
Chapter 1

REFINING SYNCHRONOUS COMMUNICATION ONTO
NETWORK-ON-CHIP BEST-EFFORT SERVICES

Zhonghai Lu, Ingo Sander, and Axel Jantsch

Department of Electronic, Computer and Software Systems

Royal Institute of Technology, Sweden

{zhonghai,ingo,axel}@imit.kth.se

Abstract We present a novel approach to refine a system model specified with perfectly
synchronous communication onto a Network-on-Chip (NoC) best-effort com-
munication service. It is a top-down procedure with three steps, namely,channel
refinement, process refinement, andcommunication mapping. In channel refine-
ment, synchronous channels are replaced with stochastic channels abstracting
the best-effort service. In process refinement, processes are refined in terms of
interfaces and synchronization properties. Particularly, we usesynchronizersto
maintain local synchronization of processes and thus achievesynchronization
consistency, which is a key requirement while mapping a synchronous model
onto an asynchronous architecture. Within communication mapping, the refined
processes and channels are mapped to a NoC architecture. Adopting theNos-
trum NoC platform as target architecture, we use a digital equalizer as a tutorial
example to illustrate the feasibility of our concepts.

Keywords: Synchronous Model, Communication Refinement, Network-on-Chip

1. Introduction

For system design, a synchronous design style is attractive since it allows
us to separate timing from function. The designer can focus on the design
of the system functionality without being distracted by unnecessary low-level
communication details. This also facilitates the verification task, which is a
key activity at the system level. Later,refinementexplores the implementation
space under constraints, making design decisions and filling in implementation
details. Network-on-Chip (NoC) is an emerging SoC paradigm aimed to cope
with the scalability problem of various buses in order to connect tens or perhaps
even hundreds of microprocessor-sized heterogeneous resources, such as pro-

2

cessor cores, DSPs, FPGAs/ASICs, and memories. The complex integration is
desired by ever-increasing functionality and enabled by the steady technology
scaling. Nostrum [11–13] is our NoC architecture offering a packet-switched
communication platform. To satisfy different performance/cost requirements,
Nostrum provides two classes of communication services, namely, Best Effort
(BE) and Guaranteed Bandwidth (GB) services. The BE service is connection-
less where packets are routed without resource reservation. The GB service is
connection-oriented where packets are delivered after enough bandwidth is re-
served. It achieves better performance at the expense of higher cost.

Clustering & Resource allocation

Hardware Software

process model
Synchronous NoC

platform

Channel refinement

Process refinement

Communication mapping

Synthesis

Computation refinement Communication refinement

Figure 1.1. A NoC Design Flow

In this work, we are interested in mapping a system specified as a syn-
chronous model onto a NoC. To this end, we propose a NoC design flow shown
in Fig. 1.1 where we concentrate on the communication problem. There are
three communication-related tasks:clustering & resource allocation, commu-
nication refinement, andsynthesis. The clustering flattens the hierarchy in the
model and groups processes into new processes with perhaps coarser granu-
larity. With resource allocation, the grouped processes are allocated to net-
work nodes, either HW or SW execution resources. Communication refine-
ment bridges the gap between the communication model in the specification
and the NoC communication implementation via adapters. With synthesis,
these processes and adapters are synthesized into HW and/or SW.

We address thecommunication refinementthat starts from a synchronous
communication model and ends with the Nostrum NoC best-effort communi-
cation service. With the specification model, communication is perfectly syn-
chronous with a global logical clock and cleanly separated from computation.
With the NoC communication service, communication introduces variable de-
lays and crosses multiple clock domains connected by a packet-switched net-
work. Clearly the communication in the implementation domain is not syn-
chronous, thus not consistent with that in the specification domain. Our con-
tributions are (1) a novel approach to realize this communication refinement;
(2) a classification of process synchronization properties asstrict, nonstrict,

Re�ning Synchronous Communication onto NoC Best-e�ort Services 3

strong, andweaksynchronization in order to formally analyze processes’ lo-
cal synchronization requirement(s) (Section 5.2); (3) usingsynchronizers(syn-
chronization adapters) to maintain synchronization consistency during refine-
ment (Section 5.3). We will focus on the synchronization issue while keeping
the process computation untouched. Note that, this synchronization issue lies
at the system modeling level, not at the lower implementation levels such as
shared memory synchronization using locks or semaphores, as well as mes-
sage passing synchronization using blocking or nonblocking semantics. We
assume that, after a clustering, the resulting processes, more precisely, process
networks, are top-level entities. Each process may comprise a hierarchy of
sub-processes which are intended to reside in a synchronous implementation
domain. Besides, we consider that a resource maintains a local synchronous
region. Consequently a process is to be mapped to one resource and one re-
source hosts exactly one process.

2. Related Work

Based on the isolation of communication from computation, a large body
of work on communication refinement exists. Through the Virtual Component
Interfaces (VCI) of the VSI Alliance [9], the COSY-VCC design flow [3] sup-
ports communication refinement from specification to performance estimation
and to implementation. IPSIM [5] developed on top of SystemC 3.0 supports
an object-oriented methodology and establishes two inter-module communi-
cation layers. The message box layer concerns generic and system-specific
communication, while the driver layer implements higher level application-
dependent communications. The SpecC methodology defines four levels of ab-
straction, namely at the specification, architecture, communication and imple-
mentation level, and the refinement transformations between them [6]. These
works do not assume a synchronous specification.

With synchronous communication, latency insensitive theory [4] targets syn-
chronized HW design where synchronization can still be achieved using re-
lay stations even if interconnecting synchronous IP blocks experiences in-
definite wire latencies; Desynchronization for SW design was addressed in
[1]. Furthermore, some mathematical frameworks were developed to sup-
port refinement-based design methods. Benveniste et al. present a theoretical
framework for modeling heterogeneous systems, and derive sufficient condi-
tions to maintain semantic-preserving transformations when deploying a syn-
chronous specification onto GALS and the loosely time-triggered architectures
[2]. Another framework is proposed in [7] concerning the refinement of a
polysynchronous specification, which allows the existence of multiple clocks
instead of a single clock. All these works are complementary to ours but none
of them provides a detailed refinement approach targeting a NoC platform.

4

3. Re�nement Overview

3.1 The perfectly synchronous model

The synchronous modeling paradigm is based on an elegant and simple
mathematical model, which is the ground of synchronous languages such as
Esterel, Signal, Argos and Lustre. The basis is the perfect synchrony hypoth-
esis, i.e., both computation and communication take no observable time. A
system is modeled as a set of concurrent communicating processes via signals.
Processes use ideal data types and assume infinite buffers. Signals are ordered
sequences of events. Each event has a time slot as a slot to convey data. If
the data contains useful information, the event ispresentand called atoken;
otherwise, the event isabsentand modeled as at representing a clock tick.
Each signal can be related to the time slots of another signal in an unambigu-
ous way. The output events of a process occur in the same time slot as the
corresponding input events. Moreover, they are instantaneously distributed in
the entire system and are available to all other processes in the same slot. Re-
ceiving processes in turn consume the events and emit output events again in
the same time slot. The medium a signal passes can thus be viewed as an ideal
communication channel which has no delay for any event data types (unlimited
bandwidth). A process specified in the synchronous paradigm is a synchronous
process. For feedback loops, the perfect synchrony creates cyclic dependency
between output and input, and thus leads to deadlock, which can be resolved
with initial events in the specification. A synchronous model is deterministic,
i.e., given the same input streams, it generates the same output streams.

P3

sao

P1

P2

Sum

Bass

Treble

Level Control(LC)

Treble Filter (TF)

Bass Filter (BF)

s5

+

+

AudioOut

-

-

s4(A:Treble)

s2(Treble)

s3(A:Bass)

s0
P4

AudioIn Buttons

sb

s1(Bass)

Figure 1.2. The digital equalizer

AudioOut = Equalizer(Buttons;AudioIn)
where
AudioOut = Sum(AudioBass;AudioTreble)
(Bass;Treble) = LevelControl(Buttons;AudioOut)
AudioBass = BassFilter(AudioIn; init : Bass)
AudioTreble = TrebleFilter(AudioIn; init : Treble)
init = 1

As a tutorial example, Fig. 1.2 illustrates an equalizer model. It adjusts the
bass and treble volume of the audio stream according to button control levels.
In addition it prevents the bass level from exceeding a predefined threshold

Re�ning Synchronous Communication onto NoC Best-e�ort Services 5

to avoid damaging the speakers. Its function can be described by the set of
equations, where the initial value ’1’ is used to resolve the feedback loops.
This model is specified in the functional language Haskell and is executable.

3.2 Nostrum communication services

In Nostrum, each resourceRi (i = 1;2; � � � ;n) is equipped with a Resource-
Network-Interface (RNI) in order to access the network, as shown in the lower
part of Fig. 1.3. The RNI and the network belong to the Nostrum protocol
stack. Nostrum provides a message passing platform with two communication
services, i.e., best-effort and guaranteed bandwidth. The BE service [12] is
connection-less. Packets are routed in the network without reserving network
resources such as storage and link bandwidth. The end-to-end flow control, re-
ordering, packetization and packet admission control are performed by RNIs.
The BE service maintains message order, and is lossless and corruptless. It
has no guarantee on timely delivery, but must have an upper bound on delivery
time. To this end, we assume that the communication protocols can prevent
the network from saturation and guarantee bounds on delay. The GB service
is connection-oriented. Bandwidth is negotiated during a connection estab-
lishment phase. Packets are delivered after a connection is established. The
GB service is implemented by using looped containers and temporally disjoint
networks [11]. The RNIs hide the service implementation details and make
the servicestransparentlyaccessible to applications. The access methods are
communication primitives offered to the higher layer.

Within Nostrum, we define a set of basic communication primitives for mes-
sage passing as follows:

int open(int src, int dst, int service, struct bandwidth): it opens a sim-
plex channel between a sourcesrcprocess and a destinationdstprocess.
Theservicedenotes the channel service class, 0 for the BE service, 1 for
the GB service. Thebandwidthis a user-defined record with three fields
fint min bw, int avgbw, int maxbwg which specifies the minimum, av-
erage and maximum bandwidth (Bytes/second) requirement of the chan-
nel. The method returns a unique channel identity number (cid) upon
successfully opening the channel; otherwise, it returns various reasons
of failure, such as a destination invalid, or performance not satisfied.

bool write(int cid, void msg): it writes msgto the specified channelcid.
The size of messages is bounded. It returns the status of the write.

bool read(int cid, void *msg): it reads channelcidand writes the received
data to the address starting atmsg. It returns the status of the read.

We have implemented these primitives with the BE service using SystemC
in our layered NoC simulatorSemla[13]. The write() and read() are presently

6

implemented with nonblocking semantics. Semla is programmable as to net-
work topology, process-to-resource mapping, routing algorithm, and traffic
pattern. The current implementation opens channels statically during compile
time and the opened channels are never closed during simulation.

3.3 The re�nement procedure

Given a synchronous system specification, our objective is to refine the syn-
chronous communication onto the Nostrum best-effort (BE) service. For this
communication refinement, we propose a three-step procedure:channel re-
finement, process refinement, andcommunication mapping. We illustrate the
procedure via a pair of producer-consumer processes in Fig. 1.3. The three
steps are marked by a circle with a step number inside it.

P

2

3 Communication mapping

Process re�nement

Channel re�nement

Feedback loop

Maintain sync. consistency

Interfacing channels

Analyze process sync. propertyBE channel

ch

Network

RNIRNIRNI

R2

Nostrum

RnR1

write
adapter

s

s

P0

2

3 3

2

1

P Q
1

read
adapter

s0

Q0

Q

Figure 1.3. Communication refinement overview

Step 1: Withchannel refinement, we first abstract the behavior of the Nos-
trum BE service as that of stochastic channels which are then used to replace
the ideal communication channels for passing signals. In Fig. 1.3, the ideal
channel for signalsbetween producerP and consumerQ is refined to a BE ser-
vice channelch. After being delivered via the service channel, signals turns
into signals0, which is a derived version ofs. Furthermore,s ands0 are not
synchronous since different clock domains are involved in the service channel.

Step 2: Withprocess refinement, we discuss how to connect a process to
the service interface and how its synchronization property can be met by using
adapters to wrap the process. Particularly, to guarantee a correct refinement,
the process synchronization property must be consistent from the specification
to the refined model. We classify and analyze the synchronization property of
processes and then discuss how to maintainsynchronization consistency. The
process synchronization property can be annotated by designers on processes
to enable automatically instantiatingsynchronizersto achieve synchronization
consistency in the process refinement. Moreover, we consider design decisions
to handle feedback loops by which the process synchronization may be relaxed
in order to optimize performance since a synchronous specification may over-

Re�ning Synchronous Communication onto NoC Best-e�ort Services 7

specify the system. In Fig. 1.3,P and Q are wrapped with a write and a
read adapter, respectively. Note that an adapter contains both a component to
interface with the service channel (writer/reader) and component(s) to achieve
synchronization consistency (synchronizers) whenever necessary.

Step 3: Finally, together with a process-to-resource allocation scheme, the
communication mapping is to implement the adapters and map the service
channels on a NoC, in this case, the Nostrum simulator Semla. In Fig. 1.3,
the refined processesP0 andQ0 are mapped to the resourcesR1 andRn, respec-
tively. Accordingly, the service channelch is implemented via the interfaces
provided by the RNIs of the resourcesR1 andRn.

4. Channel Re�nement

The Nostrum BE service provides in-order, lossless and bounded-in-time
communication between processes. However, its performance isnondeter-
ministic since the message delivery experiences dynamic contentions in the
RNIs and network. To capture the characteristics of the BE service, we resort
to a stochastic approach. Formally, we develop a unicast BE service chan-
nel as a point-to-pointstochasticchannel: given an input signal of messages
fm1;m2;� � � ;mng to the service channel, the output signal isfd1;m1;d2;m2; � � �,
dn;mng, where messagemi (i = 1;2; � � � ;n) is bounded in size;di denotes the
delay ofmi which may be expressed as the number of absent (t) values and
is subject to a distribution with a minimumdi;min and maximumdi;max value.
The actual distribution, which may differ from channel to channel, is irrele-
vant. We do not make any further assumptions about this. Ifdi = n (n is a
positive integer), it means there aren absent values betweenmi�1 andmi. We
can identify two important properties of the generic service channel behavior:
(1) di is varying; (2)di is bounded. This behavior is purely viewed from the
perspective of application processes and its implementation details are hidden.

Replacing the ideal channel (zero delay and unlimited bandwidth) with a
stochastic channel (varying delay and limited bandwidth) leads to the violation
of the synchrony assumption. In the specification, a channel is ideal so that
we can use asingle signal s to connect a producer to a consumer process.
After replacing the ideal channel with a service channel, the signals can be
seen as beingsplit into a pair of signals, the original signals and its derived
signal s0, as shown in Fig. 1.3. For a process with two synchronous input
signals, for example, theSumprocess of the equalizer (Fig. 1.2), if both signals
s3 ands4 are delivered via a service channel, they are split, resulting in two
derived signalss03 ands04, which are now the input signals to theSumprocess.
Apparently, the two pairs of signals,s3 ands03, s4 ands04, and the two derived
signalss03 ands04 are not synchronous. A synchronous system becomes globally
asynchronous, leading to possibly nondeterministic behavior which deviates

8

from the specification. It is therefore important for a refinement to maintain
synchronization consistency for functional correctness.

5. Process Re�nement

We first describe how to interface with the service channels in general, and
then discuss the synchronization property of processes followed by methods
to achieve synchronization consistency. At the system level (a composition of
processes), we discuss feedback loops.

5.1 Interfacing with the service channels

Once an ideal channel is replaced by a service channel, the processes can
not be directly connected to the interface of the service channel. They must
beadaptedin terms of data and control because (1) the input/output data type
of a service channel is of a bounded size while a signal in the specification
assumes an ideal data type, whose length is finite but arbitrary, e.g., a 32/64-bit
integer, a 64-bit floating point or a user-defined 256-bit record type etc.; (2)
the service channel has bounded buffers and limited bandwidth while a signal
uses unlimited resources. The sending and receiving of messages use shared
resources and thus control functionality has to be added to allocate shared re-
sources, schedule multiple threads and achieve thread-level synchronization.
These adaptations are achieved by a writer and reader process. Specifically,
to interface with the service channels, a producer needs to be wrapped with a
writer, a consumer with areader.

5.2 Process synchronization property

In the system model, all signals of processes are synchronous. However,
whether or not the input signals of a process must be synchronous is subject
to the evaluation condition of processes, specifically, the local condition(s) to
evaluatethe input events. Because of the tight synchronization in the model,
some processes may be over specified, limiting the implementation alterna-
tives. During the refinement, the designer(s) must inspect and determine the
synchronization property of the processes.

Inspired by [8], we usefiring rules to discuss the synchronization property
of synchronous processes. For a synchronous process withn input signals,
PI is a set ofN input patterns,PI = fI1; I2; � � � ; INg. The input patterns of
a synchronous process describe its firing rules, which give the conditions of
evaluating input events at each event cycle.Ii (i 2 [1;N]) constitutes a set of
event patterns, one for each ofn input signals,Ii = fIi;1; Ii;2; � � � ; Ii;ng. A pattern
Ii; j contains only one element that can be either a token wildcard� or an absent
valuet, where� does not includet. Based on the definition of firing rules,
we propose four levels of process synchronization properties as follows:

Re�ning Synchronous Communication onto NoC Best-e�ort Services 9

Strict synchronization. All the input events of a process must be present
before the process evaluates and consumes them. The only rule that the
process can fire isPI = fI1g whereI1 = f[�]; [�]; � � � ; [�]g.

Nonstrict synchronization. Not all the input events of a process are ab-
sent before the process fires. The process cannot fire with the pattern
I = f[t]; [t]; � � � ; [t]g.

Strong synchronization. All the input events of a process must be ei-
ther present or absent in order to fire the process. The process has
only two firing rulesPI = fI1; I2g, whereI1 = f[�]; [�]; � � � ; [�]g andI2 =
f[t]; [t]; � � � ; [t]g.

Weak synchronization. The process can fire with any possible input pat-
terns. For a 2-input process, its firing rules arePI = fI1; I2; I3; I4g where
I1 = f[�]; [�]g, I2 = f[t]; [t]g, I3 = f[�]; [t]g andI4 = f[t]; [�]g.

We can identify processes with astrict, strong, andweaksynchronization
property in the equalizer (Fig. 1.2). TheBassFilter(s0 ands1) andTrebleFilter
(s0 ands2) have a strict synchronization. Both filters are composed of a FIR
filter and an amplifier. The FIR filter is specified as an FSM, whose state tran-
sition is sensitive to time, thus at value in an audio stream can change the
values of its output sequence. Meanwhile, the amplifier must have an ampli-
fication level, thus at value makes the amplifier undefined. TheSumprocess
(s3 ands4) has a strong synchronization. It is a combinational process and thus
tolerable to events with at value. However, the two events ofs3 ands4 must
be synchronized before being processed since they represent the low and high
frequency components of the same audio sample. TheLevelControl(sb and
s5) process has a weak synchronization. It can fire even when either or both
of the events ofsb ands5 are absent since pressing buttons happens irregularly
and the bass level surpassing the threshold occurs only aperiodically.

5.3 Achieving synchronization consistency

Apparently, for processes with a strict or strong synchronization, their syn-
chronization properties can not be satisfied if any of their input signals passes
through a service channel since the delays via the channel are stochastic. Al-
though globally asynchronous, the processes can be locally synchronized by
using synchronizersto satisfy their synchronization properties. To achieve
strong synchronization, we use an align-synchronization processsync; to achieve
strict synchronization, we use three processes,sync, deSyncandaddSync. We
use a two-input process to illustrate these processes in Fig. 1.4. An align-
synchronization processsyncaligns the tokens of its input events, as shown
in Fig. 1.4a. It does not change the time structure of the input signals. A

10

desynchronizerdeSyncremoves the absent values, as shown in Fig. 1.4b. All
its input signals must have the same token pattern, resembling the output sig-
nals of thesyncprocess. Removing absent values implies that the process is
stalled. The desynchronizer changes the timing structure of the input signals,
which must be recovered in order to prevent from causing unexpected behav-
ior of other processes that use the timing information. An add-synchronizer
addSyncadds the absent values to recover the timing structure, as shown in
Fig. 1.4c. It must be used in relation to adeSyncprocess. If the input events of
thedeSyncis a token, theaddSyncreads one event from its internal buffers for
each output signal; otherwise, it outputs at event. The two processesdeSync
andaddSyncare used as a pair to assist processes to fulfill strictness.

b) A de-synchronization process

fan; :::;a2;t;t;a1;tg

fbn; :::;b2;t;t;b1;tg

fan; :::;a2;t;t;a1;tg

fbn; :::;b2;t;t;b1;tg

deSync

fan; :::;a2;a1g

fbn; :::;b2;b1g

addSync

fan; :::;a2;t;t;a1g

fbn; :::;b4;b3;b2;b1g

fan; :::;a2;x0;x0;a1g
Bass/Treble

Filter

s3=s4
s1=s2

relax

f� � � ;an; ::t;t;a2;t;a1;tg f� � � ;ak; :::;a2;t;t;a1;tg

f� � � ;bn; :::;t;b2;t;t;t;b1g f� � � ;bk; :::;b2;t;t;b1;tg

sync

c) An add-synchronization process

d) A relax-synchronization process

s0

a) An align-synchronization process

fan; :::;a2;t;t;a1;tg

deSync

fan; :::;a2;a1g

fbn; :::;b2;b1gfbn; :::;b2;t;t;b1;tg

Figure 1.4. Processes for synchronization

read(ch3;ch4)

ch5

ch4

ch3

read adapter write adapter

write rdy

Sumsyncreader writer

Figure 1.5. Read/Write adapters for a process with strong synchronization

deSync

read adapter write adapter

write rdy

Filter

Bass/Treble ch3=ch4ch0

read(ch0;ch1=ch2)

ch1=ch2

reader addSync writersync

Figure 1.6. Read/Write adapters for a process with strict synchronization

Re�ning Synchronous Communication onto NoC Best-e�ort Services 11

We can now use these synchronizers in connection with thereader and
writer processes to wrap the original processes to interface with the service
channels and maintain the synchronization consistency from the specification
model to the refined model. For instance, as shown in Figure 1.5, we use async
process and a pair ofreader/writer processes to wrap thesumprocess in the
equalizer to maintain its strong synchronization. We use the three processes,
sync, deSyncandaddSync, and a pair ofreader/writer processes to wrap the
Bass/Treble Filterprocess (Fig. 1.2) to maintain their strict synchronization.

The refinement of processes with a nonstrict synchronization should be in-
dividually investigated according to their firing rules.

5.4 Feedback loops

In the specification, feedback loops are resolved by using initial events. If
the feedback signals pass through a service channel, the delays are nondeter-
ministic. If following the initial event approach in the refinement procedure,
we encounter a problem since we are not certain how many initial events are
required to resolve the deadlock. Consider theBass/Treble Filter, if the to-
kens ofs1/s2 are not available, it can not fire. This implies it may not be able
to process enough audio samples in time, leading to violate the system’s per-
formance constraint. However, if the amplification level signals,s1 (Bass) and
s2 (Treble), are delayed and thus not available, the amplifiers should continue
functioning by, for example, using the previous amplification level or simply
using a constant level like 1. In this case, the effect of pressing buttons may
be delayed several cycles. This is tolerable since the human sensing of the
changes in the audio volume is not instantaneous.

By this observation, we can in factrelax the strict synchronization of the
processesBass/Treble Filter, using a relax-synchronization processrelax il-
lustrated in Fig. 1.4d. If the input event is a token, it outputs the token; oth-
erwise, a tokenx0 is emitted. The exact value ofx0 is application dependent.
Relaxing synchronization is a design decision leading to behavior discrepancy
between the specification and the refined model. Care must be taken to validate
the resulting system.

6. Communication Mapping

The inputs to this task are the refined model as well as a process-to-resource
allocation scheme; the output is a communication implementation on Semla.

6.1 Channel mapping

With a resource allocation scheme, all processes are allocated to resources
in a one-to-one manner. Note that this is not a limitation but due to the as-
sumption on the clustering and resources (refer to Section 1). With such a

12

clustering, inter-process signals, which represent inter-resource communica-
tions, are mapped to service channels. Since the processes may be hierarchi-
cal, we need to flatten the hierarchy to the level that each signal mapped to
a service channel can be uniquely identified with a pair of a producer and a
consumer process withfiner granularity. For simplicity, we do not consider
mapping multiple service channels to one implementation channel. Mapping
channels is thus straightforward. Each pair of processes communicating via
a service channel in the refined model results in its dedicated unicast imple-
mentation channel, which is mapped to the open channel primitiveopen(). For
example, with the producer-consumer case, a BE channel setup is fulfilled by
a single line of code:int ch[1] = open(P;Q;BE SERVICE;NULL).

6.2 Communication process mapping

After the process refinement, a refined process consists of the original com-
putational process, the writer and reader, and perhaps the synchronizer(s) to
satisfy their synchronization properties. Our refinement keeps the original
processes intact. Therefore, the tasks of communication process mapping are
to implement the writer/reader, and the synchronizers such assync, deSync,
addSyncandrelax, and to coordinate the writing and reading operations.

In SystemC, processes are implemented as modules. The reader/writer may
be implemented as separate modules or in the same modules as processes. We
implement a process and its adapter(s) in a single module. For implementation,
execution control in the module must be considered. Suppose the module has
a single thread of control, we need to find a Periodic Admissible Sequential
Sequence (PASS) for process executions [10]. For the process in Fig. 1.6,
a PASS could be PASS=freader, sync, desync, compute, addsync, writerg.
Besides, a control signalwrite rdy must be asserted by thewriter to thereader
to enable reading the channel(s) for the next-round PASS execution, as shown
in Fig. 1.6. This leads to a local feedback loop, and we adopt the initial event
approach to deal with it. In this case,write rdy is initially asserted. Using the
communication primitives defined in Section 3.2, the SystemC module for Fig.
1.6 is sketched as follows, with each component explained in commentary:

p r o c e s s c l a s s : : P r o c e s s ()f
/ / i n i t i a l l y w r i t e r d y =1;
/ / r e a d c h 0 r d y =0 ; r e a d c h 1 r d y =0
/ / s y n c r d y =0 ; compute done =0;
i f (w r i t e r d y ==1)f
/ / (1) r eader : nonb lock ing read ch1 and ch2

i f (r e a d c h 0 r d y ==0)
i f ((r ead (ch [0] ,& r msg1))==t rue)

r e a d c h 0 r d y =1;
i f (r e a d c h 1 r d y ==0)

i f ((r ead (ch [1] ,& r msg2))==t rue)
r e a d c h 1 r d y =1;

Re�ning Synchronous Communication onto NoC Best-e�ort Services 13

/ / (2) sync : s y n c h r o n i z e t h e two e v e n t s
i f (r e a d c h 0 r d y ==1 && r e a d c h 1 r d y ==1)

sync rdy =1;
e l s e sync rdy =0;
/ / (3) deSync : d e s y n c h r o n i z a t i o n by guard
i f (s ync rdy ==1 && compute done ==0)f

/ / p r o c e s s compu ta t i on
/ / r e t u r n w msg and s e t computedone to 1
w msg=compute (rmsg1 , r msg2) ;
w r i t e r d y = 0 ; computedone =1;g

g
/ / (4) addSync : f i l l s y n c h r o n i z a t i o n

i f (s ync rdy ==1 && compute done ==1)f
/ / (5) w r i t e r : nonb lock ing w r i t e ch3

i f (w r i t e r d y ==0)
i f (w r i t e (ch [3] , w msg)==t rue)f

w r i t e r d y =1;
sync rdy = 0 ; computedone =0;
r e a d c h 0 r d y = 0 ; r e a d c h 1 r d y =0;gg

g

In the implementation domain, whether to emit and passt either as a special
message or using one bit to indicatepresenceandabsencevia a service channel
can be a design decision. To preserve the semantics,t must be transported.
However, this incurs too much overhead on computation and communication,
and may be meaningless since its value is useless. Thereforet is usually
neglected. Only in cases where the timing information carried byt is used
by other processes, it must be emitted and passed. In the equalizer case,t is
neglected since its timing information is not used by any of the four processes.

R9

TFBF

switch

R1 R2 R3 R4

R8R7R6R5

R13 R14 R15 R16

R12R11R10

LC

RNI

RNI

RNI RNI RNIRNI

RNI RNI RNI

RNI

RNIRNI

RNIRNI

RNIRNI Sum

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

(a) Resource allocation

Avg. Delay Throughput
(%) (cycles)

9:06 15:00 0:0667

16:96 16:53 0:0605

25:16 18:52 0:0540

Load

29:97 20:24 0:0494

35:36 22:59 0:0443

43:28 35:14 0:0285

(samples/cycle)

(b) Performance

Figure 1.7. The equalizer mapped on a NoC

We have implemented the equalizer in Semla. The purpose is to validate the
concepts of our refinement approach. Fig. 1.7a illustrates the mapped equal-
izer in a 4x4 mesh NoC. All the five inter-resource signalss1;s2; � � � ;s5 (Fig.

14

1.2) use the BE service. The resources and the network run with the same
speed. The switches operate synchronously with the switching per hop taking
one cycle. The message streams ons3 and s4 are injected into the network
conservatively so that a new audio sample will not be processed by the filters
until the previous sample has been handled by theSumprocess. This implies
that the audio samples are not processed in a pipeline fashion in the network.
In addition, we inject background traffic with uniformly distributed random
destinations in the network. The motivation is to load the network with rea-
sonable amount of traffic since the equalizer example can only make use of a
small fraction of the network capacity. Fig. 1.7b shows the equalizer perfor-
mance, where the network load is the average percentage of active links per
cycle. The process computations are function calls and complete instantly. We
observe the average delay that is the time (in cycles) to process one sample.
Since the audio processing is not pipelined, the throughput (samples/cycle) is
simply the inverse of the average delay. In Fig. 1.7b, the first row shows the
case where there is no background traffic. As expected, when the network is in-
creasingly loaded, the average delay is increased and the throughput decreased.
The average delay can be seen as the time to respond to a button press or to
activate bass control. We noted that the audio output sequences are different
from those observed from the specification due to relaxing the synchronization
for the feedback loops. We conducted other experiments in which we removed
the feedback loops, and could validate that the output sequences agree with
each other in all traffic setting cases.

7. Conclusions and Future Work

Communication refinement is a crucial step in a NoC design flow. We
have presented a refinement approach that allows us to map a perfectly syn-
chronous communication model onto the NoC best-effort service accessible
through communication primitives. Particularly we classify the synchroniza-
tion properties of processes and describe methods to achieve synchronization
consistency during the refinement upon the violation of the perfect synchrony
hypothesis. For feedback loops, we relax the synchronization with the toler-
ance of system requirements. In this paper we use Nostrum as target, but with
few adjustments, this approach is also applicable for other NoC platforms.

In future work, we plan to develop formalism for synchronization consis-
tency and realize automatically analyzing the synchronization properties of
processes. During refinement, we take either automatic analysis that yields
correct synchronization and system behavior, or manual analysis with design
decisions on the synchronization refinement combined with a systematic veri-
fication of the resulting implementation. For the refinement of feedback loops,
we intend to use the Nostrum GB service to reach a systematic solution.

Re�ning Synchronous Communication onto NoC Best-e�ort Services 15

References

[1] A. Benveniste, B. Caillaud, and P. L. Guernic. Compositionality in
dataflow synchronous languages: specification and distributed code gen-
eration.Information and Computation, 163:125–171, 2000.

[2] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Het-
erogeneous reactive systems modeling and correct-by-construction deploy-
ment. InProceedings of the Third International Conference on Embedded
Software, 2003.

[3] J.-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, L. Pasquier, E. de Kock,
and W. Smits. COSY communication IP’s. InProceedings of the 37th
Design Automation Conference, Los Angeles, California, June 2000.

[4] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. The-
ory of latency-insensitive design.IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(9):1059–1076, Sept. 2001.

[5] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. IPSIM:
SystemC 3.0 enhancements for communication refinement. InProceedings
of Design Automation and Test in Europe, 2003.

[6] R. Dömer, D. D. Gajski, and A. Gerstlauer. SpecC methodology for high-
level modeling. InProceedings of the Ninth IEEE/DATC Electronic Design
Processes Workshop, April 2002.

[7] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for system de-
sign. Journal of Circuits, Systems and Computers, 12(3):261–303, Decem-
ber 2003.

[8] E. A. Lee and T. M. Parks. Dataflow process networks.Proceedings of the
IEEE, 1995.

[9] C. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P. Hardee. Stan-
dards for system-level design: practical reality or solution in search of a
question? InProceedings of Design Automation and Test in Europe, 2000.

[10] Z. Lu, I. Sander, and A. Jantsch. A case study of hardware and software
synthesis in ForSyDe. InProceedings of the 15th International Symposium
on System Synthesis, October 2002.

[11] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guaranteed bandwidth
using looped containers in temporally disjoint networks within the Nostrum
network on chip. InProceedings of the Design Automation and Test Europe
Conference (DATE), 2004.

[12] E. Nilsson, M. Millberg, J.̈Oberg, and A. Jantsch. Load distribution with
the proximity congestion awareness in a network on chip. InProceedings of
the Design Automation and Test Europe (DATE), pages 1126–1127, 2003.

[13] R. Thid, M. Millberg, and A. Jantsch. Evaluating NoC communication
backbones with simulation. InProceedings of the IEEE NorChip Confer-
ence, 2003.

