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Abstract—In condition monitoring, early detection of
process signal drifts indicating, e.g., equipment degra-
dation is crucial. exponentially weighted moving average
(EWMA), cumulative sum (CUSUM), and discrete average
block (DAB)-based drift detectors are statistical and com-
monly used methods. Each has benefits and limitations,
suited to different data types. However, EWMA and CUSUM
are fixed mean drift detectors, limiting their applicability
and adaptability. This article explores adding dynamic be-
havior to drift detection methods. We use a wide range of
synthetic data based on a real-world manufacturing pro-
cess. The investigated parameter space includes standard
deviation, drift rates, and outliers. Besides, each algorithm
has some tuning parameters that define its behavior. Two
metrics validate experiments against labeled data. Based
on our observations, EWMA performs better for drift de-
tection on average, but CUSUM is superior in detecting
very small drifts. Furthermore, we derive guidelines for the
choice and application of drift detection in practice.

Index Terms—Algorithm tuning and evaluation, condition
monitoring, cumulative sum (CUSUM), drift detection, expo-
nentially weighted moving average (EWMA).

I. INTRODUCTION

THE fourth industrial revolution is in full swing, and the
digital transformation of industrial manufacturing needs

to address the digitization of production, automation, and au-
tomated data exchange. In order to address those challenges,
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manufacturing systems can use advanced condition monitoring
methods based on modern technologies, such as industrial In-
ternet of Things, edge and cloud computing, or data analytics.

Modern machines usually integrate complex monitoring sys-
tems. However, many conventional types of machinery are not
equipped with such facilities. For these types of machines,
model-free machine health and condition monitoring systems
are interesting as a real time, data-driven approach that enables
predictive maintenance (PM). Although an integrated monitor-
ing system is generally favorable because it has direct access to
the process variables, it is usually associated with significantly
increased engineering efforts and costs. The apparent advantage
of a model-free machine health monitoring system is that no
deep knowledge of the monitored system is required. A generic
monitoring system detects system states and classifies a system’s
health condition based on observed parameters. Besides state
detection and malfunction discovery, an essential constituent
of process monitoring is the detection of drifts in the process
signals [1].

In general, drift means that statistical properties of the ob-
served data are changing slowly over time. This could be the
mean value, the standard deviation, parameters of underlying
distributions, characteristic frequencies, to name but a few. In the
context of this article, drift specifically refers to a gradual change
in the mean value or standard deviation of numerical input data
obtained from an industrial process. A typical example is the
gradual wear-out of a motor that leads to a slow speed deviation
from its nominal value.

In a wider sense, condition monitoring and the associated
methods are not only applicable to machines and industrial
equipment, but also to monitoring the quality of a process and
the goods produced [2], in the form of in-process monitoring
or classical end-of-line tests, which enable real-time decision
support. The requirements of smart manufacturing, automated
process monitoring, and PM are motivations to find more general
approaches to process and monitor a wide range of input data.
At any rate, a focus point of such monitoring approaches is to
detect anomalies and drifts.

There are multiple ways to implement drift detection, such as
discrete average block (DAB)-based methods [1]. Two classical
approaches with more than half a century of history are the
cumulative sum (CUSUM) and exponentially weighted moving
average (EWMA) algorithms [3]. Simplicity of implementation
while maintaining acceptable results makes these two well-
established algorithms still popular and in active use. EWMA
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has been found to perform better for small drift rates [4], which
is interesting especially in the context of condition monitoring
and the detection of stealthy process degradation. Similarly,
CUSUM is effective in detecting small drifts. Moreover, both
approaches are independent of window size, which is also a
desired property.

The essential deficiency of the original algorithms is that they
have no provisions for dynamically updating the mean value
or so-called “target value.” The primary assumption is that
the nominal mean and standard deviation values are constant.
EWMA was later extended to cases where the mean or standard
deviation may not be constant. However, this still assumes that
each random variable follows a normal distribution, which is a
serious limitation that is not satisfied in many applications [5].

The purpose of this article is to revisit the classical drift
detectors EWMA and CUSUM and enhance their drift detection
capabilities. Specifically, we investigate ways to make them
adaptive to changing mean values of the data series without
imposing assumptions on statistical properties. This is also an
essential prerequisite for being application-agnostic and model-
free. Therefore, the investigated methods are purely data driven
and work solely on measured numerical data.

Our experiment dataset covers a wide range of drifts, from al-
most undetectable to clearly detectable drifts alongside varying
standard deviations and different levels of outliers.

The rest of this article is organized as follows. After a short
review of the existing literature in Section II, selected approaches
are explained in Section III. Experiment setups and obtained
results are presented in Sections IV and V, and we summarize
the applied steps and generalize them in a practicable guidelines
in Section VI. Finally, Section VII concludes this article.

II. BACKGROUND AND RELATED WORK

In the literature, many proposed drift detection methods are
based on the statistical properties of the input streams [3]. Barros
et al.[6] presented a drift detector comparison for many well-
known methods. Eight different drift detectors with different
artificial datasets, containing abrupt and gradual concept drift,
with several drift rates and in the presence or absence of noise
compared by Gonçalves Jr. et al. [7]. Jaramillo-Valbuena et al.
[8] compared four different drift detection methods to determine
their robustness for detecting drift from data streams in the
presence of noise.

Yi et al. [9] suggested an adaptive CUSUM chart based on
a generalized likelihood ratio statistic and estimation of a shift
size. A detailed explanation and a “Head-to-Head” comparison
of CUSUM and EWMA is presented by Hawkins et al. [10].
Götzinger et al. [1] developed the confidence-based context-
aware condition monitoring (CCAM), a generic monitoring sys-
tem that provides state detection and drift detection. Zwetsloot
and Woodall [2] have reviewed the literature on multivariate
time-between-events monitoring. They explained and used a
version of the multivariate EWMA proposed by Xie et al. [11]
to compare the results.

Knoth and Schmid [12] pointed out that in the case of auto-
correlation in data, which is widespread in industrial datasets,
neglecting the dependencies and applying standard control

charts can cause more false signals and long delays in detection.
Therefore, the classical control charts cannot be applied directly,
and it is necessary to use the time-series structure for construct-
ing new control charts. They concluded that no chart emerges
as consistently superior for independent variables overall.

The previously mentioned works are based on statistical anal-
yses. Clearly, other nonstatistical approaches have their own pro
and cons. Zenisek et al. [13] presented a concept drift detection
comparison based on machine learning (ML) methods for PM.
Lu et al. [14] provided a high-quality instructive review of the
drift methodologies, techniques, and learning under concept
drift. Kollmann et al. [15] investigated different combinations
of ML methods, preprocessing, and varying degrees of drifts.

Noor-ul-Amin et al. [16] introduced an adaptive EWMA
algorithm in Bayesian theory and provided a list of related
research for different combinations of EWMA and CUSUM
with complementary approaches to optimize them in the case
of both small and large shifts at the same time. Sparks et al. [17]
presented a Poisson adaptive EWMA by dynamically changing a
main configuration parameter (λ). Kollmann et al. [15] exempli-
fied how to take advantage of CUSUM and EWMA to investigate
the performance of different regression-based ML approaches
on realistic industrial measurement in the PM domain. To
exemplify the application of the mentioned drift detectors in
their intended setup, Wendt et al. [18] presented a cognition-
inspired architecture that utilizes CUSUM and EWMA as drift
detectors.

Gan [19] explained and examined one-sided and two-sided
EWMA charts and compares the results with CUSUM and
Shewhart charts. To detect an increase in the mean value,
Hu et al. [4] used an upper Poisson EWMA chart to reset the
EWMA statistic. Also, they compare four different versions of
EWMA and indicate that for different drift rates, no candidate
can uniformly perform better than the others.

III. DRIFT DETECTION ALGORITHMS

A. Drift Detection in Condition Monitoring

An application-agnostic condition monitoring system does
not require knowledge about the system under observation
(SuO), such as models. It treats the observed system as a black
box and tries to determine whether it works correctly or mal-
functions. As an example, Fig. 1 shows the block diagram of
CCAM listening to the inputs and outputs of a SuO in order
to make conclusions about its condition.1 For drift detection,
CCAM calculates and stores DABs. In this context, a DAB is the
average value of a certain number of consecutive signal samples.
Such DABs are shown in red in Fig. 2. A drift in the signal can be
seen in the changing average over a set of DABs. Using DABs
instead of just single signal samples for this comparison has two
advantages: 1) the DABs effectively act as a low-pass filter on
the input signal in order to reduce noise and outliers, and 2) it can
save memory and computation time because fewer comparisons
are performed.

1An open-source implementation is available at https://phabricator.ict.tuwien.
ac.at/source/SoC_Rosa_repo.git
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Fig. 1. Block diagram of the working principle of CCAM.

Fig. 2. Finding a drift in a signal by means of stored DABs.

Although the general principle of this rather simple filtering
method proved to work [1], it has limitations in the case of more
complex data (very noisy or prolonged drifts), which are the
focus of this article.

B. Exponentially Weighted Moving Average

Roberts introduced EWMA in [3]. It is the right choice for
detecting small drifts, is easy to set up and operate, and a two-
sided version is defined as

Zi = λXi + (1 − λ)Zi−1 (1)

where Zi is the calculated value for data sample Xi. The last
sample has a weight of λ, and the previous samples have a weight
of 1 − λ. In this definition, λ is a constant (0 < λ ≤ 1) and an
essential parameter for configuring the system. Z0 initializes
with the mean value of the input signal. For each incoming
sample Xi, Zi is calculated, and any boundary violation means
drift. These boundaries are referred to as upper control limit
(UCL) and lower control limit (LCL), which in steady state of
classic EWMA, are defined as

UCL = μ0 + Lσ

√
λ

(2 − λ)

LCL = μ0 − Lσ

√
λ

(2 − λ)
(2)

where σ represents the standard deviation of input data, a pri-
mary assumption being that it is constant, andL is a fixed config-
uration parameter. On the other hand, the value of

√
(λ/(2 − λ)

is constant and as mentioned, σ is also constant. Therefore,
we decoupled the definition of UCL and LCL from λ, which
simplifies the configuration.

By assuming

Δ = Lσ
√

λ/(2 − λ) (3)

the boundaries are updated to

UCL = μ0 +Δ and LCL = μ0 −Δ. (4)

Now, Δ is the configurable parameter that defines the distance
of limits from the mean value. This change slightly increased
the average score in our experiments.

One explanation is that when a signal’s mean value changes,
the signal’s standard deviation at that window frame also slightly
increases. It means an undesired widening of the boundaries
at drift time. The modification explained prevents changing
the boundaries, which increases the score, as explained in
Section IV-D2.

Another aspect of the decoupling parameters is that after fin-
ishing an experiment, we can effortlessly investigate the impact
of changing LCL and UCL without rerunning the experiment.
In fact, after running the experiment, we can determine which
Δ maximizes the score. It is a remarkable help for training and
(auto-)tuning of the algorithm.

A well-known issue of EWMA is resistance and delay in de-
tecting drifts on the opposite side. Woodall et al. [20] recommend
always using a Shewhart chart in conjunction with an EWMA as
one way to counteract the signal resistance. In addition, during
the drift phase, Zi is increasing. When the drift is over and
another drift in the opposite direction starts, Zi is far from the
center line. Thus, it will take time to return to the center and
reach the other limit. Our solution to overcome this issue is to
limit Zi with the help of δ as follows:

if Zi > UCL + δ, set Zi = UCL + δ

if Zi < LCL − δ, set Zi = LCL − δ. (5)

The impacts of these correctors in long and steady drift phases
are more recognizable. This concept is similar to the boundary
limitation on one-sided EWMA. Gan [19] recommended using
limits on one-sided EWMA charts to ensure that the EWMA
stays within a certain distance of the chart limit regardless of the
situation.

C. Cumulative Sum

CUSUM was introduced by E. S. Page in 1954 in the statistical
quality control concept [3]. CUSUM aggregates the deviations
from the mean value in the sequence of input data. As long as the
cumulated value is in the predefined range, the system is stable.
The tabular or algorithmic CUSUM works by accumulating
deviations from the mean value in two separate variables, C+
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Fig. 3. Scatterplot of a short section of real-world data with a magnified
drift region.

and C−, which are also called one-sided upper and one-sided
lower CUSUM, respectively. LetXi be the ith input sample, and
μ0 be the mean value of the input data, then the one-sided upper
and one-sided lower CUSUM are defined as

C+
i = max[0, Xi − (μ0 +K) + C+

i−1]

C−
i = max[0, (μ0 −K)−Xi + C−

i−1]

where C+
0 = C−

0 = 0. (6)

In these equations, K is a configuration parameter also called
the reference or slack value. Based on (6), deviations smaller
than K are not accumulated. C+ and C− are updated for each
new input data. If one of them is bigger than H , the signal drifts.
The H parameter is the decision interval and defines the stable
boundary around the mean value.

CUSUM algorithm shows a delay when detection after drift,
especially for a drift following another drift of the opposite
direction. To reduce this well-known delay, we limited the
increment of C+ and C− and considered a margin of 10% of
the H value.

By introducing a new parameter named K̂, we control the
impact of incoming samples by limiting them to the K̂. In
other words, deviations from the mean value smaller than K are
ignored, and deviations bigger than K̂ are truncated to K̂. This
concept can be implemented either as algorithm modification
or separately as a preprocessing task (see the truncation span in
Section IV-B1).

Another modification is that after any drift, the value of the
one-sided upper/lower parameter for the opposite direction is
reset to 0.5 times H . This modification helps the algorithm to
be more agile in detecting drift in the opposite direction.

IV. EXPERIMENTS

A. Experimental Data

Over six months of real-world measurements taken from a
conrod production line at an automotive factory are available
for our experiments. Fig. 3 shows a short section of it. There
are several noticeable drifts in the data, with various directions
and amplitudes that, in one case, lead to a region of increased
violations of the quality tolerance band. The respective section
of the scatter plot was magnified to show this drift in more

TABLE I
DATASET PARAMETERS

Fig. 4. Input data (Green: Stable, Red: Drift up, Blue: Drift down),
statistical properties obtained from real-word data, e.g., Fig. 3. EWMA
(UCL, LCL, and Zi, for better visual display, shifted by −LCL) and
detected states.

detail. The additional line drawn within the inset represents the
running mean of the region, calculated with a window size of
128 steps. The delta of this moving mean is 1.58 ×−10−5 on
average and 7.03 × 10−5 maximum. Several sections, similar to
the depicted, have been analyzed and provide the base for the
sigma and delta parameterization of the synthetic data. Analysis
of the whole dataset has shown that the moving sigma varies
between 1.7 × 10−3 and 2.0 × 10−3, depending on the actual
window size.

1) Parameter Space: We extracted statistical properties as
guidelines for defining the parameter space (see Table I). With
this, we generated synthetic data with a uniform shape that
reflected the significant statistical properties of the real mea-
surements. All experiments in this dataset commenced with a
stable phase, followed by a drift upward. After another stable
phase, there was a drift downward, and finally, another stable
phase. This approach provided us with extensive experimental
data that was correctly labeled with the direction of drift for
validation (see Section V). Fig. 4 illustrates the general form of
the input signals.

The data generation is based on the parameters given in Table I
and starts with a basic, clean signal. The signal models the drifts
by slowly changing the mean up or down, according to delta.
Then, we generate two different sets of noise, one using the
standard deviation given in the parameter table, and a second,
broader distribution where the standard deviation is multiplied
by the outlier severity parameter. Finally, we apply the generated
noise to the clean signal by adding the noise value from the
smaller or larger distribution, with the probability of choosing
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the larger distribution given by the outlier chance parameter, to
the clean signal.

2) Data Segmentation: Regarding the parameter space, pre-
sented in Table I, there are ten different levels for the standard
deviations and drift rates, referred to as SD0.01 to SD0.10 and
DR2.0 to DR20.0. The drift rate defines how fast or slow the
mean value of input data changes over time. There are five levels
for the outliers and five instances for each element. The dataset
contains 2500 elements, and each element contains 2500 data
samples. We use the experiment term to refer to a particular
element with an algorithm configuration. Here, a subset of the
dataset is called a data segment. The dataset is initially divided
into 100 data segments according to standard deviation and drift
rate. For instance, data segment (SD0.02, DR4.0) means all data
elements with SD0.02 and DR4.0 properties, which means 25
experiments.

B. Data Processing

In this section, we initially describe a method for preprocess-
ing, followed by two methods for postprocessing.

1) Truncation Span: In both algorithms, CUSUM and
EWMA, the distance of the incoming sample from the mean
value is measured to indicate the signal status. The outliers,
by their nature, are mostly far from the mean. In fact, undesired
outliers have more impact on the results. To minimize the impact
of outliers, we define a truncation span parameter SPN used for
each incoming data point, Xi, as

if Xi > μ0 + SPN set Xi = μ0 + SPN

if Xi < μ0 − SPN set Xi = μ0 − SPN (7)

where μ0 represents the mean value of input data. We can either
use this concept as data prefiltering or modify the algorithms.
The proposed K̂ in CUSUM, explained in Section III-C, is an
algorithm modification to implement truncation span.

Another simple and effective method is the moving average.
In addition, well-known generalizations of the moving average
are also practical. Locally estimated scatterplot smoothing or the
so-called Savitzky–Golay filter and locally weighted scatterplot
smoothing are common approaches [21]. In our implementation,
the preprocessing is separated from the main logic. This sepa-
ration and modularity allow using other suitable preprocessing
and noise-filtering approaches that match the input data.

2) Gray Margin (GM): Algorithms largely compare calcu-
lated values (e.g., Zi or C+/C−) with a reference value or
threshold to determine the signal status. If the comparing value
shows some fluctuations, the result bounces between different
levels. In the validity assessment of the experiments, frequent
changes in detections are not allowed. By defining a boundary
around the threshold, the algorithm switches the status when
the comparing value is bigger than the threshold plus the GM.
Similarly, the status changes when the comparing value is less
than the threshold minus the GM. For the values between, the
algorithm sticks to the last detection.

3) Switching Inertia (INR): In the INR method, the algorithm
switches to a new state if, at least for the predefined value of
the INR parameter, the algorithm has detected only the new

TABLE II
SAMPLE-BASED EVALUATION WEIGHTS

condition. In practice, it ignores the detection sequences that
persist less than INR samples.

C. Experimental Procedure

Each dataset is saved in a separate file with its key attributes,
such as drift rate and standard deviation, decoded in the filename.
A central application creates instances of the target algorithms
with the desired configurations and sequentially inserts the input
data into the algorithms. The output files the algorithms create
for each experiment contain the algorithm’s classification results
for each data point, the input data, and the configuration pa-
rameters. Another script evaluates these results and determines
whether the algorithm’s classification results are right or wrong.

D. Evaluation Metrics

For performance evaluation, the main objective of the algo-
rithms is to confidently detect the status of the input signal
without switching back and forth between possible statuses.
The second objective is the speed of the detection. The status
of the input stream data is defined as stable when the mean
value is not changing. On the other hand, the signal shows a
drift downward or upward when its mean value decreases or
increases, respectively.

1) Phase-Based Metric: Here, a phase is defined as a subset
of sequential input data in which the signal’s status does not
change. The length of a phase is the number of data samples with
the same status. A delay in detection (DD) refers to the number of
samples before the first correctly detected status. This parameter
corresponds to the average run length, and here, it refers to the
exact value of one observation, not an average value. In order to
avoid confusion the DD term is used here. An algorithm detects
a phase correctly if it detects, after the DD, all samples of that
phase correctly.

Fig. 4 presents an example in the top part containing five color-
coded phases: stable, drift up, stable, drift down, and stable. The
red and blue parts of the lines in the middle of the lower section
represent the DD for the drift up and drift down phases.

2) Sample-Based Metric: Contrary to the phase-based met-
ric, which looks for periods of stable signal status, the sample-
based metric is focused on the individual data points. In this
metric, for each data sample, depending on the detected status
and input data labels, a predefined score is considered, the sum
of all scores per sample shows the sample-based score.

Table II depicts the selected weights for a sample-based
evaluation. With this definition, the maximum possible score
is equal to the number of samples, and it is convenient to use it
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TABLE III
TOP: PERCENTAGE OF VALID EXPERIMENTS (PHASE-BASED) BOTTOM:
AVERAGE OF THE SAMPLE-BASED METRIC (DATA SEGMENT: SD0.01,

DR2.0)

relatively, which is equal to the aggregated score divided by the
number of samples.

In the sample-based metric, the detection order does not
matter, and shuffling the results inside a phase does not affect
the score. Most systems are sensitive to the frequent switching
between possible states, so the sample-based metric alone is not
a good choice and complementary metrics are required.

3) Experimenting and Validity Test: Correctly detecting all
drifts in all experiments of a particular data segment is a pre-
requisite. Even missing one drift in one experiment makes a
disqualified configuration. After passing this strict filter, maxi-
mizing the sample-based score is the secondary goal. Regarding
the slightest drift, finding an acceptable configuration is chal-
lenging. However, by increasing the drift rate, the total number of
adequate configurations increases, and the focus shifts to finding
the best sample-based score.

The upper section of Table III depicts the percentage of valid
experiments in the selected segment according to the EWMA
algorithm. Only λ and L are varying, and other parameters are
fixed (WND:50, INR:10, SPN:0.01, GM: 0.0008). The lower
section of Table III shows the average values of the sample-based
metric’s valdiation. Of the five combinations that passed the
validity test, marked green, the best sample-based score is 0.71.

V. RESULTS

A. CCAM Results

As mentioned, CCAM is a condition monitoring system
designed for autonomous state detection and does not utilize
pre and postprocessors for drift detection. According to the
experimenting dataset, especially for the small drifts (DR2.0 and
DR4.0), it often fails to pass the validity tests. It requires smaller
data segments, which contrasts with the generalization of drift
detection to cover relatively big data segments. Therefore, we
conclude that the CCAM’s drift detection is unsuitable for the
dataset described above.

TABLE IV
CUSUM, MAX SAMPLE-BASED SCORE, AND BEST MATCHING SETTINGS

B. CUSUM Results

Finding a CUSUM configuration that detects the slightest drift
correctly is challenging. Fig. 7 depicts that the average sample-
based score for DR2.0 is much lower than other drift rates. To
increase the score, we can use smaller data segments, which
reduces the algorithm’s generalization.

The sample-based score slightly reduces for higher drift rates
(DR8.0 to DR16.0). One explanation is that increasing the drift
rate means the comparison references (C+ and C−) need more
time to hit the threshold value. Therefore, the sample-based score
is reduced. It is a good sign for detecting the change point of
configuration and is useful in autoparametrization.

Regarding the smallest drift, although it is difficult to find
a suitable configuration for CUSUM, the sample-based score is
slightly higher compared to EWMA. Data segments with DR2.0
properties are the only data segments for which CUSUM has an
advantage in sample-based scores. We can conclude that the
DR2.0 is the minor detectable drift with the assumed validity
test.

Table IV shows the combinations of parameters for multiple
data segments (SD0.05, WND=50, INR=10), grouped by drift
rate, which maximize the sample-based score. These experi-
ments have passed the validity test. The parameters shown on
the left side represent the best average sample-based scores.
The right side of the table represents alternative combinations
of parameters from the same data segment, which are closer to
the neighbor’s configurations and not necessarily the maximum
value of the sample-based score but very close to it, which is
demonstrated in Fig. 5. In this process, the average sample-based
score was reduced only from 0.595 to 0.587, which is less than
2%.

The averages of sample-based scores for each data segment
over standard deviation are almost the same (between 0.581
and 0.605), which means that the varying standard deviation
is covered by CUSUM nicely.

C. EWMA Results

The drift rate defines how the mean value of input data changes
over time. Experiments with the DR2.0 attribute contain the
smallest and most challenging drifts. Only a few configurations
can satisfy the requirements, and the sample-based score is rela-
tively low. In experiments with data segment (SD0.01, DR2.0),
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TABLE V
EWMA, AVERAGE SAMPLE-BASED SCORE (SD0.04, DR2.0)

TABLE VI
EWMA, VALIDITY TEST (SD0.04, DR2.0)

Fig. 5. CUSUM: Unifying settings (ordinate labeling is valid for both
plots).

only three of 1080 combinations have passed the validity test,
which means very limited flexibility for configuration.

In other data segments with different standard deviations but
with the same drift rate (DR2.0), the same results are observable,
and λ = 0.005 or λ = 0.01 is a strong constraint.

According to the sample-based metric, Table V depicts that
by increasing λ and L, EWMA reacts faster to the changes,
and the sample-based score increases in a limited range. The
undesired side effect is increasing false detection and failing in
the experiment’s validity test. Table VI shows that only a few
marked green combinations have passed the validity test.

Also, for the smallest drifts, finding an acceptable configu-
ration is challenging. Still, for relatively bigger drifts, there are
many options, and maximizing the sample-based score matters,
and the possibility for merging the neighbor data segments
increases.

Table VII shows selected combinations of parameters for
multiple data segments (SD0.04), grouped by drift rate. These
experiments have passed the validity test (100% correct phase

TABLE VII
EWMA, MAX SAMPLE-BASED SCORE, AND BEST MATCHING SETTINGS

Fig. 6. EWMA: Unifying settings (ordinate labeling is valid for both
plots).

detection in all experiments). The parameters shown on the left
side represent the best average sample-based scores. The right
side of the table represents another combination of parameters
from the same data segment, which have passed the validity
test and are most similar to the neighbor’s configurations. Fig. 6
shows that in the new selections, parameters are nicely aligned
and primarily unified. In this process, the average sample-based
score was only 2% reduced. This figure also gives an idea of
how a new data segmentation looks ([DR2.0], [DR4.0–DR6.0],
[DR8.0 to DR20.0]).
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Fig. 7. EWMA versus CUSUM: Sample-based score over drift rate.

D. Comparison Result

The comparison of the classic version of EWMA and
CUSUM, defined by Montgomery [3], with the modified version
explained in Sections III-B and III-C, shows that for CUSUM
in most regions, the modified version has better sample-based
scores. However, for the EWMA, the sample-based scores are
very close, and the superiority depends on the settings. For the
segments with small drifts, it is impossible to pass the validity
tests with classic versions of algorithms.

Fig. 7 depicts the sample-based score of both EWMA and
CUSUM for the selected configurations that have passed the
validity test. CUSUM has a better score of DR2.0, but EWMA
has an obvious advantage over the rest.

In general, if a configuration is suitable for detecting small
drifts, it can detect relatively bigger drifts, but slowly, the side
effect is reducing the sample-based score.

VI. GUIDELINES FOR PRACTICAL USE

This section provides some generalized and practicable tips
for setting up a new experiment.

1) First of all, be aware of the input data, examine the statis-
tical properties, and control the validity of assumptions.

2) Define the preprocessing methods: It often changes the
statistical properties of data and, consequently, the algo-
rithm configurations. It is a double-edged sword: it can
complicate the configuration or create an opportunity to
unify the statistical properties of the input data to benefit
from a pretuned algorithm.

3) Adjust the algorithm and select an acceptable range
of parameters: For example, Table V demonstrates that
increasing the range of L is a wise decision while the
best value is just in the border.

4) CUSUM: An estimation for K is selecting halfway
between the mean value and drift situation, and an
advisable value for H , the decision interval, is around
five times the standard deviation of input data.

5) Select or develop an appropriate strategy for periodically
updating the mean value:

6) EWMA: A typical value for λ is between 0.02 and 0.2.
Use smaller values for smaller drifts. For the standard

version, consider L between 1.5 and 3.0, but for using
the modified version, select Δ from (4) according to the
allowed fluctuation of the mean value.

7) EWMA: In order to limitZi, a practical value for δ is 10%
of Δ. When the INR parameter is big enough, selecting
smaller values for Δ is possible.

8) An appropriate value for INR depends not only on
preprocessing methods but also on the tradeoff between
early drift detection and false detection. Increasing the
INR reduces the false detections and also the sample-
based score.

9) Using suitable postprocessing techniques like the INR
parameter can improve the overall performance. Increas-
ing this parameter will reduce false detection, but will
also increase the DD.

10) Although it is possible to use GM and INR simultane-
ously, consider them as alternative solutions. The INR
method is efficient when more extensive changes in
the comparison variable exist. The GM performs better
when there are numerous and more minor fluctuations.

11) The GM only considers the distance of samples from
the reference value without considering the number of
samples. In contrast, INR counts the number of samples
over the threshold without considering the distance of
samples from the reference value.

12) To estimate the range of the GM, run the algorithm over
a stable phase. For EWMA, adjust the parameters so that
the maximum Zi is between UCL and UCL plus GM,
and the minimum Zi is between LCL and LCL minus
GM. In the same way, it is assignable for CUSUM.

13) Moreover, evaluate the outputs and fine-tune the config-
uration iteratively.

VII. CONCLUSION

The primary drift detection of CCAM effectively detects
medium and abrupt drifts. However, utilizing a modified ver-
sion of EWMA or CUSUM is better for detecting tiny drifts.
Standardizing the interfaces to the condition monitoring system
allows for orchestrating a suitable set of preprocessing meth-
ods, drift detection algorithms, and postprocessors. It provides
simplicity in configuration and experimenting.

Proposed changes in the algorithms, such as the dynamic
adaptation of the mean value, decoupling the algorithm limits
from the algorithm parameters, and using the corrector equa-
tions, make the EWMA an effective mean-adaptive algorithm
and a well-tuned EWMA can cover a wide range of input
data. Introducing K̂ and resetting the one-sided upper/lower
parameter after drift detection makes the CUSUM more agile.
Due to the versatility of the approach in drift detection, the
algorithm will be tested in the building automation environment
to determine maintenance in HVAC systems using the mix of
simulated data and on-site measurements.

The rigid validity test for detecting all the signal phases
correctly and without switching between the possible statuses,
alongside the wide range of drifts, creates a complicated sit-
uation. In many practical use cases, covering such a wide
range of drifts is not necessary. Instead quicker detection and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



ESTAJI et al.: EVALUATION OF DRIFT DETECTION ALGORITHMS IN THE CONDITION MONITORING DOMAIN 9

reaction may be of interest. Limiting the variable space re-
duces the complexity of the configuration and improves the
efficiency of the specialized profiles for dealing with a specific
task.

There are two basic approaches to processing the input data:
first, adopting the input data with the algorithms. For example,
modified data with desired properties are delivered to the well-
tuned algorithms using preprocessors and normalizing input
data. In the second approach, the algorithm is flexible to handle
a broad range of input data, which requires some adaptation
and autoparametrization. Our work mostly benefits from the
first method, and the second approach is future work. Au-
toparametrization of drift detectors prevents the exhausting and
time-consuming configuration process, and, more importantly,
it is required for adopting and processing dynamic input streams.
In this issue, autoparametrization and self-tuning of algorithms,
besides a discrete definition of EWMA/CUSUM, are planned as
future works.
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