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Abstract—This paper proposes a low-overhead fault-tolerant
deflection routing algorithm, which uses a layer routing table
and two TSV state vectors to make efficient routing decision
to avoid both TSV and horizontal link faults, for 3D NoC.
The proposed switch is implemented in hardware with TSMC
65nm technology, which can achieve 250MHz. Compared with
a reinforcement-learning-based fault-tolerant deflection switch
with a global routing table, the proposed switch occupies
40% less area and consumes 49% less power consumption.
Simulation results demonstrate that the proposed switch has
5% less average packet latency than the switch with the global
routing table under real application workloads and with only
5% performance degradation under synthetic workloads in the
presence of 10% link faults.
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I. INTRODUCTION

Recently, advances in three-dimensional (3D) manufac-

turing technologies have enabled to integrate the proces-

sors and memories on multiple vertical stacking layers to

overcome the interconnect problems and design complexity

of the multiprocessor SoC [1]. 3D Network-on-Chip (NoC)

connects elements on different vertically stacked dies by

the through silicon vias (TSV) [2]. Unfortunately, the low

yield for current TSV fabrication process seriously affects

the reliability of 3D NoC [3]. For now, there are many

researches on the fault-tolerant routing algorithm for 2D

NoC [4][5][6]. However, they cannot be used for 3D NoC

directly.

Deflection routing is a non-minimal adaptive routing

algorithm which can be implemented with small hardware

overhead for NoC. Its non-minimal routing characteristic

provides the potential to achieve fault-tolerance. In [7],

a reconfigurable fault-tolerant deflection routing algorithm

based on reinforcement learning has been proposed for 2D

mesh NoC. In the presence of link/switch faults, the routing

table can be reconfigured through the reinforcement learning

method. Although it can be used for 3D NoC directly by

extending the size of the routing table from n × 4 to n × 6
entries (where n is the number of nodes in the network), the

area overhead of the routing table will be large as the size

of the network increases. In this paper, we propose a low-

overhead fault-aware deflection routing algorithm for 3D

NoC, which uses a routing table of 2D mesh (layer) and two

TSV state vectors instead of the global routing table for the

whole network to make routing decision efficiently to avoid

both horizontal link faults and TSV faults. Simulation results

illustrate that the proposed switch has 5% less average

packet latency than the switch with the global routing

table under real application workloads and with only 5%

performance degradation under synthetic workloads in the

presence of 10% link faults. We also implement the switch

with TSMC 65nm standard-cell library. Compared with the

switch with the global routing table, the proposed switch can

save area and power consumption by up to 40% and 49%

respectively.

The rest of paper is organized as follows. Related work

is reviewed in Section II. Section III describes the NoC

architecture and fault model. The detailed routing algorithm

and hardware implementation are proposed in Section IV. In

Section V, simulation experimental results are presented and

analyzed, followed by the conclusion in Section VI.

II. RELATED WORK

Researches in 3D NoC are now emerging at different

aspects. Pavlidis and Friedman [1] have compared 2D mesh

NoC with its 3D counterpart by analyzing the zero-load la-

tency and power consumption of each network. Addo-Quaye

[8] has presented an algorithm for the thermal-aware map-

ping and placement of 3D NoC. A systematic performance

evaluation of 3D NoC architectures has been performed in

[9] to demonstrate their advantages compared to the 2D

implementations. In the work of [10], a performance analysis

method based on network calculus has been proposed for 3D

NoC. In [11], the performance of several alternative vertical

interconnection topologies has been studied. The routing

algorithm is based on the dimensional XYZ routing which

is only suitable for specific topologies.

Many fault-tolerant routing algorithms have been pro-

posed for 2D mesh NoC. Routing packets through a cycle

free contour surrounding a faulty router by a reconfigurable

routing algorithm for a fault-tolerant 2D mesh NoC has

been investigated in [4]. In [5], a fault adaptive deflection

routing algorithm, which makes routing decision based on



a cost function considering the route length and local fault

state, has been proposed. A resilient routing algorithm for

fault-tolerant NoC based on turn model is described in [6].

However, research on the reliability issues of 3D NoC is

still in its infancy. For general interconnection network, a

fault-tolerant routing scheme for 3D mesh based on the

limited-global safety information is presented in [12]. It is

both adaptive and minimal, however, it can only handle

faulty cube model which is built around faulty nodes and

contains faulty and disabled nodes. A robust and defect-

tolerant vertical link architecture for 3D NoC has been

proposed in [3] to overcome challenges of low yield for the

current TSV fabrication process. This work integrates the

defect-tolerant 3D link into a complete three-dimensional

NoC design flow.

III. NOC ARCHITECTURE AND FAULT MODEL

A. NoC Architecture

We extend the Nostrum NoC [13], which is a 2D mesh

topology, to a 3D mesh topology. Besides four ports con-

necting four neighboring switches in the same layer, each

switch has two additional vertical ports to connect switches

above and below the current switch, as shown in Fig. 1.

The network is bufferless network (the switch has only one

input register for each input port). Deflection routing is

used to route packets based on the packet priority which

is the number of hops the packet has been routed. For the

routing algorithm without fault-tolerance, the switch tries to

route packets to the direction with the minimal number of

hops to the destination along the x, y or z axis. If there

are two or more directions satisfying the requirement, one

direction with the smallest traffic load, which is the number

of packets handled by neighboring switches in the last 4

cycles, will be selected. The switch can handle at most

6 packets simultaneously. If two or more packets contend

for one output port, a packet with a higher priority will be

selected to route through this port and other packets will be

deflected to a free output port with the smallest traffic load,

which can balance the network traffic load.

The packet format of the 3D NoC architecture is shown

in Fig. 2. The width of a packet is 128 bits, including a 48-

bit head and an 80-bit payload. The packet head contains

5 fields. A valid bit (V) is used to mark a packet valid

or not. An 18-bit destination address field (D x, D y and

D z), is divided into 3 parts, each of which has 6 bits

using complement code, denoting the relative address to the

destination along x, y and z axis. The relative addresses are

updated when the packet has passed a switch. A temporary

address field (T x, T y and T z, 6 bits for each) is used to

set a relative address to an intermediate destination along

x, y and z axis. When the packet will be routed to the

up/down layer and the vertical link of the current switch is

broken, the switch will set this field and forward the packet

to an intermediate switch with a healthy vertical link to the

Figure 1. 3D mesh NoC.

up/down layer. The TV bit denotes the temporary address

valid or not. When the TV bit is set to be ’1’, the packet

will be routed to the intermediate switch first. The hop count

field (HC, 10 bits) is used as the packet priority to denote

the number of hops the packet has been routed. The switch

makes routing decision based on this field to avoid livelock.
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Figure 2. Packet format.

B. Fault Model

In this paper, we consider the faults as completely broken

links (permanent faults). For 3D NoC, the faulty link can

be divided into two classes: vertical (TSV) and horizontal

link. Due to the number of input ports being equal to the

number of output ports in deflection switch, the faulty link

is assumed to be bidirectional. For the focus on the routing

algorithm, we also assumed that there exists a fault diagnosis

mechanism to detect faults. In order to simulate the faulty

link of the switch, a 6-bit fault vector is used to represent

the fault state of six links for each switch (a ’1’ in the

fault vector represents the corresponding bidirectional link is

broken). In addition, we assume that the faulty vertical links

do not disconnect different layers and the faulty horizon

links do not disconnect the 2D mesh for each layer to

guarantee a path existing for each node pairs.

In order to get the fault state of TSV, each switch contains

two n-bit TSV state vectors which record the fault state of

the up and down links of the current layer. The two vectors

are transmitted to four neighboring switches which are in

the same layer as the current switch. For each clock cycle,

the switch will update its own TSV state vectors based on

the TSV state vectors transmitted from its neighbors. After

a short period, the switch will get all TSV state of the layer.



During run-time, if one or more TSVs have been detected to

be faulty, the TSV state vectors can also be updated though

transmission.

IV. ROUTING ALGORITHM DESIGN AND HARDWARE

IMPLEMENTATION

A. Routing Algorithm Design

The algorithm can be divided into two parts: packets

routed on the same layer and packets routed across layers. A

reinforcement-learning-based deflection routing algorithm is

used to route packets on the same layer [7]. Each switch

contains an n × 4 routing table which is constructed by

the minimum number of hops to all destinations on the 2D

mesh layer from four output ports (North, East, South, West).

Table I shows a layer routing table of a 3× 3× 3 3D mesh.

The routing table is reconfigured by equation (1). Qx(d, y)
denotes the minimum number of hops from x to d through

neighbor y. When x sends a packet to d through y, y will

return 1 plus the minimum number of hops from itself to d

(minzQ
y
t−1

(d, z)) back to x to reconfigure the corresponding

routing table entry of x. Through this reinforcement learning

method, after a learning period the routing table will be

reconfigured to achieve fault-tolerance.

Qx
t (d, y) = 1 + min

z
Qy

t−1
(d, z) (1)

Table I
ROUTING TABLE OF SWITCH 5 IN A LAYER OF 3× 3× 3 3D MESH

North East South West

Number of hops to S1 2 4 4 2

Number of hops to S2 1 3 3 3

Number of hops to S3 2 2 4 4

Number of hops to S4 3 3 3 1

Number of hops to S5 0 0 0 0

Number of hops to S6 3 1 3 3

Number of hops to S7 4 4 2 2

Number of hops to S8 3 3 1 3

Number of hops to S9 4 2 2 4

For packets routed across layers, the switch makes routing

decision based on the TSV state vectors. When a packet

reaches a switch with the same row and column addresses

but different layer as the destination switch, if the up/down

link of the switch is faulty, it will try to find an intermediate

switch with a healthy vertical link at the same layer, which

has a minimal manhattan distance to the current switch,

based on the TSV state vector. Then the packet will be routed

to the intermediate switch according to the routing table of

the layer. Fig. 3 shows a routing example in a 3 × 3 × 3
mesh with three broken vertical links. S1 sends a packet to

S7. First, it will send the packet to S2 through up link. At S2,

the up link is broken, so it will find a nearest switch with a

healthy up link (Here is S4) as an intermediate switch. Then
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Figure 3. A routing example.

the packet will be routed to S4. After the packet is routed

to S4, it can be routed to S7 through S5 and S6.

The pseudo code of the routing algorithm is shown in

Fig. 4. When a packet reaches a switch, it will check whether

the packet has reached the destination first (Step 1). If the

packet reaches the destination, then it will be routed to the

local port (Step 2). If the temporary address is valid (TV bit

is ’1’) and the packet has reached the intermediate switch,

the productive direction is set to be a vertical direction

(up/down) and the TV bit is set to be ’0’ (Step 4-7). If the

packet has not reached the intermediate switch, the current

switch will look up the layer routing table based on the

temporary address to get the productive direction(s) to the

intermediate switch (Step 8 and 9). When the temporary

address is not valid (Step 11), the switch gets the productive

direction(s) based on the layer routing table and the vertical

relative address (Step 12 and 13). At this point, if the vertical

direction is the only one productive direction and is faulty,

the switch will find an intermediate switch with a good

TSV, set the relative address to the intermediate node into

the temporary address field of the packet and look up the

layer routing table to get the productive direction(s) to the

intermediate switch (Step 14-16). The TV bit is also set to

be ’1’ (Step 17). After getting the productive direction(s),

the switch will choose a free one with the smallest traffic

load to route the packet (Step 21 and 22). If all productive

ports are not available, the switch will choose a remaining

free port with the smallest traffic load to route the packet

(Step 23 and 24).

B. Deadlock and Livelock Avoidance

Deflection routing is inherently free from deadlock due

to the fact that packets never have to wait in a switch.

Because of the non-minimal routing characteristic, deflec-

tion routing must avoid livelock by limiting the number

of misroutings. The reinforcement-learning-based deflection

routing algorithm for 2D mesh is livelock free as long as the
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Figure 4. Pseudo code of routing algorithm.

faulty links do not disconnect the network [7]. So for this

algorithm, packets routed on the same layer are free from

livelock. In addition, each switch can get the TSV state of the

whole layer and the TSV faults do not disconnect the whole

network. For the packets routed across different layers, the

switch will indeed find an intermediate node with a healthy

TSV to route packets to the up/down destination layer. So

the packet will finally advance towards its destination.

C. Hardware Implementation

The proposed switch is developed in VHDL. For an

n × n × n 3D mesh, each switch contains an n2 × 4 layer

routing table and two n-bit TSV state vectors. Here, we

synthesize a switch in the 4 × 4 × 4 3D mesh with TSMC

65nm standard-cell library. To make a comparison, the

reinforcement-learning-based deflection switch with a global

routing table (GR) for 3D mesh is also implemented. For this

switch, it contains a 64 × 6 global routing table. The area

and power consumption of the two switches with 250MHz

are shown in Table II. Compared with the switch with the

global routing table, the area and power consumption of

the optimized switch (OPT) with the layer routing table

and TSV state vectors can reduce up to 40% and 49%

respectively.

Table II
HARDWARE IMPLEMENTATION COMPARISON OF TWO SWITCHES

Area (µm2) Power (mW )

GR 193672 17.1

OPT 117392 8.8

V. SIMULATION RESULTS

In this section, we evaluate the performance of the routing

algorithm using a cycle-accurate NoC simulator developed

in VHDL under both synthetic and application workloads.

A. Experimental Setup

We perform the experiments on a 4×4×4 3D mesh. For

synthetic workloads, each switch is connected to a packet

generator which can generate three synthetic traffic patterns

(uniform random traffic, transpose traffic and local traffic).

For uniform random traffic, each resource node sends pack-

ets randomly to other nodes with an equal probability. In

transpose traffic, resource node positioned at (x, y, z) sends

packets to destination node (X−1−x, Y −1−y, Z−1−z)

for all x ∈ {0, . . . , X − 1}, y ∈ {0, . . . , Y − 1}, z ∈
{0, . . . , Z − 1}, where X, Y and Z are the number of nodes

for each dimension. For local traffic, the resource node sends

packets to the near neighbors with a higher probability than

the remote nodes. The probability depends on the source-

destination manhattan distance d as follows [14]:

P (d) =
1

A(D)2d
(2)

where D is the diameter of the network and A(D) =∑D

d=1
(1/2d) is a normalizing factor guaranteeing that the

sum of all probabilities is 1.

To simulate real applications, we use traces from parallel

application benchmark suites. The Splash-2 suite [15] traces

are obtained from the full-system simulator Simics [16]

with GEMS2.1 [17] and Garnet network model [18]. The

detailed full-system configurations are listed in Table III.

The multicore system contains 64 processors connected by a

4×4×4 3D mesh network. A 32KB L1 I-Cache and D-Cache

and a 512KB L2 Cache are attached on each processor.

The Cache coherence protocol is MOESI CMP directory

protocol. 8 on-chip memory controllers are attached on 4

processors of the top and bottom layers respectively.

Table III
FULL-SYSTEM CONFIGURATION FOR TRACE GENERATION

Number of Processors 64

ISA SPARC

L1 Cache 32K-I/D, 4-way associative, 64B/line

L2 Cache fully shared S-NUCA, 512KB/bank
64 banks, 64B/line, 8-way associative

Cache coherence protocol MOESI CMP directory

Memory 8 on-chip memory controllers

Splash applications barnes, cholesky, fft, fmm
lu, radix, raytrace, water

We measure the average packet latency under both syn-

thetic and real application workloads. The packet latency

T is calculated by equation (3), where Tnet is the network

delivery time which is the hop count the packet being routed

and Tsrc is the time a packet waiting in the source queue.



T = Tnet + Tsrc (3)

B. Results under Synthetic Workloads

In this subsection, we evaluate the performance of the

switch with the global routing table (GR) and the proposed

switch (OPT) under three synthetic workloads. Fig. 5 (a)-(c)

show the average packet latency of the two switches in the

presence of no faults and 10% link faults. Two switches

perform similar in the case of no faults in the network.

Compared with the switch with the global routing table, in

the presence of 10% link faults, the proposed switch has

only 5%, 6% and 4% performance degradation under three

synthetic workloads respectively, while occupies 40% less

area and consumes 49% less power consumption.
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Figure 5. Average latency under synthetic application workloads with 10%
link faults.

C. Results under Application Workloads

We measure the performance of the two routing algo-

rithms under eight application traffic traces from Splash-

2. Fig. 6 (a)-(c) show the average packet latency of the

two routing algorithms under application workloads in the

network with 10% horizontal, vertical and mixed faulty links

respectively. In the presence of 10% horizontal faulty links,

the switch with the global routing table performs slightly

better than the proposed switch, while the average latency

of the proposed routing algorithm is 6% and 5% less than

the routing algorithm with the global routing table under

10% vertical and mixed faulty links respectively.

VI. CONCLUSION

In this paper, we propose a low-cost fault-tolerant deflec-

tion switch for 3D Network-on-Chip. Instead of the global

routing table, the switch uses only a layer routing table and

two TSV state vectors to make routing decision efficiently

to avoid both TSV faults and horizontal faulty links. The

proposed switch, which can achieve 250MHz, is synthesized

with TSMC 65nm technology. Compared with a fault-

tolerant deflection switch with a global routing table, the

switch occupies 40% less area and consumes 49% less power

consumption. Simulation results illustrate that the proposed

switch outperforms the switch with the global routing table

under splash-2 application workloads and with only small

performance degradation under synthetic workloads.
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