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Abstract—Wearable gadgets are in for an exponential rise
thanks to the improvements in the silicon scaling and ubiquity
of Internet as well as battery technology and sensor ame-
lioration. However, despite these advances, wearable gadgets
remain resource constrained devices requiring further improve-
ments in all those areas. Self-awareness enables a system to
adjust its behaviors to enhance the operations of the system
and meet its goals. In this paper, we review one of the self-
awareness techniques used in wearable devices and machine
learning, namely confidence, which leads to their improvements.
In particular, we focus on how confidence helps to maintain
or enhance performance of machine learning techniques while
reducing the complexity of the processes and required resources
for running them on resource constrained devices. We look into
three examples, epilepsy monitoring, iris flower detection, and
image classification.

I. INTRODUCTION

The progress in Machine Learning (ML), Wearable Health-

care Systems (WHS), and cloud computing promised to bring

health-care from the exclusive realm of clinics to our daily

lives. This may be seen as just another Internet of Things

(IoT) commodity, however, its impacts are beyond the luxury

of IoT. It can have a significant impact for disabled and

elderly people to enable health-care professionals to assist

them at their own home [1], an issue that is gaining more

and more attention with the aging population [2]. WHS can

also reduce hospitalizations [3, 4, 1] by enabling the health-

care professionals to perform certain check-ups and follow-

ups after releasing the patients. Even clinics benefit from

the combined power of these technologies [1] since they

enable 24/7 continuous monitoring of patients which has

been hardly possible even inside clinics [3]. They also allow

more objectivity in areas of health such as mental health

and emotion recognition [5, 6], which traditionally have been

relying on self-reports of patients which is largely influenced

by the subjective experience of the patient.

Another benefit for the clinics is the improved diagnosis

enabled by ML. There have already been cases where ML

algorithms have outperformed highly trained physicians [1].

For instance, last year CheXNet, a 121-layer Convolutional

Neural Network (CNN), detected and analyzed pneumonia bet-

ter than the average of four radiologist [7]. In another example,

Esteva et al. [8] showed that their deep CNN can perform

on par with 21 board-certified dermatologist in classification

of skin cancer. The importance of these achievements can be

better understood when we consider that 251’000 of deaths

in the US during 2013 was caused by preventable medical

errors [9], third only to heart disease and cancer. Nevertheless,

it is important to keep in mind that despite all the progress,

ML still remains limited in the scope and clinical [1]. So far,

the larger focus of the literature has been on development

and hence some of the fundamental challenges have been less

addressed [1]. Some of these challenges include computational

costs, power consumption, accuracy, real-time requirements,

and reliability. Self-awareness is a method that can tackle these

challenges in an efficient manner.

Self-awareness has been well received and continues to

attract more attention from scientists and engineers in various

disciplines such as artificial intelligence [10, 11], embedded

systems [12, 13, 14], industrial production [15, 16, 17, 18],

health-care [19, 4, 3, 11], and control of camera networks [20,

21], to name a few. The amazing efficiency and resilience it

brings for biological systems is among the main aspiration

for the self-awareness community [22]. A self-aware system
observes its own state, performance, and goals, as well as the
state and behavior of the environment [23], which is often

followed by a reaction in order to achieve or approach its

goals. Even though self-awareness starts with observation, it

has received but little attention till recently [10]. In 2016,

Taherinejad et al. [24] published a study on comprehensive

observation, its various aspects, and its potential role in self-

aware system. Since then, there has been work on some of

these aspects, such as data reliability [19, 4], attention [4, 25],

history [16, 18], and confidence [10, 11, 26]. In this paper, we

focus on the latter. First, we show how confidence can improve

the performance of ML in terms of energy efficiency, accuracy,

real-time requirements, and reliability all in one shot. Second,

given its importance and helpfulness, we delve deeper into the

fundamentals of confidence and discuss its potential definition.

This helps engineers and system designers by facilitating the

selection of right parameters and definition for confidence

in their system. It will thus enable them to implement and

optimally benefit from the advantages of confidence.

II. SELF-AWARE MACHINE LEARNING

ML requires significant amount of resources, including pro-

cessing power and available memory and energy for running

it [26]. Wearable devices at the edge of the cloud suffer from

the shortage of all those elements. Therefore, only simpler

techniques and algorithms can be used on wearable devices.

However, even for those algorithms available processing power

may be very limited (possibly insufficient) and hard to provide

for. In such a constraint situation, self-awareness enables the



system to improve the overall performance of the system by a

better use of available resources. On that account, we review

three of the works which have used self-awareness to improve

the ML algorithms for resource limited devices. All of these

works have used the concept of “confidence” to improve the

performance of the used ML, particularly the computational

cost and energy.

A. Epileptic Seizure Detection

In [11], the authors use single-lead Electrocardiography

(ECG) signals to monitor and detect epilepsy seizures. They

use the Lausanne University Hospital database which contains

141 hours of data, including 34 seizures, collected by the

SmartCardia INYU wearable sensor. The top level block

diagram of their system, with and without self-aware unit, is

shown in Figure 1, where the ML technique used is Support

Vector Machine (SVM) [11]. The ML model is developed in

two modes, simple which consumes less energy and uses less

features for detection, and complex or full which consumes

more energy and uses more features for detection. During

the training phase, after training both the simple and full

models, the simple model is used on the training data set. The

predictions of the simple model is then compared to the ground

truth in order to develop the confidence model. The confidence

model is another SVM classifier which provides information

about the confidence of the simple model in its prediction.

In the test (detection) phase, the data is first fed to the

confidence model. If its predicted confidence is high enough,

the simple model is used for the classification, otherwise the

full model is be used. The second self-aware technique that

they use is progressive learning, which enhances the quality of

their classification. In this method, after the initial training is

done, during the progressive learning phase, if a prediction is

confident enough (using the confidence model/classifier), that

data will be used to train the SVM models further. To test their

system, they ran it on a low power 32-bit micro-controller,

namely ARM Cortex-M3 (STM32L151RDT6), with 48kB

Random Access Memory (RAM) and 384kB flash storage,

running at a maximum frequency of 32MHz. The reported

results show a 36% improvement in the classification time

(from 840ms to 538ms) while obtaining a 0.7% improvement

Fig. 1. Block diagram of a traditional (in black) epileptic seizure monitoring
system for wearable devices, and the additional self-aware unit (in red) [11].

in terms of geometrical mean (
√

Specificity · Sensitivity) of

the detection, where

Specificity =
TN

FP + TN
, Sensitivity =

TP

TP + FN
(1)

in which TP, TN, FP, and FN denote True Positive, True

Negative, False Positive, and False Negative, respectively.

The second method led to 10% absolute and 15% relative

improvement in the geometrical mean, which was largely

thanks to the improvements of specificity [11].

B. Iris Flower Detection

In [10] the authors consider an MCS for Iris flower detec-

tion. It is assumed that each algorithm has a certain perfor-

mance for various classes, and it can provide a probability

value as to its confidence regarding each classification it does.

Therefore, awareness of the overall system regarding these two

factors can help it to use the right algorithm at the right time,

as opposed to the common MCS practice of running all of the

classifiers (here, Neural Network (NN), Naive Bayesian (NB),

and SVM). After each training, during the cross validation

phase, each algorithm is ranked based on its success rate in

each class and its overall average success rate. In the test

phase, classification is done based on confidence, following the

algorithm shown in Figure 2. That is, if the default algorithm

(the algorithm with the best overall success rate) is confident

about its classification, the predicted class is sent to the output.

However, if it is not confident enough, then the best (or next

best) algorithm which had a good track record of classifying

the unconfidently predicted class will be invoked to classify

Fig. 2. The flowchart of the self-aware, confidence-based MCS [10].



the input data. This will continue till one of the classifiers is

confident enough about its prediction, or all classifiers have

been invoked. In the former case, the confidently predicted

class will be chosen as the answer. In the latter case, the

result will be decided using a weighted maximum confidence

function, where the weights are proportional to the rank (the

overall success rate) of the algorithms. Their experiments on

the iris flower detection, ran on the data set from the UCI

Machine Learning Repository [27], supports the hypothesis on

lower complexity by having an average of 1.27 algorithm runs

per sample, as opposed to the 3 algorithms which would be

traditionally run in their MCS setup. The algorithm showed

a particular superiority in classifying small data sets with

up to 17% higher success rate than NN and 7.6× smaller

standard deviation which shows its robustness. Although in

terms of success rate it was in some cases on par or only

marginally better than individual classification algorithms, its

standard deviation was consistently better than others and the

distribution of the predictions were more concentrated than

others. Both of which speak of its better reliability.

C. Iterative Convolutional Neural Network (ICNN)

In [26], the authors try to decrease the computation load

of AlexNet [28], which requires a massive 0.7-1.0G Float-

ing Point Operations (FLOPs) per classification. The pro-

posed algorithm is a 1000-class image classifier for ImageNet

dataset, which includes 1.2 Million labeled images. Their

approach is to break the CNN of AlexNet to a set of much

smaller Micro CNNs (μCNNs) which are fed by various sub-

band inputs sampled from the original input image using

Discrete Wavelet. Then, as shown in 3, the algorithm starts

running in iterations, where each iteration has a number of

μCNNs. At the end of each iteration, if the confidence of

the predicted class is larger than a threshold, the algorithm is

stopped and the predicted class is taken as the result. If the

confidence is extremely low (lower than another threshold),

the algorithm is prematurely terminated since the chances

of correct classification is too low. This save a considerable

amount of computations which would be otherwise spent on

a most-likely misclassification. If the confidence is within

these two thresholds, next iteration is run which uses more

input samples and has a better accuracy (which of course

Fig. 3. The flow chart of the confidence-based ICNN [26].

TABLE I
SUMMARY OF CONFIDENCE-BASED ML WORKS PRESENTED HERE.

Work Approach Comments

[11] SVM Model Improved detection, less power consumption
[10] Probability Improved reliability, better/similar detection
[26] Probability Computation load reduction, similar detection
[29] Distance Improved detection, increased robustness

comes at the cost of additional computations). Again the same

procedure is repeated to decide whether the predicted results

are good enough or more iterations should run. The idea

is that even if all iterations are run, the computational load

does not exceed the original load, however, be able to stop

computations whenever the results are good enough. That is

when the system is confident enough about its prediction. In

their implementation the first six iterations required 12×, 6×,

3×, 2.3×, and 1.8× less FLOPs, whereas the seventh had

30% less computations load than the original AlexNet. The

accuracy of the algorithm was within ∼25%-2% of AlexNet,

respectively for first to seventh iteration. Therefore, using

the concept of confidence, ICNN can massively reduce the

computational load at a comparatively much smaller cost in

accuracy.

III. FUNDAMENTALS OF CONFIDENCE

Although the benefits of using confidence has been shown

in the above applications, summarized in Table I, its funda-

mentals are far from fully defined. For instance, in [11], the

authors don’t define explicitly what confidence is and use a

black box approach (SVM) to model it. We contend that a

better understanding of the fundamentals of confidence can

help in a better application-tailored modeling and ultimately

lead to a more efficient usage.

A. Definitions

In [24], confidence is defined as “the extent to which a

procedure may yield the same results on repeated trials.”

That distinguishes the confidence as a property, in particular

reliability, of “procedures”, that is algorithms, rather than data.

However, repeated results do not speak of its correctness.

Therefore, in [10], the authors discuss this issue with regard

to learning specifically. There, they claim that, if T kl
xi

is the

Ground Truth (we know that sample xi belongs to class kl)
and E

Aj
xi is the class that the algorithm A estimates for xi,

then, the confidence of A is,

c
(
A(xi, kl)

)
= p

(
EA

xi
== T kl

xi

)
, (2)

that is, the probability of E
Aj
xi being equal to T kl

xi
. The overall

confidence of algorithm A for class is then determined by

averaging its confidence over all the samples it was cross-

validated on, i.e.,

CA =
1

m

m∑
kl=0

c
(
Akl

)
, (3)



in which m is the total number of classes and

c
(
Akl

)
=

1

n

n∑
i=0

c
(
A(xi, kl)

)
, (4)

where n is the total number of samples classified as belonging

to each class during the cross-validation. In [26], the confi-

dence is not explicitly defined but it is repetitively referred to

as a probability. Therefore, especially considering the common

practice in ML, it is safe to assume that they consider a similar

definition for it. However, in other systems, especially those

outside the realm of traditional ML, the problem becomes

fuzzier and more complicated. An example of which is [29].

In [29], the authors have a different take on what confidence

is. They assume that, if f present an ideal function or

algorithm defined over a sample set, xi, and g an unideal

function or algorithm at hand, then a function like Δ can

be defined that captures the “distance” of f(xi) and g(xi).
They contend that this “distance” can have any dimension,

however, the emphasis is on confidence being a distance.

Moreover, since often f(xi) is not available (and thus we

resort to unideal g(xi)), Δ cannot be calculated either and

can be only estimated by Δ′. In their specific application,

they enhance context-aware monitoring [16, 18] by defining a

piecewise linear confidence function. This function determines

the confidence with which the system considers a new sample

belonging to existing sample set. There, Δ′ is proportional to

the difference in the value of samples and confidence inversely

proportional. That is the confidence of sample j belonging to

the same subset as sample i is

ci,j =
1

Δ′
i,j

=

{ ∝ 1
xi−xj

if Condition 1

Kc if Condition c
(5)

and the overall confidence is calculated using an averaging

equation similar to Equation 3 with m being the sample set

over which x is defined. It is tempting to say that the difference

between the values as a measure of confidence present the

probability of one sample belonging to the same subset as the

other one. However, that requires statistical data and a large

number of samples to extract a probability function, which has

not been done in [29] with no apparent negative effect.

B. Distance or Probability

As discussed above, so far in the literature the main

contenders for the nature of confidence are distance and

probability. In other words, how far the results are from the

ground truth, or how likely it is that the results are true. There

are arguments for and against each of those. If there is a one or

multi-dimensional numerical parameter space, an appropriate

distance metric is often easy to establish. For example, if a

heartbeat extraction algorithm calculates a value of y and the

real value is x, then the distance |x−y| is an appealing quality

metric for the confidence of its calculation For categorization

tasks, such as identifying pears and apples in images, distance

metrics are not as straight forward. Breaking down the cate-

gorization task into elementary measured parameters such as

color, size, and shape, may help. However, a good categorizer

such as an NN integrates these elementary data with a non-

linear, non-obvious weight function into a categorization, a

process which may be hard to mimic with an appropriate

distance metric. Another aspect, which pragmatically may not

be paramount but conceptually is important, is the meaning

of this definition in the context. What is the meaning of the

distance between two points in a multi-dimensional space with

different units on each axis?

On the other hand, NN and other categorizers inherently

provide an assessment of their results which can, with some

justification, be interpreted as probabilities, as has been done

in [10] and [26]. The outputs of the NN in these examples

sums up to “1” and give a relative assessment of the different

categories. However, in some cases with small data sets, like

in [10], it is somewhat of a stretch to take the produced values

of the NN as probabilities of correct classification (due to

lack of very large data sets and repeated experiments enough

for being statistically meaningful). In the case of distance

(value difference) as in [29] (and applications like [16, 18]) or

decision-tree methods in general, the distance could be outside

the range of [0, 1]. Since probability cannot be outside this

range, that undermines the candidacy of probability as the

nature of the confidence, although, normalization could ad-

dress this issue. Another point is the complication of defining

probability in methods such as maximum likelihood which

uses a probability density function for classification. There,

defining a distance seems relatively more straight forward.

However, there is a third possibility to consider. That is,

confidence as the probability of distances. That is, how likely

it is that the result has a distance lower than a specific value

with the ground truth. This creates a space that can be shaped,

with different assumptions, to both of above cases. If distance

cannot be defined (like in categorization tasks), or zero dis-

tance is intended, confidence would be a simple probability

value. On the other hand, if we assume that all distances have

(almost) similar probability, confidence would be simplified

to a distance (like the cases in [29]). Using this definition

more complex cases could be tackled, for example, by using

the probability distribution to form the confidence function

which maps distance to confidence. Currently, it seems that

regardless of what the true nature of confidence is, choosing

the mathematical formulation of confidence depending on the

nature of the problem is the best existing strategy.

IV. CONCLUSION

Self-awareness can play an important role in improving

the performance of resource constraint devices such IoT and

wearable devices. In this paper, we focused on “confidence”

as one of the primitives of self-awareness. We first showed

how it has been used to improve ML algorithms in terms of

success rate and required computational resources and energy,

as well as the reliability of the use ML techniques. Then

we had a closer look on the existing definitions and models

of confidence and analyzed them. “What is the nature of

confidence?” remains still an open question to be studied

further. We claim that answering that question can have an



important impact on the usage of this concept in various

systems. Nevertheless, as shown in the examples, that does

not undermine the benefit of using confidence, even with an

ad-hoc definition. To this end, we provided the most recent

insight on the state-of-the-art and on which of the existing

definitions may be more useful for the specific application the

reader has in mind.
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