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ABSTRACT 
The interest in high performance chip architectures for biomedical 
applications is on the rise. Heart diseases remain by far the main 
cause of death and a challenging problem for biomedical 
engineers to monitor and analyze. Electrocardiography (ECG) is 
an essential practice in heart medicine, which faces computational 
challenges, especially when 12 lead signals are to be analyzed in 
parallel, in real time, and under increasing sampling frequencies. 
Another challenge is the analysis of huge amounts of data that 
may grow to days of recordings. Nowadays, doctors use eyeball 
monitoring of the 12-lead ECG paper readout, which may 
seriously impair analysis accuracy. Our solution leverages the 
advance in multi-processor system-on-chip architectures, and is 
centered on the parallelization of the ECG computation kernel. It 
improves upon state-of-the-art mostly for its capability to perform 
real-time analysis of input data, leveraging the computation 
horsepower provided by many concurrent DSPs, more accurate 
diagnosis of cardiac diseases, and prompter reaction to abnormal 
heart alterations. The design methodology to go from the 12-lead 
ECG application specification to the final hardware/software 
architecture, modeling, and simulation is the focus of this paper. 
Our system model is based on industrial components. The 
architectural template we employ is scalable and flexible. 

Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: 
Microprocessor/microcomputer applications, Real-time and 
embedded systems 

General Terms 
Performance, Design, Experimentation. 

Keywords 
Multiprocessor System-on-Chip, electrocardiogram algorithms, 
real-time analysis, hardware space exploration 

1. INTRODUCTION 
Despite the ongoing advances in heart treatment, in the United 
States [1] and Canada [2] as well as in many other countries, the 
various forms of cardiovascular disease (CVD) and stroke remain 
by far the number one cause of death for both men and women of 
all ethnic backgrounds. According to the World Health Report in 
2003, 29.2% of total global deaths are due to CVD, many of 
which are preventable by action on the major primary risk factors 
and with proper monitoring [1].  It is estimated that by 2010, 
CVD will be the leading cause of death in developing countries. 
Since the rate of hospitalization increases with age for all cardiac 
diseases [3], a periodic cardiac examination is recommended. 
Hence, more efficient methods of cardiac diagnosis are desired to 
meet the great demand on heart examinations. However, state-of-
the-art biomedical equipment for heartbeat sensing and 
monitoring lacks the ability to provide large-scale analysis and 
remote, real-time computation at the patient’s location. The 
intention of this work is to use multi-processor System-on-Chip 
(MPSoC) microelectronic solutions to meet the growing demand 
for telemedicine services, especially in the mobile environment. 
The project attempts to address the existing problem of reducing 
the costs for hospitals/medical-centers through using MPSoC 
designs that may replace biomedical machines and have higher 
quality, reduce the nurse’s and doctor’s work-load, and improve 
quality of care for patients suffering from heart diseases by 
exploring one potential solution. The proposed solution resolves 
fundamental mobility problems of patients in a unique way. It 
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also addresses usability, security and safety of the patients in 
emergency situations and long-term treatments. From the hospital 
side, deploying this solution will further reduce the costs of 
rehabilitating and following up of patients “primary care versus 
home care”, and can result in enhancing effectiveness and 
proactive planning and decision making by healthcare staff. 
Home-care ensures continuity of care, reduces hospitalization 
costs, and enables patients to have a quicker return to their normal 
life styles. From a technical viewpoint, real-time processing of 
ECG data would allow a finer-granularity analysis with respect to 
the traditional eyeball monitoring of the paper ECG readout. 
Eventually, warning or alarm signals could be generated by the 
monitoring device and transmitted to the healthcare center via 
telemedicine links, thus allowing for a prompter reaction of the 
medical staff. In contrast, heartbeat monitoring and data 
processing are traditionally performed at the hospital, and for long 
monitoring periods a huge amount of collected data must be 
processed offline by networks of parallel computers. New models 
of healthcare delivery [2] are therefore required, improving 
productivity and access to care, controlling costs, and improving 
clinical outcomes. This poses new technical challenges to the 
design of biomedical ECG equipment, calling for the 
development of new integrated circuits featuring increased energy 
efficiency while providing higher computation capabilities. 

The fast evolution of biomedical sensors and the trend in 
embedded computing are progressively making this new scenario 
technically feasible. Sensors today exhibit smaller size, increased 
energy efficiency and therefore prolonged lifetimes (up to 24 
hours) [4], higher sampling frequencies (up to 10 kHz for ECG) 
and often provide for wireless connectivity. Unfortunately, a 
mismatch exists between advances in sensor technology and the 
capabilities of state-of-the-art heart analyzers [5][6][7]. They 
cannot usually keep up with the data acquisition rate, and are 
usually wall-plugged, thus preventing for mobile monitoring. On 
the contrary, the deployment of wearable devices such as 
Systems-on-Chip has to cope with the tight power budgets of such 
devices, potentially cutting down on the maximum achievable 
monitoring period. In this paper we propose a wearable multi-
processor biomedical-chip (MPSoC ECG Biochip) paving the 
way for portable real-time electrocardiography applications 
targeting heart disorders. The Biochip leverages the computation 
horsepower provided by many (up-to-twelve) concurrent DSPs 
and is able to operate in real-time while performing the finest 
granularity analysis as specified by the ECG application. 
Moreover, in case of heart failure emergency aid should arrive in 
a period of few minutes from the time when the heart failed, 
otherwise brain damage may occur. Hence, real time analysis 
must be done in few seconds to allow the alarm signal to reach the 
emergency aid team, which should act immediately.  

The Biochip system builds upon some of the most advanced 
industrial components for MPSoC design (multi-issue VLIW 
DSPs, system interconnect from STMicroelectronics, and 
commercial off-the-shelf biomedical sensors), which have been 
composed in a scalable and flexible platform. Therefore, we have 
ensured its reusability for future generations of ECG analysis 
algorithms and its suitability for porting of other biomedical 
applications, in particular those collecting input data from 
wired/wireless sensor networks [8].  

The paper goes through all the steps of the design methodology, 
from application functional specification to hardware definition 
and modeling. System performance has been validated through 
functional, timing accurate simulation on a virtual platform. A 
0.13μm technology homogeneous power estimation framework 
leveraging industrial power models is used for power 
management considerations [9][10]. 

We point out the need for simulation abstractions matching the 
application domain, for memory allocation. In addition, with a 
solution like the MPSoC ECG Biochip, there is potential impact 
that mobile real-time processing has on the traditional paradigms 
of healthcare delivery [2][3]. 

2. MEDICAL BACKGROUND 
The electrocardiogram (ECG) is an electrical recording of the 
heart activity that is used as a diagnosis tool by physicians and 
doctors to check the status of the heart. The most commonly used 
way to detect the heart status is the 12-lead ECG technique. This 
technique uses nine sensors on the patient's body (Fig. 1). The 
three main sensors are distributed by placing one sensor on the 
left arm (LA), a second sensor on the right arm (RA), and a third 
sensor on the left leg (LL). The right leg (RL) is connected by 
only a wire to be used as ground for the interconnected sensors. 
By only having these three sensors physicians can use a method 
known as the 3-lead ECG, which suffers from the lack of 
information about some parts of the heart but is useful for some 
emergency cases to have quick analysis. In this respect, medical 
doctors require more sensors (i.e. more leads).  Hence, six more 
sensors (V1-V6) are added on the chest (Fig. 1). The voltages V1-
V6 are measured with respect to ground (G) on the right leg (RL).  
In some cases, physicians use these sensors to analyze the heart 
with the 6-lead ECG. 

By using all the nine sensors and interconnecting them for the 12-
lead ECG gives twelve signals known in biomedical terms as: 
Lead I, Lead II, Lead  III, aVR, aVL, aVF, V1, V2, V3, V4, V5, 
and V6 (Fig.1-a). The 12-lead ECG produces huge amounts of 
data especially when used for a long number of hours. Physicians 
use the 12-lead ECG method, because it allows them to view the 
heart in its three dimensional form; thus, enabling detection of 
any abnormality that may not be apparent in the 3-lead or 6-lead 
ECG technique. Figure 1-b shows an explanatory example of a 
typical ECG signal. The most important points on the ECG signal 
are the labeled peaks: P, Q, R, S, T, and U. Each of these peaks is 
related to a heart action that is of importance for analysis. Figure 
1-c shows real recorded signals from 12-leads, which are printed 
on the eyeballing paper. This paper printout is the classical 
medical technique used for looking at ECG signals, and it is still 
used. However, the eyeballing paper print makes the check of the 
different heart peaks and rhythms difficult and inaccurate due to 
its dependence on the physician’s eyes. 

On the other hand, when using digital recording and filtering we 
can determine the peaks more accurately. Consequently, we can 
use digital computing to process the sensed data and analyze the 
heart beat. Figure 4-a shows the ECG signal of a normal heart that 
was recorded digitally for 5 seconds with a sampling frequency of 
250Hz. The labeled peaks (P, Q, R, S, T, U), and the time 
intervals between them can show if the heartbeat is healthy or 
unhealthy. In addition, there are normal medical ranges for the 
inter-peak time intervals, and every combination of different 



inter-peak intervals proves a type of heart illness. The most 
important of the peaks is the R peak, which refers to the largest 
heart blood pump.  
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Figure 1. 12-lead ECG: (a) Sensors on a human body, RA is 
right arm sensor, LA is left arm sensor; LL is left leg, RL is 

right leg that is grounded (G); (b) Example of a typical 
healthy ECG signal for leads I and II. (c) Complete paper 

readout, which is not accurate to see peaks nor easy to read 
for long recordings. The 12 lead signals are: Lead I, Lead II, 
Lead III, aVR, aVL, aVF, V1-G, V2-G, V3-G, V4-G, V5-G, 

and V6-G. 
 

3. PREVIOUS WORK 
ECG monitoring and analysis have been commercially explored 
in many companies and research organizations. However, we are 
not aware of any single-chip real-time analysis solution for full 
12-lead ECG, which is able to accurately study the heart rhythmic 
period and can diagnose all the peaks: P, Q, R, S, T and U and 
their inter-peak intervals to result in a disease diagnosis.  

Most of the work done involves only recording of huge amounts 
of data in large storage media and then analyses, but not allowing 
the ease of patient mobility. Most of the time, the patient has to be 
confined to a bed for a number of hours. Some commercial 
solutions are only capable of concluding if the heart beat is 
normal or abnormal but can not specify the period nor the disease. 
Other real time solutions available in the market, in healthcare 
institutes, and in research organizations, are only able to sense 
and transmit ECG data [11] to: either a local machine [12] or to a 
distant healthcare center [13]. In both cases, real-time analysis is 
not available. Moreover, the commercial solutions under study 
[14] do not look into the parallelization of the ECG analysis into 
multiple cores, so to speed up processing. 

4. SYSTEMS AND ALGORITHM 
ECG analysis requires three main phases: (i) signal-reading from 
the leads, (ii) filtering the lead-signal, and finally (iii) analysis 
(Fig.2).  Firstly, the signal sensing phase requires an A/D 
converter in order to be able to have digital data for our digital 
filter. We use 16 bit A/D converters, because our analysis 
algorithm and ECG Biochip are designed based on having 16-bit 
filtered data as input. We briefly discuss the filtering method we 
use as an essential part of our proposed solution, and then we 
discuss the ECG Biochip design that depends on this filtering 
step. 

4.1 Input Data Filtering 
In general, data provided by biomedical sensors suffers from 
several types of noise that are due to the specific sensors used 
(DC-offset is one example), patient movements, and environment 
interference like other frequencies in the air [15]. 

 

 

 

 

 

 

 

 

 

Figure 2. The System for sensing and filtering of ECG lead 
signals before sending data to the ECG Biochip for analysis. 
Blue Sensor R is form Ambu Inc. [4]. The interconnection of 

the 9 sensors is shown in Fig. 1. 
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We use state of the art commercial sensors from Ambu Inc. 
silver/silver chloride  “Blue Sensor R” [4] shown in Fig. 2. It is 
characterized by: 24 hour lifetime, superior adhesion, optimal 
signal measuring during stress tests. It is small to carry (57mm x 
48mm).  

This reality of having many noise factors may lead to inaccurate 
ECG analysis, for example to detect 2 peaks when there should be 
only one. See for instance the R-Peak detection marked by circled 
areas in Fig.3. To overcome all the problems related to sensor 
noise affecting our analysis, we designed an IIR filter with order 3 
that outputs its results in 16-bit binary format (Fig.2). Another 
main advantage of using the IIR filter is to eliminate the noise that 
is directly proportional to the DC offset of the sensed ECG [15], 
which is around 0.1mV. The two plots in Fig.3 clearly show how 
the filtering algorithm remedies this problem. In our 
implementation, the filter is implemented in hardware on a 
dedicated chip feeding the external SDRAM memory of our ECG 
Biochip. 

Our filter is the convolution of the noisy signal with the filter 
impulse response given by (1): 

[ ] [ ] [ ]y n h k x n k
k

= × −∑                         (1)            

where, x[n] is the noisy signal, h[n] is the filter impulse response, 
and n is the samples index. This filter in (1) is also an infinite 
impulse response (IIR, Chebychev filter), so it can be written as 
(2):          

      (2)            [ ] [ ] [ ] [ ] [ ]
10

y n x n l b l y n m a m
ml

= − × − − ×∑ ∑
==

                                                         

                  (3)                  
               

where, Ry is the autocorrelation function, y is the signal under 
study, n is the index of the signal y, and k is the number of lags of 
the autocorrelation. We run the experiments for n = 1250, 5000 
and 50,000 relative to the sampling frequencies of 250, 1000, and 
10,000Hz, respectively. Figure 4-c shows the period of the 
heartbeat as the distance between two consecutive peaks of the 
autocorrelation function of the derivative (Fig.4-b) of the input 
signal (Fig.4-a). In order to be able to analyze ECG data in real-
time and to be reactive in transmitting alarm signals to healthcare 
centers (in less than 1 minute), a minimum amount of acquired 
data has to be processed at a time without losing the validity of 
the results. For the heart beat period, we need at least 4 seconds of 
ECG data in order for the ACF to give correct results. 

where, y is the output of the filter and x is the input, b is the vector 
that contains the filter coefficients for signal x, and a is the vector 
that contains the filter coefficients for output y. The upper limits 
of the coefficients are dependent on the order of the filter being 
used. Our IIR filter is of order 3, because our ECG data does not 
require higher orders. We can improve our filter (when needed) 
by simply knowing the needed values of the coefficients in 
vectors a[.] and b[.]. 

 

 
Figure 3. ECG raw and filtered data. 

4.2 The Algorithm 
The proposed algorithm was conceived to be parallel and hence 
scalable from the ground up. Since each lead senses and analyzes 
data independently, each lead can then be assigned to a different 
processor. So, to extend ECG analysis to 15-lead ECG for 
example or more, then what is required is to just change the 
number of processing elements in the system. The program reads 
a data file in chunks of four seconds. We discuss below the reason 
for the choice of the 4-second chunks. The data file mainly holds 
the values of the ECG at the lead in binary format. So by reading 
the data continuously every 4 seconds, we would be emulating a 
real sensor sending continuous data to an intermediate buffer that 
holds 4 seconds of data sampled at a certain frequency, typically 
1000 Hz. We used an autocorrelation function based-methodology 
to calculate the period of the heartbeat since it gives more 
accurate results than the conventional methods searching for the 
distance between two peaks. These latter methods are only 
effective to get the period for a normal person, while our 
technique is able to detect it even in case of abnormalities. We 
validated our algorithm over several different input traces [16]  
and medical scenarios.  
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In addition, for both cases of healthy and unhealthy hearts, the 4-
seconds granularity contains at least 5 heart cycles that are needed 
for ECG analysis. The algorithm differs from one lead (DSP) to 
another in the calculation method (code) of the peaks and inter-
peak intervals done in process 2. Although the autocorrelation 
function in (3) is the same for all leads and thus all DSPs, each 
DSP still has to process the autocorrelation of the derivative of its 
input signal (relative ECG-lead filtered-data). Therefore, it is 
essential to optimize our time period for this algorithm, because it 
affects the very high number of multiplications (around 1.75 
million multiplications) that- in turn- affect the Biochip 
performance. For this reason, we do not go beyond 4 seconds, 
which is a critical number for our Biochip performance, hence its 
application-specific design.  
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The autocorrelation function is deployed within the algorithm 
shown in Fig.5, which computes the required medical parameters: 
heart period, peaks P, Q, R, S, T, & U, and inter-peak time spans. 
Peak heights and inter-peak time ranges outside normal values, 
which indicate different kinds of diseases, are detected with our 
algorithm. 

 



 

 

 

 
Figure 4. Heart period analysis for ECG Lead I, which is 

processed by DSP 1 on the Biochip:  (a) signal with peaks P, 
Q, R, S, T, and U;  (b) derivative amplifying the R peaks that 

we label as R’ peaks; (c) autocorrelation of the derivative with 
clear significant periodic peaks. 

 

Each DSP on the biochip will have to run this algorithm. Each 
lead has its specific ECG plot and characteristic as shown in 
Fig.1-c. From a functional viewpoint, the algorithm consists of 
two separate execution flows: one that finds the period using the 
autocorrelation function (process 1 in Fig.5), and another that 
finds the number, amplitude and time interval of the peaks in the 
given 4-second ECG data (process 2 in Fig.5). In process 1, we 
firstly find the discrete derivative of the ECG signal. This will not 
affect the analysis since the derivative of a periodic signal is 
periodic with the same period. The advantage of taking the 
derivative, and thus adding some overhead to the code, is that the 
fluctuations taking place in the signal and especially those around 
the peaks would converge to zero. Moreover, the time 
consumption of the code part related to calculating the derivative 
of the ECG signal is negligible compared to the rest of the 
algorithm code, especially the autocorrelation part (containing 
millions of multiplications). After the derivative of the ECG 
filtered data, we run the autocorrelation of the derivative signal 
which is, by definition, periodic with the same period as that of 
the ECG signal under study. The autocorrelation function will 
start at a maximum point, go down to zero, and then rise to 
another peak. The index of this peak represents the period of the 
signal. While we are performing the derivative and the 

autocorrelation, the values of these functions are dumped in 16-bit 
binary format. In process 2, a threshold is used to find the peaks. 
This threshold is 60% of the highest peak in the given interval. 
This was the choice after performing several experiments with 
different real ECG data. 
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Figure 5. Algorithm for analyzing 12-lead ECG data for 

250Hz, 1000Hz, and 10,000Hz sampling frequencies. 

 

5. ARCHITECTURE DEFINTION 
In order to process filtered ECG data in real-time, we chose to 
deploy a parallel Multi-Processor System-on-Chip architecture.  
The key point of these systems is to break up functions into 
parallel operations, thus speeding up execution and allowing 
individual cores to run at a lower frequency with respect to 
traditional monolithic processor cores. 

Technology today allows the integration of tens of cores onto the 
same silicon die, and we therefore designed a parallel system with 
up to 13 masters and 16 slaves (see Fig.6).  Since we are targeting 
a platform of practical interest, we chose advanced industrial 
components [17]. The processing elements are multi-issue VLIW 
DSP cores from STMicroelectronics, featuring 32kB instruction 
and data caches.  

The speeds of the processors are set to 200MHz, which is the 
speed of the bus and the memory. These cores leverage the 
flexibility of programmable cores and the computation efficiency 
of DSP cores. These features allow the reuse of this platform for 
other biomedical applications other than the 12-lead ECG, thus 
making it cost-effective. Each processor core has its own private 
memory (512kB each), which is accessible through the bus, and 
can access an on-chip shared memory (8kB are enough for this 
application) for storing computation results. Other relevant slave 
components are a semaphore slave, implementing the test-and-set 
operation in hardware and used for synchronization purposes by 
the processors or for accessing critical sections, and an interrupt 



slave, which distributes interrupt signals to the processors. 
Interrupts to a certain processor are generated by writing to a 
specific location mapped to this slave core. The STBus 
interconnect from STMicroelectronics was instantiated as the 
system communication backbone. STBus can be instantiated both: 
as a shared bus or as a partial or full crossbar, thus allowing 
efficient interconnects design and providing flexible support for 
design space exploration. In our first implementation, we target a 
shared bus to reduce system complexity (see Fig.6) and assess 
whether application requirements can already be met or not with 
this configuration. We then explore also a crossbar-based system, 
which is sketched in Fig.7. The inherent increased parallelism 
exposed by a crossbar topology allows decreasing the contention 
on shared communication resources, thus reducing overall 
execution time.  In our implementation, only the instantiation of a 
3x6 crossbar was interesting for the experiments. We put a private 
memory on each branch of the crossbar, which can be accessed by 
the associated processor core or by a DMA engine for off-chip to 
on-chip data transfers. Finally, we have a critical component for 
system performance which is the memory controller. It allows 
efficient access to the external 64MB SDRAM off-chip memory. 
A DMA engine is embedded in the memory controller tile, 
featuring multiple programming channels. The controller tile has 
two ports on the system interconnect: one slave port for control 
and one master port for data transfers. The overall controller is 
optimized to perform long DMA-driven data transfers. 
Embedding the DMA engine in the controller has the additional 
benefit of minimizing overall bus traffic with respect to traditional 
standalone solutions. Our implementation is particularly suitable 
for I/O intensive applications such as the one we are targeting in 
this work. 

In the above description, we have reported the worst case system 
configurations. In fact, fewer cores can be easily instantiated if 
needed. In contrast, this architectural template is very scalable 
and allows for further future increase in the number of processors. 
This will allow to run in real time even more accurate ECG 
analyses for the highest sampling frequency available in sensors 
(10,000Hz, and 15 leads, for instance), since this platform is able 
to provide scalable computational power.  

 

 
Figure 6. Single bus architecture with STBus interconnect. In 

our experiments max. N = 12. The solution is in general 
scalable since we can increase the number of leads to analyze 

by just increasing N. 
 

The entire system has been simulated by means of the 
MPSIM simulation environment [17], which provides for 
cycle-accurate functional simulation of complete MPSoCs. 
The simulator provides also a power characterization 
framework leveraging 0.13μm technology-homogeneous 
industrial power models from STMicroelectronics [9][10].  
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Figure 7. Full crossbar architecture with STBus interconnect. 

In our experiments max. N = 12. The solution is in general 
scalable since we can increase the number of leads to analyze 

by just increasing N. 
 
We believe that for life-critical applications, low-level accurate 
simulation is worth doing, in order to perfectly understand system 
level behaviour and have a predictable system with minimum 
degrees of uncertainty.  

Each processor core programs the DMA engine to periodically 
transfer input data chunks onto their private on-chip memories. 
Moved data corresponds to 4 seconds of data acquisition at the 
sensors: 10kB at 1000Hz sampling frequency, transferred on 
average in 319279 clock cycles (DMA programming plus actual 
data transfer) on a shared bus with 12 processors. The consumed 
bus bandwidth is about 6MBytes/sec, which is negligible for an 
STBus interconnect, whose maximum theoretical bandwidth with 
1 wait state memories exceeds 400Mbyte/sec. Then each 
processor performs computation independently, and accesses its 
own private memory for cache line refills. Different solutions can 
be explored, such as processing more leads onto the same 
processor, thus impacting the final execution time. Output data, 
amounting to 64 bytes, are written to the on-chip shared memory, 
but their contribution to the consumed bus bandwidth is 
negligible. In principle, when the shared memory is filled beyond 
a certain level, its content can be swapped by the DMA engine to 
the off-chip SDRAM, where the history of 8 hours of computation 
can be stored. Data can also be remotely transmitted via a 
telemedicine link. 
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6. EXPERIMENTS AND RESULTS 
We ran several different comparisons to test the functionality and 
performance of our algorithm. The first analysis was done to 
profile the execution of the code and to determine the best coding 
solution in terms of energy, execution time, and precision. 
Furthermore, we have explored the design space searching for the 



best platform configuration for the 12-lead ECG data analysis. 
Alternative system configurations have been devised for different 
levels of residual battery lifetime, trading off power with 
accuracy. 

 

 
Figure 8. Comparison between different code 

implementations for analysis of the 3-lead, 6-lead and 12-lead 
ECG. Data analysis for each lead is computed in a separate 

core. Sampling frequency of input data was 250 Hz. 
 

Figure 8 shows the results for two different code 
implementations: the first one relies on floating point data types, 
while the second one uses fixed point data [18] with an exponent 
of 22. We have performed the analysis for 3, 6 and 12 leads; 
furthermore we process each lead on a separate core. We found 
that the precision of the results obtained with fixed point code, by 
using 64 bit integer data types representation, almost matches the 
results obtained with floating point code for a large number of 
input data traces. On the contrary, the time needed to process 
data, and also the energy required, decreases up to 5 times. This is 
mainly due to the fact that, like many commercial DSPs, our 
processor cores do not have a dedicated floating point unit. 
Therefore floating point computations are emulated by means of a 
C software library linked at compile time. Fig.8 also shows that 
even with 12 concurrent processors, the bus is not saturated, since 
we observe negligible effects on the stretching of task execution 
times. In contrast, adding more processors determines a linear 
increase in energy dissipation.  

In the second experiment, we were looking for the best platform 
configuration to meet the time constraints of the application and 
reduce energy consumption. We considered the scenario with 12 
leads ECG data and 1000Hz sensor sampling frequency (the 
nowadays medical reference frequency for ECG). We have scaled 
the number of cores from 12 to 2 processors, in an attempt to 
minimize system resources while meeting application 
requirements. In the 12-processor configuration we computed 
each lead on a separated DSP. As a result, the total execution time 
to perform a 4 second period analysis took 1.1 seconds as shown 
in Fig. 9. 

This means that we are able to meet the 4-second deadline, after 
that a new set of input data has to be processed. The slack in this 
case is so large that we opted for processing 2 leads on each DSP, 

observing an execution time degradation of 2 times (computation 
in 2.2sec). 

 

 
Figure 9. Time analysis for 12-lead ECG data with 1000Hz 
sensor sampling frequency using different numbers of DSP 

cores: 2, 4, 6, and 12 processing cores, with different 
interconnects. 

 
Figure 10. The relative energy consumption for 1000Hz sensor 
sampling frequency for ECG data using different numbers of 

DSP cores: 2, 4, 6, and 8 processing cores, with different 
interconnects. 

Pushing our design to check for minimizing the number of DSPs 
and keeping the full algorithm (for its accuracy and ability of 
complete analysis), the solution with 4 DSPs (i.e. 3 lead 
algorithms on each processor with 1000Hz sampling frequency) 
turns out to be the first design able to complete the computation 
reasonably earlier than 4sec. The remaining time is very useful in 
critical cases, since it can be used to trigger an emergency 
procedure; results for the computations of the different leads can 
be correlated and- eventually- an alarm is transmitted to a remote 
healthcare center via telemedicine links. Finally, we explore the 
solution with two DSPs and two different communication 
architectures: a shared bus (Fig.6), and a full crossbar system 
with STBus (see Fig. 7). Even though the full crossbar allows us 
to decrease the execution time by almost 10%, for both 
architectures the execution time is bigger then the 4sec deadline, 
and do not therefore represent viable options. 



Interestingly, Fig.10 shows energy dissipation for all considered 
system configurations. The energy is almost unchanged, since 
employing a lower number of processor cores decreases the 
number of power-contributing cores, but increases execution time. 
The two effects counterbalance each other.  

 
Figure 11. Results of the 12-lead analysis with 4 DSPs. 

 
Hence, we decided to adopt the 4-DSP core solution for the 12 
lead ECG analysis. We now explore how the energy consumption 
scales by increasing the sampling frequency of the sensor. A 
higher sampling frequency increases the precision of the results. 
However, unfortunately, the complexity of the algorithm scales 
exponentially. In fact, Fig. 11 shows that the time taken for the 
ECG analysis in the 250Hz case is 21 times lower than in the 
1000Hz case. Moreover, the energy consumption in the 250Hz 
case is 90% lower than in the 1000Hz case. So, in cases of 
emergency, and if the battery is low, a down sampling of the input 
data from 1000Hz to 250Hz will be good to assure a longer 
lifetime for the battery to keep the 12 lead analysis running, hence 
paying on the frequency to win time and power. 

7. CONCLUSION 
In this paper, we present a novel ECG Biochip solution leveraging 
the computation horsepower of many concurrent DSP cores to 
process ECG data in real-time. This solution paves the way for 
novel healthcare delivery scenarios (e.g., mobility) and for 
accurate diagnosis of heart-related diseases. We described the 
design methodology for the MPSoC and explored the 
configuration space looking for the most effective solution, 
performance- and energy-wise. 
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