
Optimizing the IoT Performance: A Case Study on
Pruning a Distributed CNN

Eiraj Saqib∗, Isaac Sánchez Leal∗, Irida Shallari∗, Axel Jantsch∗†, Silvia Krug ∗‡, Mattias O’Nils∗
∗ Mid Sweden University, Sundsvall, Sweden

Email: first.last@miun.se
†TU Wien, Vienna, Austria

Email: axel.jantsch@tuwien.ac.at
‡IMMS Institut für Mikroelektronik- und Mechatronik-Systeme gemeinnützige GmbH (IMMS GmbH), Ilmenau, Germany

Email: silvia.krug@imms.de

Abstract—Implementing Convolutional Neural Networks
(CNN) based computer vision algorithms in Internet of Things
(IoT) sensor nodes can be difficult due to strict computational,
memory, and latency constraints. To address these challenges,
researchers have utilized techniques such as quantization, prun-
ing, and model partitioning. Partitioning the CNN reduces the
computational burden on an individual node, but the overall
system computational load remains constant. Additionally, com-
munication energy is also incurred. To understand the effect of
partitioning and pruning on energy and latency, we conducted a
case study using a feet detection application realized with Tiny
Yolo-v3 on a 12th Gen Intel CPU with NVIDIA GeForce RTX
3090 GPU. After partitioning the CNN between the sequential
layers, we apply quantization, pruning, and compression and
study the effects on energy and latency. We analyze the extent
to which computational tasks, data, and latency can be reduced
while maintaining a high level of accuracy. After achieving this
reduction, we offloaded the remaining partitioned model to the
edge node. We found that over 90% computation reduction
and over 99% data transmission reduction are possible while
maintaining mean average precision above 95%. This results in
up to 17x energy savings and up to 5.2x performance speed-up.

Index Terms—CNN, IoT, Pruning, Quantization, Partitioning,
Tiny YOLO-v3.

I. INTRODUCTION

In recent years, the field of computer vision (CV) has expe-
rienced rapid advancements, particularly with the development
of Convolutional Neural Networks (CNNs). These state-of-the-
art algorithms have been successfully applied to various tasks,
from simple image classification challenges, such as the Im-
ageNet Large Scale Visual Recognition Challenge (ILSVRC)
[1] to more complex applications like object detection [2],
semantic segmentation [3], style transfer [4], and many others.

The simultaneous development of artificial intelligence and
the Internet of Everything (IoE) fosters innovation by in-
terconnecting people, devices, and data. To maximize this
potential, distributed execution of CNNs across IoE devices
is essential, requiring decentralized data and smarter devices
capable of interacting with their environment. Consequently,
there is a pressing need to adapt powerful CNN algorithms
for deployment on a variety of devices, ranging from sensor
nodes in industrial environments to wearable and consumer
electronics.

To address the challenge of implementing CNNs in the
Internet of Things (IoT) nodes, researchers have designed
lightweight models, such as YOLO, Tiny YOLO, MobileNet,
etc, specifically for resource-constrained devices. These mod-
els can be further optimized using various techniques, such
as quantization [5], pruning [6], and knowledge distillation
[7]. The primary objective of these techniques is to minimize
the model size and computational cost, enabling more effi-
cient deployment on IoT devices with limited resources and
processing capabilities. An alternative to fully implementing
models within a single node is model partitioning, which
distributes the computational and memory workload across
multiple entities. Although this method reduces the workload
and energy consumption for individual nodes, it does not
necessarily decrease the overall system energy consumption.
Additionally, partitioning introduces communication costs due
to the substantial inter-layer data in CNN models. Existing
techniques focus on either partitioning or shrinking the model,
but their combination remains unexplored. Merging these
approaches is expected to yield synergistic benefits, leading to
improved performance and efficiency for deep learning-based
computer vision applications.

In this paper, optimizing node energy consumption and
minimization of overall latency due to data and computation
reduction is studied. In this work, Tiny Yolo-v3 (TY3) is
used as a case study model and combines quantization and
pruning before offloading part of the partitioned CNN model
to an edge device. Drawing upon the caregiver tracking design
case of Vilar et al. [8], for feet detection using MIUN-Feet
dataset [9], we explore the design space by examining different
partitioning points in the CNN model.

The primary research gap this paper aims to address is to
identify an optimal partition point that incorporates the impact
of pruning, which minimizes the combined computation and
communication node energy consumption while maintaining a
predefined level of detection accuracy. Through this case study,
the aim is to demonstrate the potential for energy and latency
optimization for CNN deployment in IoT nodes, opening up
new avenues for future research and development.



II. RELATED WORK

The main constraints in the design of an IoT node, such
as processing power, memory, and energy consumption, are
defined by the stringent requirements for a small form factor
and a long battery lifetime. In contrast with this, there are
CV-based applications that rely on a heavy computational
workload on large volumes of data. Consequently, optimizing
them is an active research topic, with various techniques and
models being developed for the optimization of CNN models.

Quantization-based CNN optimization techniques, such as
scalar quantization [10], vector quantization [11], and quan-
tization mimic [12], aim to reduce memory footprint and
computational demands while maintaining accuracy. These
methods involve quantizing of weights, of filter kernels, us-
ing integer-only arithmetic [13], and leveraging knowledge
distillation. Quantization of CNNs may result in information
loss and reduced accuracy; while retraining can recover some
accuracy, lower-precision methods like binary quantization
still cause significant accuracy drops, as evidenced by over
10% decrease in [5].

Pruning, as opposed to quantization, focuses on reduc-
ing memory and computational requirements by eliminating
redundant or less significant connections, weights, or neu-
rons within neural networks. Hao Li et al. [6] developed
iterative magnitude pruning, which utilizes a regularization
term during fine-tuning to minimize computation costs and
memory requirements while maintaining accuracy. Molchanov
et al. [14] proposed variational dropout, resulting in sparse
solutions in both convolutional and fully connected layers
by pruning unnecessary weights. Addressing the presence of
redundant filters, weights, neurons, and connections that have
little impact on overall accuracy, researchers like Yang et
al. [15] and Han et al. [16] have contributed to overcoming
computation and memory constraints through methods such as
NetAdapt.However, pruning alone does not comprehensively
address optimization aspects like data representation, workload
distribution, or communication overhead reduction, necessitat-
ing the exploration of combined approaches with techniques
like model partitioning and quantization.

Building on the ideas of pruning and quantization, another
approach to lessen the computational load on IoT devices
without sacrificing accuracy is the distributed execution of
CNN models. In distributed systems, the CNN model is spread
across various IoT devices in accordance with the memory and
computational constraints of the individual devices. MoDNN
[17] tackles fully distributed inference by distributing a CNN
across multiple mobile phones connected via a wireless net-
work, including both input/output and weight data. However,
it does not consider communication between fully-connected
layers, neglects weight-intensive convolutional layers, and
requires synchronization between devices after each layer.
Shallari et al. [18] introduced the concept of intelligence
partitioning for constrained IoT devices, where workload parti-
tioning between node and cloud was determined by analyzing
the interplay between computation and communication. This

technique can be applied to CNN models also.
Partitioning a CNN model can result in two parts of the

model that are to be executed at two locations, requiring the
data to be transferred between them, however, depending upon
the partitioning point, the amount of data can be quite large
and hence introduces a communication overhead. To mitigate
this, quantization ranging from 32-bit width to 8 bits such as
in, [19] have been applied. The quantization here reduces the
amount of information to be transferred via the communication
channel. Expanding on previous research, Isaac et al. [20]
explored deep quantization by applying a range of 8-bit down
to 1-bit quantization techniques. Additionally, they employed
packing and compression methods to further minimize the data
transfer between IoT devices and edge devices. Another full
distribution is achieved with layer pipelining [21]. However,
this method is not able to evenly distribute the memory
demand for typical models.

With additional constraints, the communication overhead
could be reduced further by the approaches presented in this
work. To the best of our knowledge, there has not been much
work done on reducing the data in distributed IoT systems,
with a focus on reducing processing and communication
overhead, hence in this work, using TY3 as a case study model,
we introduce the idea of pruning the interlayer feature maps
after quantizing the data and exploring the optimal partitioning
point between an IoT node and edge node.

III. METHODOLOGY

The proposed method aims to optimize the energy consump-
tion of a smart IoT node by means of quantization and pruning
within the node offloading perspective. This work focuses
on the computational and communication aspects as key
components of the node energy consumption, as represented in
Eq. 1. The sensing energy consumption is omitted from this
equation, as it remains constant, regardless of the different
configurations of node offloading.

ENode =

j∑
i=1

(EP (ti, P )) + EC(cj , C) (1)

In Eq. 1, i represents a specific CNN layer, where ti is the
computational task in that layer and cj is the data to be
communicated through the communication channel C at the
partitioning point j. EP and EC represent the energy functions
required for processing and communication respectively, with
P denoting the characteristics of the processing platform.
Partition points for the TY3 architecture were explored, with
a focus on layers that feature sequential data paths, aiming to
reduce additional data transfers occurring within the parallel
components of the TY3 network. The partitioning points for
TY3 are depicted in Fig1.

For each partitioning point, the model is split into two parts:
M1..j , which undergoes pruning and is processed on the IoT
node, and Mj+1..N , which is processed on the edge node.
Following the work in [20], the two models are combined
through an interface I (highlighted in gray in Fig. 2), where



Fig. 1. Abstract model highlighting the sequential data path of the Tiny
YOLO-v3 architecture and the resulting partitioning points according to [20].

quantization operations are carried out. The result is a trans-
formed CNN model, denoted as Mp as shown in Eq. 2.

Mp = M1..j ∪ I ∪Mj+1..N (2)

Equation 3 describes an optimization problem in which the
goal is to minimize the energy terms, subject to a constraint
on the mean Average Precision (mAP) metric in Eq. 4.

min
(t1..j), cj

j∑
i=1

(EP (ti, P )) + EC(cj , C) (3)

Equation 4, represents the constraint for the optimization prob-
lem, where the threshold th defines the acceptable reduction
in mAP during the optimization of the energy terms in Eq. 3.

mAP (Mp) ≥ mAP (M)− th. (4)

A. Quantization

In previous work, the effects of quantization from 8-bit
down to 1-bit representation were analyzed and proved that
1-bit quantization can retain a high detection accuracy for the
given model [20]. In this work, we quantize the data to a 1-bit
precision level using the normalization formula in Eq. 5,

dbj = ⌊(fj − µ) / max⌋ with b = 1. (5)

where dbj is the quantized data at a partition point j and b the
bit-precision which in this case is 1. fj is the floating point
representation of the data at the output of the partitioning point
j, µ is the mean pixel value of the entire dataset, while max
is the maximum value of the dynamic range.

f ′
j =

(
dbj ×max

)
+ µ where, b = 1. (6)

It is important to note that in an IoT device, the data is
quantized at the partition point. Therefore, when this data
is sent to the edge device, it needs to be converted from
quantized representation to floating point representation (f ′

j).
The process of converting back to floating point representation
is defined by Eq. 6. It is worth mentioning that f ′

j may not be
equal to fj because the quantization process results in changes
in the values. This quantization and de-quantization process is
represented in Eq. 2 by the interface I .

B. Pruning

The pruning in the IoT node is done in two steps. In the first
step, the data sent between the IoT node and the edge node
cj over interface I is minimized, by pruning layer j denoted
as γj .

min
(γj)

[cj(γj)] (7)

The constraint applied to Eq. 7 is given by:

mAP (M ′
p) ≥ mAP (M)− th (8)

where, M ′
p represents the model Mp with all layers up to the

pruned layer j.
Removing the filters in the last node layer will leave many

redundant filters in the previous layers that produce input
to the pruned layer γj , giving the opportunity to reduce the
overall computational processing task. Thus, in the next step,
the total processing task of the model is minimized, up until
the partition point j, by removing all the redundant filters in
all the previous layers.

min
(γ1..j−1)

[t1..j−1(γ1..j−1)] (9)

The constraint on mAP in Eq. 9, is given by

mAP (M ′′
p ) ≥ mAP (M)− th (10)

where M ′′
p is Mp with pruning in all the layers from layer

1 to the partitioned layer. In the process outlined within this
study, the last stage prior to deploying the model on the edge
device is compression. The data present at the partitioning
point is compressed using ZIP compression, and the data is
subsequently transmitted through a designated communication
channel. Consequently, the initial operation performed by the
edge node involves decompression. A comprehensive depic-
tion of the entire workflow undertaken in this research can be
found in Fig. 2.

To summarise, for every partition point considered in the
CNN model, initially an interface I is created, where quanti-
zation and de-quantization are perfomed on both sides of the

Fig. 2. Flow chart of the work process done in this work.



network, in the IoT node and in the edge node, respectively.
This is followed by a two-step pruning on the IoT node, The
first step involves pruning the partition layer j, followed by
pruning its preceding layers to eliminate redundant filters. The
key constraint in this optimization procedure is to retain the
accuracy drop within the predefined threshold th.

IV. RESULTS

A. Experimental setup

The scope of the presented method is to reduce the overall
energy consumption at the IoT node as a combination of node
offloading, quantization, and pruning. For the scope of this
analysis, TY3 is implemented in both the IoT and the edge
node to evaluate different node offloading configurations. The
energy and latency metrics for processing the TY3 model in
the IoT node were obtained from the work of Ivanov [22].
The implementation of TY3 and calculation of energy and
latency metrics including the performance metrics were done
on a workstation implementation with a 12th Gen Intel(R)
Core(TM) i9-12900 with a 2.40 GHz CPU, 32GB of RAM
and with NVIDIA GeForce RTX 3090 GPU. The energy
consumption and latency metrics of several communication
technologies used in this analysis were derived from the
estimation model of Krug et al. [23].

Fig. 1 shows the partitioning points j, where j ∈ [1 : 5]
in TY3 architecture as defined in [20]. The rationale for
partitioning the model at these points is that data flow at
these layers is sequential, allowing for more streamlined data
processing. Apart from these five partitioning configurations,
two more cases are included, one when all the processing is
done in the edge device (j = 0) and the other when all the
processing is done in the IoT node (j = 6). The partitioning
part remains the same as in our previous work since we focus
on the combination with pruning in this work. The TY3 model
was trained using the MIUN-Feet dataset [9] as a baseline. The
training process resulted in a 99.11% mAP at an intersection
over union (IOU) of 0.5 and a confidence level of 0.45. To
optimize for IoT deployment, we partitioned the CNN model,
introducing quantization and pruning at the partition layer.
Finally, we fine-tuned the model by retraining it to compensate
for the loss it encountered during quantization and pruning.

B. Step 1 - Pruning only in layer j

In the present study, feature maps are strategically pruned at
designated partitioning points. This pruning inevitably results
in information loss, consequently affecting the mAP of the
model, thus retraining is employed to address this issue. Upon
retraining, a substantial improvement in overall accuracy is
observed. In particular, at j=1, 2 and 3, the model maintained
an accuracy exceeding 90% despite high pruning levels of
95%, 98%, and 99%, respectively, with only a single feature
map remaining. Conversely, at partitioning points 4 and 5,
the accuracy declined below 90% under the same number of
remaining feature maps. To ensure the model’s mAP remains
above 95%, a systematic examination of different pruning

Fig. 3. mAP for models partitioned in j [1...5] vs. the size cj of the data
transferred from the partitioning point.

percentages was conducted at each j. After implementing the
pruning process, the data at j undergoes compression and
packing prior to being offloaded to the edge device. Fig. 3
illustrates the amount of remaining data at each partitioning
point after the processes of pruning, compression, and packing
have been applied. For all partitioning points, it can be
observed that when achieving an mAP of over 95% across
all partitions, the data required to be offloaded is less than 5
kByte.

C. Step 2 - Pruning in all the layers [1..j]

The filters at the partitioning point are fed with inputs from
the previous layers j − 1, and when filters at j are removed,
the inputs to these removed filters are also eliminated. This
reduction in input can lead to the presence of redundant filters
in the previous layers, which in turn presents an opportu-
nity for pruning in all these previous layers to reduce the
overall computation. The overall energy consumption of the
neural network can be significantly reduced by decreasing the
computation required in the previous layers, specifically from
t1 − tj−1.

Pruning all the layers from j = 1 to j = 5 reduces
ti which can be calculated by the number of multiplication
accumulators that the model has to compute, as the layers
are pruned, a subsequent reduction in the number of required
multiplications is observed, contributing to a decrease in the
overall energy requirement. Fig. 4 illustrates the the effect of
reduction of multiplication accumulators on the mAP of the
CNN model.

Our findings indicate that even when the remaining ti is
around 10% of the original model, the mAP exceeds the 95%
threshold for all partitioning points. This reduction in com-
putational tasks is a critical factor in making neural networks
more practical for real-world IoT applications, especially for



Fig. 4. mAP for the partitioned model M ′′ vs. the remaining multiplication
and add operations after the pruning of layers 1 to j − 1.

devices with limited computational resources such as mobile
devices and embedded systems.

D. Energy and Latency

The energy requirement of the node after partitioning is
the summation of processing energy and the communication
energy required to transfer the data from the IoT node to the
edge node for a given communication technology. In this case
study, four common IoT communication models i.e BLE-4,
BLE-5, LTE-C4, and Wi-Fi, were utilized and the amount of
energy required for data transmission and induced latency were
analyzed. Fig. 5 gives us information about the latency and
energy requirements at each partitioning point.

The findings presented in Fig. 5 demonstrate that partition-
ing a CNN model results in an optimal solution in terms of
both latency and energy consumption. This is particularly true
when compared to the scenarios where all processing occurs
solely on the edge device or the IoT node without partitioning.

Fig. 5. Energy and latency after partitioning and pruning the CNN model for
four different communication technologies.

Partitioning points ranging from j = 1 to j = 5 offer lower
latency and energy consumption compared to j = 0 and j = 6

V. DISCUSSION

Table I summarises the results obtained from the proposed
method, drawing attention to the enhanced performance in
energy consumption and latency. Each cell of this table is
derived as a comparison in performance between the optimal
partitioning point and the baseline model implemented either
fully in-edge (j = 0) or fully in-node (j = 6). For the case
without pruning, the optimal partition point is a combination
of partition j = 1 and Wi-Fi communication technology.
Instead, in the case of pruning, partitioning point j = 4
with BLE-5 is the most energy-efficient point while from
the latency point of view same partitioning point j = 4
but with Wi-Fi is the best solution. By leveraging optimal
partitioning points and advanced communication technologies,
the proposed method achieves an astounding 17 times in
energy savings as compared to processing all the models in
an IoT node while significantly reducing the latency as well.
These results emphasize the efficacy of partitioning as a viable
approach for improving the performance and energy efficiency
of CNN models.

The scope of the proposed method is to enable the energy-
efficient design of CNN-based IoT nodes. However, con-
sidering that this IoT-node will be part of a larger system
that transfers data through a communication channel, then
it becomes necessary to include the latency component in
our trade-off analysis. Fig. 5 presents the results from both
these perspectives, visualizing the conflicting nature between
latency and energy consumption for a smart IoT node. This
also indicates that the optimum is on neither extremity of the
plot, but somewhere in the middle, relying on node offloading.

Upon closer examination of Fig. 5, it becomes evident that
both energy consumption and latency exhibit significant vari-
ations, which are dependent on the chosen partitioning point
and the utilized communication model. For instance, when
BLE-4 is used for data transmission, the energy consumption is
significantly higher than that of other communication models
at all partitioning points. This highlights the importance of
selecting the most suitable communication technology for IoT
nodes, as it can significantly impact overall system perfor-
mance and efficiency.

Across the communication technologies examined, the ma-
jority of energy consumption results from the computational
workload of the CNN and data compression, with the excep-

TABLE I
ADVANTAGES OF THE PARTITIONING DESIGN SOLUTION.

Without Pruning With Pruning

All All All All
In-Edge In-Node In-Edge In-Node

Energy saving x1.26 x3.8 x5.74 x17
System speed-up x2.05 x1.05 x5.24 x2.65



tion of the cases relying on BLE-4 technology. The negligi-
ble impact of communication energy on the overall energy
consumption can be attributed to the significant reduction in
the data size after pruning and compression, thereby requiring
less data to be transmitted from the IoT device to the edge
node. Consequently, the required communication bandwidth
and energy are minimized, facilitating an energy-efficient IoT
node.

The latency analysis offers a comprehensive view of the
CNN models’ performance at different partitioning points
across various communication technologies. The results in
Fig. 5 show that the communication overhead is a significant
contributor to the overall latency of the model, especially
for BLE-4 and BLE-5 technologies. These findings suggest
that optimizing the communication between the IoT and the
edge is essential to minimize the overall latency for the
execution of the CNN model. When examining the partitioning
points for BLE-4, it is observed that the lowest latency is
achieved when all processing occurs in the node, i.e., j = 6.
However, at this partitioning point, the energy consumption is
also the highest, making it an unfeasible option for practical
deployment. Instead, for the remainder of the communication
technologies analyzed, partitioning j = 4, emerges as the
most favorable choice, with the lowest latency and energy
requirements. Upon evaluating the impact of pruning on the
partitioned CNN model, it becomes apparent that the amount
of data reduction achieved is substantial. Consequently, in
terms of energy consumption and latency, the processing
and communication within the CNN model are not major
factors, whereas the compression method employed becomes
the primary energy consumer.

It is evident that prior to pruning, the effect of compression
on energy consumption and latency is negligible. However,
after pruning and subsequent reduction of the model’s energy
and latency, compression emerges as a critical factor. Thus,
the energy efficiency of the compression method becomes a
critical consideration in determining the optimal partitioning
point, which may vary across different communication tech-
nologies. Future research could explore various compression
methods to further enhance the energy efficiency of the model
and facilitate its implementation on smaller IoT devices.

VI. CONCLUSIONS

This paper presents a study that demonstrates the effective-
ness of off-loading IoT nodes by partitioning CNN models.
The results show that this approach can lead to up to 17
times more efficient implementation compared to running the
CNN models entirely on the node or on an edge server. The
efficiency improvement is enabled by decreasing communi-
cated data size and computational load through pruning in
combination with quantization and compression.

To further validate these results, the plan is to extend our
investigation to other CNN models and datasets. We also aim
to improve the partitioning method by using more efficient
compression techniques and automating the design transfor-

mation process. Overall, our study highlights the potential of
node-offloading, including pruning, as a means of achieving
efficient CNN-based imaging in IoT contexts.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[2] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 12 2015.

[3] H. Noh, S. Hong, and B. Han, “Learning deconvolution network
for semantic segmentation,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1520–1528.

[4] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with
adaptive instance normalization,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 1501–1510.

[5] M.Courbariaux, Y.Bengio, and J. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations,” Advances in
neural information processing systems, vol. 28, 2015.

[6] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[8] C. V. Giménez, S. Krug, F. Z. Qureshi, and M. O’Nils, “Evaluation of
2d-/3d-feet-detection methods for semi-autonomous powered wheelchair
navigation,” Journal of Imaging, vol. 7, no. 12, p. 255, 2021.

[9] C. Vilar, “MIUN dataset för semi-autonom manövrering av eldrivna
rullstolar,” 2021. [Online]. Available: https://doi.org/10.5878/k44d-3y06

[10] Y.Choi, M.El-Khamy, and J.Lee, “Towards the limit of network quanti-
zation,” arXiv preprint arXiv:1612.01543, 2016.

[11] H.Jegou, M.Douze, and C.Schmid, “Product quantization for nearest
neighbor search,” IEEE transactions on pattern analysis and machine
intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[12] Y. Wei, X. Pan, H. Qin, W. Ouyang, and J. Yan, “Quantization mimic:
Towards very tiny cnn for object detection,” in Proceedings of the
European Conference on Computer Vision (ECCV), 9 2018.

[13] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 2704–
2713.

[14] D. Molchanov, A. Ashukha, and D. Vetrov, “Variational dropout spar-
sifies deep neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2498–2507.

[15] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze,
and H. Adam, “Netadapt: Platform-aware neural network adaptation for
mobile applications,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 285–300.

[16] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” Advances in neural information
processing systems, vol. 28, 2015.

[17] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1396–1401.

[18] I. Shallari, S. Krug, and M. O’Nils, “Communication and computation
inter-effects in people counting using intelligence partitioning,” Journal
of Real-Time Image Processing, vol. 17, no. 6, pp. 1869–1882, 2020.

[19] R. Krishnamoorthi, “Quantizing deep convolutional networks for effi-
cient inference: A whitepaper,” arXiv preprint arXiv:1806.08342, 2018.

[20] I. Sanchez Leal, E. Saqib, I. Shallari, A. Jantsch, S. Krug, and M. O’Nils,
“Waist tightening of cnns: A case study on tiny yolov3 for distributed
iot implementations,” in Proceedings of Cyber-Physical Systems and
Internet of Things Week 2023, 2023, pp. 241–246.

[21] F. Martins Campos de Oliveira and E. Borin, “Partitioning convolutional
neural networks to maximize the inference rate on constrained iot
devices,” Future Internet, vol. 11, no. 10, p. 209, 2019.

[22] M. Ivanov, “Embedded machine learning demonstrator,”
Bachelor Thesis, TU Wien, 2021. [Online]. Available:
https://publik.tuwien.ac.at/files/publik_296007.pdf

[23] S. Krug and M. O’Nils, “Modeling and comparison of delay and energy
cost of iot data transfers,” IEEE Access, vol. 7, pp. 58 654–58 675, 2019.


