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Abstract. Bandwidth estimation in wireless networks is difficult due to
the intrinsic randomness of the wireless links. In this paper, we propose
a network calculus based method for statistical bandwidth estimation in
wireless networks with random service, where the bandwidth is expressed
in terms of a statistical service curve with a violation probability. By in-
jecting probing packet trains, the statistical bandwidth can be estimated
through the measurement of backlogs in the system.

1 Introduction

Network calculus is a theory for service guarantee analysis of computer and com-
munication networks. Recently, it has been developed for estimating available
bandwidth based on traffic measurements [1] [2]. In [1], Liebeherr et. al proposed
a systematic approach for available service estimation of time-invariant systems
through the measurement of deterministic backlog. In [2], the authors extended
the method to networks with random traffic load or link capacities. The band-
width is estimated through the measurement of time stamps of probing packet
trains.

In this paper, we extended the work in [1] [2] and developed a network cal-
culus based method for bandwidth estimation of system with random service,
where the bandwidth is estimated through the measurement of statistical back-
log based on probing packet trains. The bandwidth is expressed by statistical
service curves that are allowed to violate a service guarantee with a certain prob-
ability [3]. Our method is exempt from the same timing reference for the nodes
in the network compared with the time stamp based estimation methods.

2 Statistical Bandwidth Estimation

Consider a system with the arrival process, service process, and departure process
denoted by R(t), S(t), and D(t) respectively. Let S̃(t) represent the statistical
service curve which is defined as follows:

Definition: Statistical service curve Consider a non-decreasing function S̃(t).
It is a statistical service curve of the system if the following equality holds [3],

Pr
{

D(t) ≥ R ⊗ S̃(t)
}

> 1 − ξ (1)



whereR ⊗ S̃(t) = infτ

[

R(τ) + S̃(t − τ)
]

denotes the min-plus convolution. And

ξ denotes the violation probability, which satisfies 0 < ξ < 1.
The objective of bandwidth estimation is to derive the statistical service curve

S̃(t) from B(t), R(t) and D(t), where R(t) is the arrival process, B(t) and D(t)
are backlog and output, respectively. We adopt the rate scanning probe scheme
proposed in [1], where the packet trains are transmitted with increasing rates.
The arrival process can be expressed as R(t) = rt, where r is the transmission
rate.

Since it is very difficult to derive the exact service process S(t), we try to esti-
mate the statistical service curve S̃(t). Their relations is defined by the following
lemma. The proof of this lemma can be found in [2].

Lemma: Consider a system with service process S(t). Any S̃(t) that satisfies,

Pr
{

S(t) ≥ S̃(t)
}

> 1 − ξ (2)

for t ≥ 0, is a statistical service curve of the system.
The input of the system consists of constant rate packet trains, so the arrival

process can be expressed by R(t) = rt, where r is the arrival rate of the probing
trains. We define the statistical steady-state backlog Bǫ(r) as ,

Pr {B(r) ≤ Bǫ(r)} > 1 − ǫ (3)

where B(r) denotes the steady-state backlog when the probing rate is r. In
practice, the statistical backlog bound can be obtained based on the percentiles.

We formalize the process of deriving statistic service curve through the mea-
surement of backlog by the following theorem.

Theorem: Consider a system with probing packet trains constrained by the
arrival curve R(t) = rt. Based on the measurement of the statistical steady-state
backlog Bǫ(r), the statistical service curve of the system can be derived by,

S̃(t) = sup
r

{rt − Bǫ(r)} (4)

where the violation probability of the statistical service curve is ξ =
∑

r
ǫ.

The detailed proof of this theorem can be found in [6]. The theorem relates
the statistical backlog bound with the statistical service curve based on the
Legendre transform. It is able to estimate service curve for random wireless
channels using probe packet trains transmitted at different rates. To estimate
the bandwidth, tens or hundreds of different probe rates may be applied for the
estimation. However, in the calculation of

∑

r
ǫ, we only need to consider the

probe rates that contribute to the derivation of S̃(t).

3 Results and Conclusions

Simulations are conducted to validate the proposed estimation method. The
system consists of one sender and one receiver. Packet trains are periodically



injected to the buffers of the sender. A packet train contains 1000 packets, and
the arrival interval between two adjacent packets is 10 ms. The link between the
sender and receiver is time-variant with capacity uniformly randomly varying in
the range (20 kbps, 200 kbps). Assume the link status does not change during
the transmission of a packet. The length of a packet changes from 300 bit to 3000
bit with an increment of 50 bit in each step. Hence, the corresponding probing
data rate varies from 30 kbps to 300 kbps with an increment of 5 kbps. For each
probing rate, the simulation runs 1000 times. The values of backlog are recorded
every millisecond until the last packet has been sent.

In simulations, the statistical service curve and backlog can be obtained from
their percentiles. Fig. 1 shows the percentiles of link capacity and their corre-
sponding statistical service curves. The deterministic service curve is the upper
bound of the service curve we generated in the simulation. The left part of Fig. 2
shows the statistical results of the measured backlogs with varying probing rates.
From these backlog values, the statistical service curve can be derived according
to the theorem. In the right part of Fig. 2, we compare the statistical service
curve estimated by our method with the actual statistical service curve. As we
can see, when the violation probability is smaller, the difference between these
two is smaller. It means that our method can accurately estimate the service
capacity with a small violation probability. In our future work, we will study
which parameters impact the estimation accuracy.
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Fig. 1. Left: Percentiles of random link
capacity ; Right: the statistical service
curve of the random link.

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Backlog (packets)

P
ec

en
til

e

Statistics of backlog

 

 

r = 30
r= 100
r = 200
r=300

0 500 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5Actual SC VS. Estimated SC

Time (ms)

D
at

a 
(b

it)

 

 

Deterministic
Vio Pr = 5%
Viol Pr = 20%

Fig. 2. Left: Statistical backlog measure-
ments; Right: Comparison between the
reference service curve and the estimated
service curve (The solid line denotes the
estimated service curve and the dashed
line denotes the reference service curve).

In this paper, we proposed a network calculus based method of statistical
bandwidth estimation for networks with random service. The statistical band-
width is estimated from the measurement of statistical steady-state backlog with



probing packet trains. Our method does not rely on the same timing reference
for the sender and receiver.
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