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David Breuss∗, Maximilian Götzinger†, Jenny Vuong‡, Clemens Reisner‡, and Axel Jantsch†
∗Institute of Computer Technology TU Wien, 1040 Vienna, Austria

†Christian Doppler Laboratory for Embedded Machine Learning, Institute of Computer Technology
TU Wien, 1040 Vienna, Austria

‡Mission Embedded 1100 Vienna, Austria
david.breuss@tuwien.ac.at

Abstract—Detecting damages and anomalies on railroads is
a tedious and expensive task. This paper proposes the Vision-
based Anomaly Detection Algorithm for Railroads (VADAR),
which can find rail damages and foreign objects on the trackbed
in monochrome images captured by a train-mounted camera
system. VADAR analyzes the input image with three Autoen-
coders (AEs), a segmentation network, and a one-class classifier.
The detection of unknown anomalies justifies our architecture’s
advantage, i.e., no anomalies are necessary for training VADAR.
In experiments with a dataset of over 218,000 images, VADAR
achieves a detection accuracy of 95% and a recall rate of 70% for
smaller and up to 100% for bigger instances of several anomaly
classes. Compared with a state-of-the-art approach which is based
on more expensive equipment, VADAR achieves accuracy and
recall rates (for anomalies of particular interest) of about 22pps
and up to 45pps higher, respectively. With a setting that achieves
83.5% accuracy, VADAR’s recall rate outperforms the state-of-
the-art approach for every anomaly class and object size.

Index Terms—Railroad; Vision-Based; Anomaly Detection;
Unknown Anomalies; Autoencoder

I. INTRODUCTION

The railroad transport of people and goods is essential to
today’s urbanized society [1], but track installations wear
out over time due to usage [2]. In addition, factors such
as climatic influences or intentional damage also deteriorate
their condition [3]. To ensure smooth rail traffic, i.e., to avoid
breakdowns and – even worse – accidents, track systems
must be maintained regularly. This maintenance work includes
an inspection of the rails and the trackbed as well as the
preparation and, if necessary, renewal of these components [4].
Experts estimate the annual maintenance costs at around
50,000 EUR/km [5], corresponding to the 15 to 25 billion EUR
budget reported by the EIM-EFRTC-CER Working Group [6].
Jovanović et al. estimate that a 15-55% reduction is achievable
through improved and more predictive maintenance [7].

Today, two methods are commonly used to inspect railroad
tracks: (i) trained personnel who inspect the infrastructures
only superficially but continuously, and (ii) a more thorough
but infrequent inspection by slow and expensive measuring
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vehicles [8], [9]. This inspection alone incurs costs of about
70 million EUR per year for the 370,000 km long railroad
tracks in the European Union [10]. Besides these exorbitant
costs, the current practice has another severe disadvantage.
Any problems, such as rail wear-outs or loose objects in the
trackbed, require prompt detection and fast remedial action
to avoid more severe damages, breakdowns, or accidents.
However, this would require frequent inspections integrated
into daily rail traffic to find anomalies in the railroad track.

Since railroad track damages and other anomalies, such as
foreign objects, are usually visible [11]–[13], it constitutes
a suitable application for an automated anomaly detection
system based on computer vision. Wang et al. investigated
an unsupervised method for detecting anomalies on rail
tracks [14]. However, their analysis excludes rail damages, and
their camera system only detects objects lying directly next to
the rails. Boussik et al. analyzed the performance of multiple
AE models on railroad obstacle detection [15]. Their analysis
relies mainly on images with synthetic anomalies, except for
only one single real-life scenario. Since their work focuses on
railroad obstacles, they did not analyze the performance for
detecting smaller objects and rail damages. Gasparini et al.
proposed an approach to observing the railroad track based
on an AE [13]. Their approach seems promising because the
underlying architecture would allow the detection of unknown
(i.e., unlearned) anomalies. However, their system’s decision-
making process entirely relies on a classification network
trained with anomaly data, canceling out the advantage of
its architecture. Moreover, they used a significantly limited
dataset for validation and only searched for large foreign
objects (like pickaxes or traffic lights), which they intentionally
placed on the track. They omit rail damages which can lead
to severe accidents, and smaller objects, such as dead animals,
which can attract bigger animals, possibly colliding with the
train. Moreover, they acquired their images with multiple
RGB- and infrared cameras mounted on a drone flying close
above the tracks, whereas we aim at train-mounted equipment.

Our paper’s main contribution is to propose VADAR, con-
sisting of three AEs, one segmentation network, and a one-
class classifier. This architecture is advantageous compared
to a state-of-the-art approach [13] as it allows the detection
of anomalies that (i) are entirely unknown and (ii) include,



besides foreign objects on the trackbed, rail damages.
With the help of the experiments’ results, based on a

dataset1 of about 218,000 images with different-looking rail-
road tracks containing over 56,000 infrastructure elements
(e.g., switches or sensors) and 10,000 non-intentionally placed
anomalies, we prove that images captured from a cost-effective
monochrome camera mounted on a regular train are sufficient
for a detection accuracy of 95% while achieving a recall rate
of over 70% for smaller and up to 100% for bigger objects
of several anomaly classes. Compared with the state-of-the-art
approach [13], equipped with a more expensive RGB camera
and tested on a dataset a magnitude smaller than ours, our
achieved accuracy and recall rate (for anomalies of particular
interest) are about 22pps and up to 45pps higher, respectively.

The scope of this paper, including all experiments and
results, refers to a camera setup analyzing images from a
monochrome camera installed under the train car. Figures 4a
and 4e are examples of such top-down images showing the
rails, the railroad crossties, ballast, and, in the case of Fig-
ure 4a, a dead animal (an anomaly). The camera system only
recorded images on rail tracks in Austria and Switzerland. The
dataset consists of images under non-systematically varying
lighting conditions. No images of this dataset show rainy,
snowy, or foggy conditions.

II. BACKGROUND AND RELATED WORK

A. Railroads Infrastructure Monitoring

Over the years of rail transport, rail facilities have evolved,
and so have inspection and maintenance methods [16]–[18].
Two current state-of-the-art methods for railroad infrastructure
monitoring exist: continuous albeit superficial on-site moni-
toring by trained personnel and a more thorough examination
via measurement vehicles [8], [9]. Usually, the last-mentioned
are used in most developed countries [19]. Modern vehicles
use measurement techniques, such as ultrasound or methods
based on light section or eddy-current [8], [17]. They are
multifunctional measuring but cost-intensive and inspect the
entire railroad network only in various intervals ranging from
a few weeks to a year, depending on the respective rail section,
i.e., more frequented routes are monitored more often than sec-
tions with less traffic. However, many problems, e.g., a broken
track or an object on the trackbed, require prompt action to
avoid damage and fatalities. These vehicles’ long measurement
intervals render early problem detection impossible [9].

Two solutions are suggested in the existing literature to
tackle this issue: (i) installing sensors on the track infras-
tructure [20], [21], and (ii) integrating sensors on moving
vehicles, such as locomotives or cars [11], [13]. The advantage
of direct integration in the infrastructure itself is the possibility
of continuous on-site monitoring. However, these solutions
generally entail high costs for the required sensors and the
communication infrastructure [22]–[25], even with the outlook
of advanced wireless transmission standards, such as 5G [26].

1Since the dataset is not our property, we are not allowed to publish or
share it. In Section IV, we describe the dataset to better discuss our results.

B. Computer Vision Based Anomaly Detection
Sometimes referred to as novelty detection, anomaly detec-
tion is the identification process of new or unknown data
or signals that were not known during training [27]. Ex-
isting literature defines anomalies as observations that de-
viate considerably from some concept of normality [28]
and divides anomaly detection algorithms into probabilistic
methods and reconstruction-based models [13]. Probabilis-
tic methods assume data follows an underlying probability
density function [27]. In contrast, reconstruction-based ap-
proaches, such as AEs [29], [30], or Generative Adversarial
Networks (GANs) [31], learn features from regular training
data (images without anomalies) that are useful for repre-
senting regular data. In other words, such a trained model
cannot sufficiently reproduce an anomaly present in an in-
put image. Reconstruction-based approaches like AEs have
shown promising results in image anomaly detection due to
their ability to effectively represent high-dimensional data
within a low-dimensional latent representation [32]. In railroad
scenarios, some anomaly detection approaches have already
been proposed that specialize in detecting certain defects or
damages. Li et al. propose an electromagnetic thermography
system for detecting certain rail damages [33], while [34]
proposes a camera system for detecting railroad plug defects.
Other works [35], [36] propose a camera and 3D camera
system for inspecting railroad fasteners, respectively.

In [13], Gasparini et al. propose a vision-based AE approach
to inspect railroad systems at night. Although their approach
could allow the detection of unknown anomalies, their sys-
tem uses a classifier network needing supervised training
of anomalies which cancels out the advantage of the AE-
based architecture. Moreover, their system only focuses on
detecting and localizing foreign objects on the trackbed and
omitting rail damages. Specifically, they exclusively focused
their analysis of this anomaly detection approach on ten
classes of construction site tools they intentionally placed on
the trackbed. They analyze a quite limited dataset captured
from a drone equipped with an RGB and an infrared camera
in combination with an artificial light source. Our proposed
system, VADAR, is also based on AEs. Section VI-A compares
the performances of both systems.

C. Public Datasets
To our knowledge, three annotated railroad datasets exist:
RailSem19: Zendel et al. propose RailSem19 in one of
their works [37]. It is a public dataset for semantic scene
understanding for trains and tramways, consisting of 8,500
annotated short sequences recorded out of a train from an
ego perspective. While it contains over 1,000 instances with
railroad crossings and 1,200 tram scenes, it does not contain
any anomalies, which is essential for testing VADAR.
Kaggle Railway Track Fault Detection: The Kaggle Railway
Track Fault Detection [38] dataset consists of 384 images
showing rails and other railroad infrastructure, half of which
contain anomalies. These images show entirely different per-
spectives (closeups from all possible sides). Therefore, they
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Fig. 1: The block diagram of VADAR. The blue blocks are
neural network based models and the white blocks refer to
other processing steps.

misfit the desired application of VADAR, detecting anomalies
from a moving train.
Vesuvio: Gasparini et al. recorded the Vesuvio dataset for their
work [13]. They shot the sequences at night with a drone flying
just above the tracks using a thermal camera, a stereo camera
system, and an industrial RGB camera. To test their system,
which shall detect foreign objects, they intentionally placed big
objects on the track, such as a pickaxe, a traffic light, and an
LPG tank. The recordings were then manually annotated with
bounding boxes. It is a magnitude smaller than our recorded
dataset and lacks rail damages and smaller foreign objects.
Moreover, it is not publicly available.

III. AUTOENCODER-BASED APPROACH

VADAR (Figure 1) analyzes Reconstruction Error (RE) images
based on the outputs of three different AEs. In this context,
an RE image is defined as

IRE = |Iorig − Irecon|, (1)

where Iorig is an input-, and Irecon is a reconstructed image.
We use an additional rail-segmentation network to separate

the reconstruction errors of the rails from the rest of the
trackbed. This procedure enables a distinction between rail
damages and foreign objects or vegetation on the trackbed.
Within this section, Cin, Cout, k, s, and p refer to the number
of input channels, output channels, the kernel size, stride, and
padding of layers, respectively.

A. Rail Segmentation
The random nature of the ballast on the railroad tracks seems
to limit the size of detectable anomalies. To overcome this
limitation and also detect small rail damages, we separately
analyze the rails’ REs where typically no ballast is.

The accuracy of this segmentation method depends on the
lighting conditions. A quality check then excludes implausible
segmentation outputs by taking a convolution ρ of a predefined
ground truth shape Mtruth and the segmentation output Mseg

and the sum σ of all pixels Mseg into account:

ρ = max (Mtruth ∗Mseg) , σ =
∑

Mseg, Q =
ρ

σ
. (2)

If the quality metric Q falls below a predefined threshold, the
segmentation output is considered faulty, and the rail damage
detection is not computed for this image.

Encoder Decoder
Layer Cin Cout k s p Cin Cout k s p

1 1 4 7 1 3 64 64 7 1 3
2 4 8 7 2 3 64 64 7 1 3
3 8 16 7 2 3 64 64 7 2 3
4 16 32 7 2 3 64 64 7 2 3
5 32 64 7 2 3 64 64 7 2 3
6 64 64 7 2 3 64 32 7 2 3
7 64 64 7 2 3 32 16 7 2 3
8 64 64 7 2 3 16 8 7 2 3
9 64 64 7 1 3 8 4 7 2 3
10 64 64 7 1 3 4 1 7 1 3

TABLE I: The encoder and decoder of the TAAE and IAE
consist of ten two-dimensional convolutional and transposed
convolutional layers, respectively. The column names are
defined at the beginning of Section III.

B. Image Reconstruction

Two of the three AEs are part of detecting anomalies in
the trackbed: the Trackbed Anomaly Autoencoder (TAAE)
and the Infrastructure Autoencoder (IAE). Both AEs are
based on an encoder with ten convolutional layers and a
decoder with ten transposed convolutional layers (Table I). The
TAAE is exclusively trained with regular images to generate
larger reconstruction errors for anomalous data. In contrast,
the IAE, exclusively trained with images containing infras-
tructure elements, can better reconstruct such images while
simultaneously achieving almost identical reconstructions of
regular images and images containing anomalies. A pixel-
wise comparison of the RE images of both AEs accomplishes
the Infrastructure detection (Figure 1). Pixel values with
differences greater than a predefined threshold imply that they
belong to an infrastructure element and are, therefore, ignored.

To detect rail damages, the Rail Anomaly Autoencoder
(RAAE) possesses a slightly different architecture (Table II)
which significantly improves accuracy and false positive rate
for rail damage detection (Figure 6). Since the RAAE could
sufficiently reconstruct larger foreign objects on the trackbed,
we only use it to detect rail damages. Figures 4b and 4f
show the reconstruction images of the TAAE and RAAE,
respectively.

C. Rail Damage Detection

The binary rail mask (Section III-A) enables VADAR to ana-
lyze the REs of the rail heads to detect rail damages VADAR
only considers pixel values larger than a defined threshold
to belong to an anomaly. A second threshold value for the
minimum summed-up anomaly value allows for decreasing
the false positive rate by ignoring smaller REs.

D. Trackbed Anomaly Detection

Unusually bright or dark stones of the ballast can lead to
significant reconstruction errors. Thus, only large coherent
areas (bigger than a threshold defined) within the RE image are
considered anomalies. The output of this procedure is a binary
image based on the RE image. Since factors like lighting



Encoder Decoder
Layer Cin Cout k s p Cin Cout k s p

1 1 16 3 1 1 32 32 3 2 1
2 16 32 3 2 1 16 32 3 2 1
3 32 32 3 2 1 32 32 3 2 1
4 32 32 3 2 1 32 32 3 2 1
5 32 32 3 2 1 32 32 3 2 1
6 32 32 3 2 1 32 32 3 2 1
7 32 32 3 2 1 32 16 3 2 1
8 32 32 3 2 1 16 1 3 1 1

TABLE II: The encoder and decoder of the RAAE consist
of eight two-dimensional convolutional and transposed convo-
lutional layers, respectively. We added a batch-normalization
layer before each of them. The column names are defined at
the beginning of Section III.

conditions and ballast influence the total RE, the threshold
value θ is defined as

θ = max (torch.quantile(IRE , q), θmin) , (3)

where the “torch.quantile”-function, provided by the PyTorch
framework [39], returns the qth quantile of IRE . If the overall
RE is unusually low due to bad lighting, a minimum value
θmin is used instead. The binary image results from setting
the pixel values to 1 if the corresponding pixel values of
the RE image are greater than the threshold; all other pixels
are set to 0. The Large coherent area detection (Figure 1)
utilizes the “regionprops” function of the Python package
“skimage.measure” [40] to determine the largest area within
the obtained binary mask. A coherent area greater than a
certain threshold is considered a potential anomaly and further
analyzed by a one-class classifier network. A significant contri-
bution to the total number of false positives comes from groups
of brighter or darker stones from the ballast. Therefore, an
additional one-class classifier (Figure 1) distinguishes gravel
from other objects to reduce the false positive rate. A 64-
by-64 pixels big patch of the original image is the input of
this one-class classifier. This image patch either includes the
total detected coherent error area or parts of it. Table III shows
the architecture of this classification network. If no anomalous
samples are available for VADAR’s training the Large coherent
area detection output indicates anomalies and the one-class
classifier is not used.

IV. DATASET USED

The dataset was collected in 2019 during a project conducted
in collaboration with the ÖBB (Austrian rail operator). This
project aimed to define and determine a cost-efficient sensor
system installable on regular trains to monitor railroad infras-
tructure. The sensors must fulfill the following constraints:
Standards: All parts of the system must satisfy the standards
prevalent in the railway industry to be permitted for usage,
i.e., homologation by official authorities [41].
Size and energy consumption: Sensors should not exceed
a specific size so that regular train carriages can easily be
retrofitted; they must either fit in and/or outside the train.

Cameras

(a) BEV setup (b) Real BEV setup

Fig. 2: Two stereo cameras installed underneath the train,
pointing at the tracks

Besides, the system’s power consumption must comply with
certain thresholds since trains have limited power.
Speed and external conditions: Components of the system,
especially those installed on the outside of the train, must
withstand the maximum operating train speed (varying from
100-230 km/h) while providing meaningful data taken under
different weather and light conditions.
Cost efficiency: System costs are an essential factor since
economic efficiency allows rail operators to retrofit as many
trains as possible and thus increase the coverage of monitored
rail tracks in the network.

Following all this guidance, two 3.2-megapixels monochro-
matic global shutter cameras for high-speed image acquisition
were installed underneath the train carriage (Figure 2). The
cameras, configured for stereo vision with a 20 cm baseline,
recorded the tracks in a bird’s-eye view (BEV), one stereo
image pair for each meter. The data recording was conducted
over three weeks and covered around 300 km of railroads in
Austria and Switzerland.

A. Dataset Statistics

The annotations consist of bounding boxes created with la-
belimg [42]. Since the evaluation of VADAR should also
consider the anomalies’ sizes, the annotations’ precision was
of great importance. From the approximately 2,000,000 image
dataset, we inspected and annotated about 218,000 images.

Layer Cin Cout k s p

Convolutional 1 1 32 3 1 1
Convolutional 2 32 32 3 1 1
MaxPool 32 32 2 2 0
Convolutional 3 32 64 3 1 1
Convolutional 4 64 64 3 1 1
AdaptiveAveragePool(2,2) 64 64 - - -
Flatten - - - - -
Linear 1 256 64 - - -
Linear 2 64 32 - - -
Linear 3 32 1 - - -

TABLE III: We added a batch-normalization layer before
each convolutional and linear layer of the one-class classifier.
Instead of the rectified linear unit (ReLU) activation function,
the last linear layer is followed by a sigmoid function. The
column names are defined at the beginning of Section III.



Class Instances Class Instances

box 2,900 sensor 370
crosstie attachment 23,965 spacer 674
different rail 3,468 switch 13,313
other 3,684 switch frog 1,075
rail attachment 4,720 switch positioner 2,123

TABLE IV: The group of infrastructure elements consists of
ten different classes.

Two categories of annotations exist: infrastructure elements
and anomalies. In this context, infrastructure elements do not
mean a rail or a crosstie but rather relatively less frequently
occurring elements, such as a switch, a switch frog, or various
sensors. Table IV gives detailed information about the different
infrastructure annotations. The anomaly annotations are
also divided into two groups: damages (e.g., rail damages)
and foreign objects (e.g., a dead animal). Figure 3 gives
information about the size distribution of damages, vegetation,
and foreign objects. As a reference, 1,000 pixels correspond
to roughly 0.13% of an image’s pixels. Most vegetation that
is greater than 10,000 pixels includes several smaller plants
across the entire trackbed. The labeled rail damages in this
dataset differ in severity and contain a variety of damages
like break-outs, skid spots, and even some small-scale rail
damages like indentations [43]. There are 320 additional rail
anomalies larger than 10,000 pixels. These anomalies are
corrugations and typically appear on multiple consecutive
frames. Furthermore, each frame’s type of crossties, type of
ground, and ambient lighting conditions are annotated. Table V
lists the number of samples for each scenario.

Railroad Crossties Ground Types Ambient Lighting
Class Instances Class Instances Class Instances

Concrete 185,128 Gravel 226,845 Daylight 227,311
Wood 42,552 Railroad Crossing 2,255 Dark 2,324
Mixed 1787 Mixed 466 Mixed 8
Metal 74 Bridge 50
Hardrubber 26 Asphalt 9
None 8 Unknown 18
Unknown 68

TABLE V: Classes defined in the BEV dataset and their
corresponding numbers of images.

V. TRAINING

All neural network models are implemented with Cuda
11.3 [44] within the PyTorch [39] machine learning frame-
work (Version 1.11.0). We train all models on an NVIDIA
A100 40GB [45] Graphics Processing Unit (GPU) and feed
batches of 32 samples to them. We use the Adam optimization
algorithm [46] with a learning rate of 10−3, and the β-values
are 0.9 and 0.999. The labeled images are divided into 80%
training and 20% validation data. For all models except the
one-class classifier network, only images free of anomalies
are part of the training process.

Fig. 3: Size distributions of trackbed- and rail anomalies.

A. Training the Autoencoders

For training the TAAE and RAAE, 18,191 instances of the
labeled portion of the dataset are used. As proposed by
Gasparini et al. [13], we use a loss function that includes
both the mean squared error loss LI,MSE between the input
image and its reconstruction as well as the mean squared error
loss LG,MSE between the gradients of the input image and its
reconstruction. The overall loss L is then defined as

L = LI,MSE + LG,MSE . (4)

In contrast to the training of the TAAE, the training data
of the IAE only includes images containing infrastructure
elements. In total, 19,402 images were used for a 100-
epochs-long training, applying the loss function described in
Equation 4 of both AEs.

B. Training the Rail Segmentation

Since the rail segmentation network model utilizes the same
network architecture as the RAAE, it was initialized with
the already trained parameters of the AE model. We then
used a transfer learning approach to train it for 40 epochs
with 12,573 images of different parts of the dataset and
corresponding manually created rail masks as the ground truth
data. A manually created rail mask fits hundreds of consecutive
images of a railroad track because the positions of the rails are
constant. In contrast to the AE training procedure, the binary
cross-entropy loss was applied as a loss function.

C. Training the One-Class Classifier

We trained the classifier with 6,000 regular images (containing
only ballast) and 6,004 anomalous (containing foreign ob-
jects) patches. The regular patches were extracted from 200
labeled images of different lighting conditions without any
anomalies or infrastructure elements. The anomalous patches
were obtained from roughly 30% of the available anomalous
images. From larger anomalous objects, multiple patches were
extracted. We trained the model for 100 epochs and used the
binary cross-entropy loss as the loss function.



(a) Original input image. (b) Reconstructed image. (c) RE image. (d) Largest coherent area.

(e) Original input image. (f) Reconstructed image. (g) RE image. (h) Segmented RE.

Fig. 4: These figures show a detected dead animal (first row) and a detected rail damage (second row). VADAR ignores the
light reflection (in the lower left part of Figure e), which is no damage.

VI. EVALUATION

We used the labeled part of the dataset to evaluate several
performance metrics of this anomaly detection approach. The
accuracy is defined as

acc =
TP + TN

TP + TN + FP + FN
, (5)

and the false positive rate and recall rate are defined as

fpr =
FP

TN + FP
, rec =

TP

TP + FN
(6)

respectively. Whereby TP , TN , FP , and FN represent the
number of true positives, true negatives, false positives, and
false negatives, respectively. Since the data obtained from a
camera with a wide-angle lens leads to distorted edge areas
after image transformation, we cropped 768-by-1024 pixels
big center of each image. Although the camera system consists
of two cameras (Section IV), this approach only considers one
camera’s images since both are almost congruent. Figure 4
shows two original images (one with an animal, the other with
a damaged rail) and their corresponding reconstructed-, RE-,
and output images.

Because rail damages and foreign objects differ in their size,
the sizes of the bounding boxes are part of the evaluation. After
the cropping procedure, some annotations may disappear from
certain images and, thus, are ignored in the evaluation process.

A. Results

The lines between markers in all result graphs (Figures 5, 6,
and 7) do not represent data points but visualize the trends.
Changing the threshold value for the anomaly pixel values of
the trackbed anomaly detector influences the accuracy, false
positive rate, and recall rate. Figure 5 shows the results for
anomalies with bounding boxes larger than 5,000 pixels, which
corresponds to roughly 0.6% of the total input image pixels.
Five separate experiments on the whole labeled dataset were

conducted for different threshold parameters q and θmin. The
threshold value is defined as the maximum of the qth quantile
of IRE and the minimum threshold value θmin, as described
in Equation 3. Discussions with railroad maintenance experts
revealed that a low false positive rate should be targeted to
increase acceptance among maintenance personnel. Figure 5
shows the improvements in accuracy and false positive rate
when instead of solely using the TAAE, the IAE and TAAE
are used to enable the infrastructure detection. While there
are only small changes in recall rates in a few cases, the
accuracy and false positive rate are improved significantly
when two AEs are used. This anomaly detection approach
relies on the intensity difference between the anomalous
object on the trackbed and the trackbed itself. The lighting
conditions affect this intensity difference and have an impact
on the performance of the anomaly detector. Not every kind
of vegetation is detectable by this approach. Besides the
intensity difference between the plants and the elements of the
trackbed, the vegetation’s density is also an important factor.
Because every kind of plant was labeled in this dataset, the
majority of vegetation is either small or sparse. Every kind
of object that did not fit into one of the other classes was
labeled as “others.” Most of these objects are small pieces
of trash or dark pieces of wood. Because such objects and
small and sparse vegetation are not of special interest for
maintenance, the lower recall rates should be tolerable for
most railroad maintenance applications. Through the proposed
infrastructure detection approach, only roughly 6% of all
images containing infrastructure elements without an anomaly
lead to false positives. The classifier network further reduces
the number of false positives resulting from regular images
by 37%, allowing for false positive rates of under 1% while
decreasing the overall recall rates of trackbed anomalies by at
most 7pp.

For the rail anomaly detection evaluation, only rail head
damages like break-outs, skid spots, or indentations were



Fig. 5: Solid lines represent the results obtained using TAAE
and IAE, whereas dotted lines show the usage of solely TAAE.
Increasing the threshold value q and θmin decreases the false
positive rate and recall rates.

considered. Labeled damages to the sides of the rails are
ignored since the rail segmentation network only includes
the rail heads in its output. Although the total sum of the
thresholded reconstruction error is considered, the size of the
damage is also an important factor. The bounding boxes’ size
was used to approximate the damages’ size, and only damages
larger than 600 pixels were considered, which corresponds
to roughly 0.08% of the total input image pixels. Figure 6
shows five separate experiments with different threshold values
and clarifies why a separate RAAE is used. The different
architecture of the RAAE leads to significant improvements in
overall accuracy and false positive rate while maintaining the
same recall rate as the TAAE on the rail damage detection task.
The annotations for rail damages do not distinguish between
different types of rail damages, but an overwhelming majority
of labeled rail anomalies are minor damages. The larger the
threshold value, the lower the recall rate on such smaller
damages. However, relatively large damages like a break-
out (Figure 4e) lead to unusually high reconstruction errors,
especially under advantageous lighting conditions. Because
this specific break-out led to an anomaly value of 78.8, this
damage would be detectable for thresholds up to this value.
These more severe damages are reliably detectable while
maintaining a false positive rate well below 1%. Gasparini
et al. [13] analyzed the performance of their approach on
the Vesuvio dataset. Since this dataset is not published, we
implemented their system and tested it on the BEV dataset
for comparison. Figure 7 shows the recall rates for various
anomaly classes and object sizes for their approach and for
two different settings of our proposed approach. The recall
rates increase significantly with the object size. The setting
of VADAR, with an accuracy of 83.5%, outperforms the
Gasparini approach regarding accuracy and recall rate for
every anomaly class and object size. For a different setting,
where VADAR achieves an even higher accuracy of 95.0%,
it is only outperformed by Gasparini’s method regarding the
recall rate for the vegetation class. Probably the reason for that
is that their supervised approach benefits from the strongly
overrepresented vegetation instances within the BEV dataset.

Fig. 6: While achieving the same recall rate, using the TAAE
instead of the RAAE leads to a worse overall accuracy and
false positive rate. Increasing the summed-up rail RE threshold
decreases the false positive and recall rate.
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Fig. 7: The Gasparini et al. [13] method’s accuracy reaches
72.3%, while VADAR’s accuracy, in different setups, is 95.0%
and 83.5% (with only higher recall rates). The recall rate for
foreign objects increases with their size.

VII. CONCLUSIONS

Railroad maintenance can benefit from a cost-effective vision-
based anomaly detection system integrated into daily rail
traffic. The top-down perspective of the camera system and
our approach, VADAR, enable the detection of foreign objects
and early-stage rail damages. The false positive rate caused
by infrastructure elements and the ballast is significantly
reduced through VADAR’s architecture, including three AEs,
a rail segmentation network, and a one-class classifier. While
achieving a detection accuracy of more than 95%, VADAR
reaches a recall rate for rail damages of more than 80% and
for objects of special interest, like animals, greater than 70%.
The recall rate for animals, bottles, and cans bigger than
10,000 pixels (bounding box size), which fills roughly 1.3%
of the total input image, reaches even 100%. The trade-off
between the overall accuracy and recall rate could be varied
and fine-tuned for a specific application. When focusing on
larger objects and more severe rail damages like breakouts, a
false positive rate of even 1% is achieved.

Although this approach was designed with a gray-scale
dataset in mind, the same approach could also be applied



to color images. Analyzing all color channels might further
improve the recall rate of anomalies with a different color
than the gravel and fasteners. Besides, improving the lighting
conditions with stronger artificial lighting systems or a dif-
ferent camera position or perspective could further improve
the overall detection accuracy. Moreover, utilizing the images
of both cameras of the camera system could enable another
anomaly detection approach based on stereo vision.
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