(64) AET-SC(64)

 AET-RC(128) AET-SC(128)

 AET-RC(256) AET-SC(256)

 AET-RC(512) AET-SC(512)

 AET-RC(1024) AET-SC(1024)

Figure 5. Execution Time under Bit Count Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

4

8

12

16

20

24

28

S
p
e
e
d
u
p

Network Size

 SP-RC(16) SP-SC(16)

 SP-RC(32) SP-SC(32)

 SP-RC(64) SP-SC(64)

 SP-RC(128) SP-SC(128)

 SP-RC(256) SP-SC(256)

 SP-RC(512) SP-SC(512)

 SP-RC(1024) SP-SC(1024)

Figure 6. Speedup under Bit Count Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

30000

60000

90000

120000

150000

180000

O
ve

rh
e

a
d

 (
C

yc
le

s)

Network Size

 OH-RC(16) OH-SC(16)

 OH-RC(32) OH-SC(32)

 OH-RC(64) OH-SC(64)

 OH-RC(128) OH-SC(128)

 OH-RC(256) OH-SC(256)

 OH-RC(512) OH-SC(512)

 OH-RC(1024) OH-SC(1024)

Figure 7. Communication Overhead under Bit Count Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ffi

ci
en

cy

Network Size

 EF-RC(16) EF-SC(16)

 EF-RC(32) EF-SC(32)

 EF-RC(64) EF-SC(64)

 EF-RC(128) EF-SC(128)

 EF-RC(256) EF-SC(256)

 EF-RC(512) EF-SC(512)

 EF-RC(1024) EF-SC(1024)

Figure 8. Efficiency under Bit Count Application

The AET reduction also depends on the data set size. It is

high under the larger data set due to the parallelization of the

significant amount of computation cost in the system. For the

1024 data set, the AETs in the single core system are 26.6 and

13.6 times of that in the 64-cores system under the RC and SC

models, respectively. Likewise, the speedup (Figure 6) grows

faster under the RC model compared to the SC model as the

system size is increased. The speedup under the RC model is

even higher under the larger data set. It is because of the

efficient handling of the communication overhead (Figure 7)

under the RC model by allowing more outstanding operations

in the network which are overlapped and pipelined with each

other. For the 1024 data set, the overhead in the 64-cores

system compared to the two-core system is 39.6 and 60.9

times under the RC and SC models, respectively. The

efficiency (Figure 8) is maintained high under the RC model

compared to the SC model under different data sets when the

network size grows up. In general, the RC model demonstrates

better scalability and can efficiently utilizes the system

resources in the larger networks. The execution time and

overhead are lower and the speedup and efficiency are higher

compared to the SC model.

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

10

20

30

40

50

P
e
rf

o
rm

a
n
ce

 (
K

ilo
-O

p
s/

S
e
c)

Network Size

 Performance(RC)

 Performance(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10

20

30

40

50

60

S
p
e
e
d
u
p

Network Size

 Speedup(Ideal)

 Speedup(RC)

 Speedup(SC)

 (a) (b)

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

O
ve

rh
e

a
d

(C
yc

le
s)

Network Size

 Overhead(RC)

 Overhead(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
ff

ic
ie

n
cy

Network Size

 Efficiency(Ideal)

 Efficiency(RC)

 Efficiency(SC)

 (c) (d)

Figure 9. Bit Count: a) AET b) Speedup c) Overhead d) Efficiency

The average performance, speedup, overhead and efficiency

under the RC and SC models are given in Figure 9. As shown

in Figure 9(a), on average the performance in the 64-cores

systems compared to the single core systems are 12 and 8.8

times higher under the RC and SC models, respectively.

2) Pattern Search

The application searches data patterns (P) against the data

elements (D), which are initialized in the shared memory

across the network. Four different cases are simulated using

different combinations of the patterns and data elements. The

system size is increased from 1 to 64-cores. P32-D32: when 32

patterns and 32 data elements are mapped on the 8x8 network,

only 32 nodes participate in the computations. P32-D64: For

32 patterns and 64 data elements, one pattern each in the 32

nodes, while one data element each in the 64 nodes is

initialized in the 8x8 network. Also, 32 nodes are involved in

the computations. P64-D32: one pattern each in the 64 nodes,

while one data element each in the 32 nodes is initialized in

the 8x8 network. All 64 nodes perform the computation. P64-

D64: one pattern and data element each is mapped in the 8x8

network and each node is involved in the computation. The

outputs are the number of times that the patterns appear in the

data elements, which are stored in the local node.

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

20000

40000

60000

80000

100000

120000

E
xe

cu
tio

n
T

im
e

(C
yc

le
s)

Network Size

 AET-RC(P32-D32) AET-SC(P32-D32)

 AET-RC(P32-D64) AET-SC(P32-D64)

 AET-RC(P64-D32) AET-SC(P64-D32)

 AET-RC(P64-D64) AET-SC(P64-D64)

Figure 10. Execution Time under Pattern Search Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

S
p
e
e
d
u
p

Network Size

 SP-RC(P32-D32) SP-SC(P32-D32)

 SP-RC(P32-D64) SP-SC(P32-D64)

 SP-RC(P64-D32) SP-SC(P64-D32)

 SP-RC(P64-D64) SP-SC(P64-D64)

Figure 11. Speedup under Pattern Search Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

30000

60000

90000

120000

150000
O

ve
rh

ea
d

(C
yc

le
s)

Network Size

 OH-RC(P32-D32) OH-SC(P32-D32)

 OH-RC(P32-D64) OH-SC(P32-D64)

 OH-RC(P64-D32) OH-SC(P64-D32)

 OH-RC(P64-D64) OH-SC(P64-D64)

Figure 12. Communication Overhead under Pattern Search Application

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

E
ff
ic

ie
n
cy

Network Size

 EF-RC(P32-D32) EF-SC(P32-D32)

 EF-RC(P32-D64) EF-SC(P32-D64)

 EF-RC(P64-D32) EF-SC(P64-D32)

 EF-RC(P64-D64) EF-SC(P64-D64)

Figure 13. Efficiency under Pattern Search Application

 For the pattern search application, Figures 10~13

demonstrate the AET, speedup, communication overhead and

efficiency of the RC and SC models under different sizes of

networks and different data sets. As the system scales up from

1 to 64-cores, the AET reduction is high under both the

memory models for the (P64-Dx) cases, because these

problem sizes fit well in to the increasing size of network

compared to the (P32-Dx) cases (Figure 10). For instance,

better scaling behavior can be observed under the (P64-D32)

case, where the problem size fits well into the 8x8 network

and each node is involved in the computation. Due to

parallelization of more computation time among the nodes, the

AETs are reduced more as the system size is scaled up. The

AETs in the single core systems are 57 and 38.6 time of that in

the 64-cores systems under the RC and SC models,

respectively. The AET reduction under the RC model over the

SC model is high by pipelining and overlapping the shared

memory operations. Similarly, the speedup (Figure 11) grows

quickly under the RC model compared to the SC model. After

32 nodes the speedup levels off up to 64 nodes under the (P32-

Dx) cases, since the same amount of computation is performed

in the 4x8 and 8x8 networks. The communication overhead

(Figure 12) under both the memory models significantly

increases under the (Px-D64) configurations when the network

size is increased. It is due to the fact that for each pattern all 64

data elements are searched which are distributed across the

network. Also, as the network size is increased, the efficiency

(Figure 13) is maintained high under the RC model compared

to the SC model. Overall, the RC model again maintains low

execution time and high speedup compared to the SC model.

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

5

10

15

20

25

30

35

P
e
rf

o
rm

a
n
ce

 (
K

ilo
-O

p
s/

S
e
c)

Network Size

 Performance(RC)

 Performance(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0

10

20

30

40

50

60

S
p
e
e
d
u
p

Network Size

 Speedup(Ideal)

 Speedup(RC)

 Speedup(SC)

 (a) (b)

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

20000

40000

60000

80000

O
ve

rh
e

a
d

(C
yc

le
s)

Network Size

 Overhead(RC)

 Overhead(SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.0

0.2

0.4

0.6

0.8

1.0

E
ff
ic

ie
n
c
y

Network Size

 Efficiency(Ideal)

 Efficiency(RC)

 Efficiency(SC)

 (c) (d)

Figure 14. Pattern Search: a) AET b) Speedup c) Overhead d) Efficiency

The average performance, speedup, overhead and efficiency

under the pattern search application are given in Figure 14.

The increase in the performance and speedup for both the

memory models in the 64-cores systems over the single core

systems are higher in contrast to the bit count application. This

is because of the low computation to communication ratio. The

computation time per input data is less (9 cycles) under the

pattern search application compared to that under the bit count

application (21 cycles). In addition, the communication is

significant under the pattern search application, because the

numbers of input and output data items are more compared to

the bit count application. The increase in the average

performance (Figure 14(a)) under the RC and SC models is

31.4% and 19.2% higher than that in the bit count application

(Figure 9(a)). The average speedup (Figure 14(b)) for the RC

model is 43.1 (almost ideal), while for the SC model it is 28.2

in the 64-cores system. The RC model compared to the SC

model shows even better and more scalable behavior by

allowing more outstanding data operations on the network

which are reordered and overlapped with each other. The

average communication overhead (Figure 14(c)) is controlled

efficiently under the RC model with the increasing size of the

network. The overhead reduction under the RC model over the

SC model is quite high compared to the (Figure 9(c)). As long

as the system size increases, the average efficiency (Figure

14(d)) is maintained high (close to the ideal case 1) compared

to the (Figure 9(d)). The average efficiency in the 64-cores

system for the RC and SC models is 0.67 and 0.44,

respectively.

E. Summary of the Scalability Analysis of RC and SC models

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.5

0.6

0.7

0.8

0.9

1.0
E

xe
c.

 T
im

e
R

C
 /

E
xe

c.
 T

im
e

S
C

Network Size

 16

 32

 64

 128

 256

 512

 1024

Figure 15. Bit Count: Ratio of AETs (RC/SC)

1x1 1x2 2x2 2x4 4x4 4x8 8x8

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

E
xe

c.
 T

im
e

R
C

 /
E

xe
c.

 T
im

e
S

C

Network Size

 32/32

 32/64

 64/32

 64/64

Figure 16. Pattern Search: Ratio of AETs (RC/SC)

In all our experiments, the execution time of RC model has

been between 50% and 100% of the SC model. The specific

numbers are highly sensitive to the application and depend on

how well it matches to the platform. However, the observed

trends suggest that the RC model scales inherently better with

the network size than the SC model. As shown in Figure 15,

the execution time is very similar for the small networks. As

the network size grows, the execution time under the RC

model decreases relative to the SC model and at some point

(network size) the decrease flattens off. It depends sensibly on

the application and its match to the architecture, when exactly

this leveling off occurs. As long as the speedup increases, the

benefits of the RC model over the SC model also increase, but

when the nature of the problem makes it harder to utilize the

additional parallelism, the benefits of the RC model over the

SC model saturate as well. However, problems that scale well,

like the 1024-bit count problem, continue to obtain increased

benefits from the higher level of parallelism that the RC model

offers compared to the SC model. We expect the trend shown

in Figure 15 to continue for larger networks, which means that

the performance benefits of the RC model continue to increase

for well matched problems as long as the network size grows.

Exactly, the same trend is visible in Figure 16. Thus, we

conclude that the performance increase of the RC model over

SC model can be significantly higher than 50% as observed in

our experiments.

V. CONCLUSION

The scalability of the RC and SC models is analyzed in the

NoC based DSM systems with 1 to 64 nodes based on the

workloads mapping on the various sizes of networks with

different data sets. The results show that under the synthetic

workloads, the performance of the RC model is increased by

17.6% to 54.6% over the SC model using distributed locks in

the 8x8 network. Under the application workloads, as long as

the system size scales up, the execution time under the RC

model decreases relative to the SC model. It depends on the

scaling of the problem size and how efficiently the RC model

is utilized compared to the SC model. The performance gain

for the RC model over the SC model is expected to be higher

than 50% as observed in the results, when the network size is

further increased.

REFERENCES
[1] Axel Jantsch et al., "Memory architecture and management in an NoC

platform," in: Axel Jantsch and D. Soudris, editors, Scalable Multicore
Architectures: Design Methodologies and Tools. Springer, 2011.

[2] S. V. Adve et al., “Shared Memory Consistency Models: A Tutorial,”
Digital Western Research Laboratory, report no. 95/7, USA, 1995.

[3] L. Lamport, “How to Make a Multiprocessors Computer That Correctly
Executes Multiprocessor Programs,” IEEE Transaction on Computers,
Vol. C-28. No. 9, pp. 690-691, September 1979.

[4] David E. Culler et al. “Parallel Computer Architecture: A
Hardware/Software Approach,” Morgan Kaufmann Publishers,1999.

[5] M. Dubois et al., “Memory access buffering in multiprocessors,” in:
Proc. of 13th Ann. Inter. Symp. on Comp. Arch. (ISCA’86), 1986.

[6] K. Gharachorloo et al. “Memory consistency and event ordering in
scalable shared-memory multiprocessors,” Computer Architecture News,
18(2): 15-26, June 1990.

[7] D. Lenoski et al., “The Stanford Dash Multiprocessor,” Computer, 87(3),
March 1992, pp. 418- 429.

[8] A. Naeem et al., “Realization and Performance Comparison of
Sequential and Weak Memory Consistency Models in Network-on-Chip
based Multicore Systems,” in: Proc. of the 16th (ASP-DAC), 2011.

[9] A. Naeem et al., “Architecture Support and Comparison of Three
Memory Consistency Models in NoC based Systems,” in: Proc. of
Euromicro Conference on Digital Systems Design (DSD), 2012.

[10] A. Jantsch “The Nostrum NoC,” in: http://www.ict.kth.se/nostrum.

[11] L. M. Censier et al. A new solution to coherence problems in multicache
systems,” IEEE Trans. on Computer, c-27(12):1112–1118, 1978.

[12] F. Petrot, A. Greiner, P. Gomez, “On cache coherence and memory
consistency issues in NoC based shared memory multiprocessor SoC
architectures,” in: Proc. of 9th Euromicro (DSD), pp. 53-60, 2006.

[13] J.W. van den Brand and M. Bekooij, “Streaming consistency: a model
for efficient MPSoC design,” in: Proc. of 10th Euromicro (DSD), 2007.

[14] Andreas Hansson, and Kees Goossens. “An On-Chip Interconnect and
Protocol Stack for Multiple Communication Paradigms and
Programming Models,” In: Proc. of CODES+ISSS’09, France, 2009.

[15] A. Naeem, X. Chen, Z. Lu, and A. Jantsch, “Scalability of Relaxed
Consistency Models in NoC based Multicore Architectures,” ACM
SIGARCH Computer Architecture News, April 2010, 37(5): 8-15.

[16] “AMBA AXI Protocol Specification,” in: http://infocenter.arm.com/

[17] http://jorisvr.nl/leon3_insntiming.html

[18] OCP International Partnership. OCP Specification 2.2, 2007.

[19] C. Grecu, A. Ivanov, A. Jantsch, P.P. Pande, E. Salminen, U.Y. Ogras,
R. Marculescu, Towards Open Network-on-Chip Benchmarks, First Int.
Symposium on Networks-on-Chip (NOCS'07), May 2007.

[20] Zhonghai Lu, A. Jantsch, E. Salminen, and C. Grecu. Network-on-chip
benchmarking specification part 2: Micro-benchmark specification.
Technical Report Version 1.0, OCP-IP, May 2008.

