Models of Computation in the Design Process

Axel Jantsch and Ingo Sander
Royal Institute of Technology, Stockholm, Sweden

January 30, 2005

Abstract

We organize Models of Computation (MoC) with respect to their time abstrac-
tion. We distinguish between continuous time, discrete time, synchronous and
untimed MoCs. System level models serve a variety of objectives with partially
contradicting requirements. Consequently, different MoCs are necessary for the
various tasks and phases in the design of an embedded system. We trace the impact

of MoCs on the efficiency of several design activities for synthesis, verification and

simulation.
Contents
1 Introduction

2 Models of Computation

3

2.1 Continuous TimeModels
2.2 Discrete TimeModels
2.3 SynchronousModels
2.4 Feedback Loops in Discrete Time and Synchronous Models
2.5 UntimedModels

2.5.1 DataFlow Process Networks

2.5.2 Rendezvous-basedModels

2.6 Heterogeneous Models of Computation

MoCs in the Design Flow

3.1 Continuous TimeModels
3.2 Discrete TimeModels
3.3 SynchronousModels
34 UntimedModels

3.5 DISCUSSION e e e

—_— = 0 O N N N U A

e e) —
D A~ B~ W

—_ =
(o) e

4 Design Activities 17

4.1 Synthesis 17
4.1.1 RTL Synthesis 18

4.1.2 High-level Synthesis 20

4.1.3 Discussion . . . o.o.o. ..o e e e e 20

42 Simulation. 22
4.3 Formal Verification, 23
4.4 Summaryo e e e e e e 24
5 Conclusion 24

1 Introduction

A system on a chip (SoC) can integrate a large number of components such as micro-
controllers, digital signal processors (DSPs), memories, custom hardware, and recon-
figurable hardware in the form of field programmable gate arrays (FPGAs) together
with analog-to-digital (A/D) and digital-to-analog (D/A) converters on a single chip
(Figure 1). The communication structures become ever more sophisticated consist-

ing of several connected and segmented buses or even packet switched networks. In

FPGA Memory DSP

D/A

AD [

. . Custom
Communication Structure Hardware

Memory

Custom
Hardware

Memory

Custom
Hardware

Micro— Micro— Micro— DSP
processor | | processor | | processor

Figure 1: A possible system-on-a-chip architecture

total there may be dozens or hundreds of such components on a single SoC. These ar-
chitectures offer an enormous potential but they are heterogeneous and tremendously
complex. This also applies to embedded software. Moreover, the overall system com-
plexity grows faster than system size due to the component interaction. In fact, intra-
system communication is becoming the dominant factor for design, validation and

performance analysis. Consequently, issues of communication, synchronization and
concurrency must play a prominent role in all system design models and languages.

The design process for SoCs is complex and sophisticated. From abstract models
for requirements definition and system specification more and more refined models are
derived leading eventually to low level implementation models that describe the layout
and the assembler code. Most of the models are generated and processed either fully
automatically or with tool support. Once created models have to be verified to check
their consistency and correctness.

Requirement definition

N /

Y

e N

Platform specification J

System specification

(SW Component Component

specification

HW Component
specification

Interface

specification

Interface

specification specification

y p Y
p—
HW Design SW Design
model model
Y Y e
T T

HW

Implementation

SW

Implementation

model model

Figure 2: A SoC Design Process involves many models.

Figure 2 depicts a few of the models typically generated and transformed during a
design project. Different design tasks require different models. A system level feasi-
bility study and performance analysis needs key performance properties of the archi-
tecture, components and functions but not a full behavioral model. Scheduling and
schedulability analysis need abstract task graphs, timing requirements and an abstract
model of the scheduler in the operating system. Synthesis and verification tools need
behavioral models at a proper abstraction level. Noise, EMC analysis, test pattern gen-
erators and many other tools have their own requirements on the models they use.

Since all design tasks put specific requirements on a model, we may ask, how strong

the influence of a model of computation is on the potential and efficiency of design
techniques. The answers are dependent on the specific design tasks and tools. We
consider only a small selection of tasks, namely HW synthesis, simulation and formal
verification. Also we cannot take all possible models into account, but we restrict the
discussion to three specific MoC classes: untimed MoCs, synchronous MoCs, discrete
and continuous time MoCs. They are distinguished by their abstraction of time and
their synchronization behavior which will allow us to analyze design techniques with
respect to these aspects. Other aspects such as data representation will not be covered.

In the next section we introduce the MoCs under consideration and review some of
their important properties. In section 3 we trace MoCs in different design phases and in
section 4 we discuss the importance of MoCs for synthesis, simulation and verification
techniques.

2 Models of Computation

We use the term “Model of Computation” (MoC) to focus on issues of concurrency
and time. Consequently, even though it has been defined in different ways by different
authors (see for instance [21,33,39,43,46]), we use it to define the time representa-
tion and the semantics of communication and synchronization between processes in a
process network. Thus, a MoC defines how computation takes place in a structure of
concurrent processes, hence giving a semantics to such a structure [9, 20]. This se-
mantics can be used to formulate an abstract machine that is able to execute a model.
Languages are not computational models, but have underlying computational models.
For instance the languages VHDL, Verilog and SystemC share the same discrete time,
event driven computational model. On the other hand, languages can be used to sup-
port more than one computational model. In ForSyDe [42] the functional language
Haskell [25] is used to express several models of computation. Libraries have been
created for synchronous, untimed and discrete time models of computation. Standard
ML has been used similarly [35]. SystemC has also been extended to support SDF
(synchronous dataflow) and CSP (communicating sequential processes) MoCs in addi-
tion to its native discrete time MoC [38].

To choose the right model of computation is of utmost importance, since each MoC
has certain properties. As an example consider a process network modeled as a discrete
time system in SystemC. In the general case automatic tools will not be able to compute
a static schedule for a single processor implementation, even if the process network
would easily allow it. For this reason Patel and Shukla [38] have extended SystemC to
support an SDF MoC. The same process network expressed as an SDF can then easily
be statically scheduled by a tool.

Skillicorn and Talia discuss models of computation for parallel architectures in
[44]. Their community faces similar problems as those in design of embedded sys-

tems. In fact all typical parallel computer structures (SIMD, MIMD') can be imple-
mented on a SoC architecture. Recognizing, that programming of a large number of
communicating processors is an extremely complex task, they try to define properties
for a suitable model of parallel computation. They emphasize that a model should hide
most of the details (decomposition, mapping, communication, synchronization) from
programmers, if they shall be able to manage intellectually the creation of software.
The exact structure of the program should be inserted by the translation process rather
than by the programmer. Thus models should be as abstract as possible, which means
that the parallelism has not even to be made explicit in the program text. They point
out that ad hoc compilation techniques cannot be expected to work on problems of this
complexity, but advocate building software, that is correct by construction rather then
verifying program properties after construction. Programs should be architecture inde-
pendent to allow reuse. The model should support cost measures to guide the design
process and should have guaranteed performance over a useful variety of architectures.

In the following sections, we present a number of important models of compu-
tations and give their key properties. Following [20,21]we organize them according
to their time abstraction. We distinguish between discrete time models, synchronous
models where a cycle denotes an abstract notion of time, and untimed models. This is
consistent with the tagged-signal model proposed by Lee and Sangiovanni-Vincentelli
[33]. There each event has a time tag and different time tag structures result in dif-
ferent MoCs. E.g. if the time tags correspond to real numbers we have a continuous
time model; integer time tags result in discrete time models; time tags drawn from a
partially ordered set result in an untimed MoC.

MoCs can be organized along other criteria, e.g. along the kinds of elements ma-
nipulated in a MoC which leads Paul and Thomas [39] to a grouping of MoCs for
hardware artifacts, for software artifacts and for design artifacts. However, an organi-
zation along properties that are not inherent is of limited use because it changes when
MoCs are used in different ways.

A consequence of an organization along the time abstraction is that all strictly se-
quential models such as finite state machines and sequential algorithms are not distin-
guished. All of them can serve for modeling individual processes, while the semantics

of the MoC defines the process interaction and synchronization.

2.1 Continuous Time Models

When time is represented by a continuous set, usually the real numbers, we talk of
a continuous time MoC. Prominent examples of continuous time MoC instances are
Simulink [8], VHDL-AMS and Modelica [12]. The behavior is typically expressed

IFlynn has classified typical parallel data structures in [13], where SIMD is an abbreviation for Single
Instruction, Multiple Data and MIMD for Multiple Instruction, Multiple Data.

as equations over real numbers. Simulators for continuous time MoCs are based on
differential equation solvers that compute the behavior of a model including arbitrary
internal feed-back loops.

Due to the need to solve differential equations, simulations of continuous time mod-
els are very slow. Hence, only small parts of a system are usually modeled with con-
tinuous time such as analog and mixed signal components.

To be able to model and analyze a complete system that contains analog compo-
nents, mixed-signal languages and simulators such as VHDL-AMS have been devel-
oped. They allow to model the pure digital parts in a discrete time MoC and the analog
parts in a continuous time MoC. This allows for complete system simulations with
acceptable simulation performance. It is also a typical example where heterogeneous
models based on multiple MoCs have clear benefits.

2.2 Discrete Time Models

Models, where all events are associated with a time instant and the time is represented
by a discrete set, such as the natural numbers, are called discrete time models.?
Discrete time models are often used for the simulation of hardware. Both VHDL
[19] and Verilog [18] use a discrete time model for their simulation semantics. A
simulator for discrete time MoCs is usually implemented with a global event queue
that sorts occurring events. Discrete time models may have causality problems due to

zero-delay in feedback loops, which are discussed in Section 2.4.

2.3 Synchronous Models

In synchronous MoCs time is also represented by a discrete set, but the elementary

time unit is not a physical unit but more abstract due to two abstraction mechanisms:

1. Each event occurs in a specific evaluation cycle (also called time slot or clock
cycle). The occurrence of evaluation cycles is globally synchronized even for
independent parts of the system. But the relative occurrence of events within the
same evaluation cycle is not further specified. Thus, events within an evaluation
cycle are only partially ordered as defined by causality and data dependences

only.

2. Intermediate events that are not visible at the end of an elementary evaluation
cycle are irrelevant and can be ignored.

2Sometimes this group of MoCs is denoted as discrete event MoC. However, strictly speaking “discrete
event” and “discrete time” are independent, orthogonal concepts. The first denotes a model where the set of
the event values is a discrete set while the second denotes a model with time values drawn from a discrete
set, e.g. integers. In contrast continuous time and continuous event models use continuous sets for time
and event values, respectively, e.g. the real numbers. All four combinations occur in practice: continuous
time/continuous event models, continuous time/discrete event models, discrete time/continuous event models
and discrete time/discrete event models. See for instance [6] for a good coverage of discrete event models.

In each evaluation cycle all processes evaluate once and all events occurring during
this process are considered to occur simultaneously.

The synchronous assumption can be formulated according to [1]. The synchronous
approach considers “ideal reactive systems that produce their outputs synchronously
with their inputs, their reaction taking no observable time”. This implies that the com-
putation of an output event is instantaneous. The synchronous assumption leads to a
clean separation between computation and communication. A global clock triggers
computations that are conceptually simultaneous and instantaneous. This assumption
frees the designer from the modeling of complex communication mechanisms and pro-
vides a solid base for formal methods.

A synchronous design technique has been used in hardware design for clocked syn-
chronous circuits. A circuit behavior can be described deterministically independent of
the detailed timing of gates by separating combinational blocks from each other with
clocked registers. An implementation will have the same behavior as the abstract cir-
cuit under the assumption that the combinational blocks are “’fast enough” and that the
abstract circuit does not include zero-delay feedback loops.

The synchronous assumption implies a simple and formal communication model.
Concurrent processes can easily be composed together. However, feedback loops with
zero-delay may cause causality problems which are discussed next.

2.4 Feedback Loops in Discrete Time and Synchronous Models

Discrete time models allow zero-delay computation; in perfectly synchronous models
this is even a basic assumption. As a consequence, feedback loops may introduce
inconsistent behavior. In fact, feedback loops as illustrated in Figure 3 may have no

solution, it may have one solution or it may have many solutions.

True True True
AND AND AND
= NAND = AND - OR
True True True

(a) (b) (c)

Figure 3: A feedback loop in a synchronous system. System a) has no solutions, b) has
multiple solutions and c) has a single solution.

Figure 3a shows a system with a zero-delay feedback loop that does not have a
stable solution. If the output of the Boolean AND function is True then the output of
the NAND function is False. But this means that the output of the AND function has
to be False, which is in contradiction to the starting point of the analysis. Starting with

the value False on the output of AND does not lead to a stable solution either. Clearly
there is no solution to this problem.

Figure 3b shows a system with feedback loop with multiple solutions. Here the
system is stable, if both AND functions have False or if both AND functions have True
as their output value. Thus the system has two possible solutions.

Figure 3c shows a feedback loop with only one solution. Here the only solution is
that both outputs are True.

It is crucial for the design of safety-critical systems that feedback loops with no
solution as in Figure 3a are detected and eliminated, since they result in an oscillator.
Also feedback loops with multiple solutions imply a risk for safety-critical systems,
since they lead to non-determinism. Non-determinism may be acceptable, if it is de-
tected and the designer is aware of its implications, but may have serious consequences,
if it stays undetected.

Since feedback loops in discrete time and synchronous models are of such impor-
tance there are several approaches which address this problem [9].

Microstep In order to introduce an order between events that are produced and con-
sumed in an event cycle, the concept of microsteps has been introduced into
languages like VHDL. VHDL distinguishes between two dimensions of time.
The first one is given by a time unit, e.g. a picosecond, while the second is given
by a number of delta-delays. A delta-delay is an infinitesimal small amount of
time. An operation may take zero time units, but it takes at least one delta-delay.
Delta-delays are used to order operations within the same time unit.

While this approach partly solves the zero-delay feedback problem, it introduces
another problem since delta delays will never cause the advance of time mea-
sured in time units. Thus during an event cycle there may be an infinite amount
of delta-delays. This would be the result, if Figure 3a would be implemented
in VHDL, since each operation causes time to advance with one delta-delay.
An advantage of the delta-delay is that simulation will reveal that the composite
function oscillates. However, a VHDL simulation would not detect that Figure
3b has two solutions, since the simulation semantics of VHDL would assign an
initial value for the output of the AND gates (False®) and thus would only give
one stable solution, concealing the non-determinism from the designer. Another
serious drawback of the microstep concept is that it leads to a more complicated
semantics, which complicates formal reasoning and synthesis.

Forbid zero-delays The easiest way to cope with the zero-delay feedback problem

is to forbid them. In case of Figure 3a and 3b this would mean the insertion

3VHDL defines the data type boolean by means of type boolean is (false, true). At
program start variables and signals take the leftmost value of their data type definitions; in case of the
boolean data type the value false is used.

of an extra delay function, e.g. after the upper AND function. Since a delay
function has an initial value the systems will stabilize. Assuming an initial value
of True, Figure 3a will stabilize in the current event cycle with the values False
for the output of the NAND function and False for the value of the AND function.
Figure 3b would stabilize with the output value True for both AND functions. A
possible problem with this approach is that a stable system such as 3c is rejected,
since it contains a zero delay feedback loop. This approach is adopted in the
synchronous language Lustre [16] and in synchronous digital hardware design.
When used in a synchronous MoC this the resulting MoC variant is sometimes
called clocked synchronous MoC [21].

Unique fixed-point The idea of this approach is that a system is seen as a set of equa-
tions for which one solution in form of a fixed-point exists. There is a special
value L (“bottom”) that allows it to give systems with no solution or many so-
lutions a fixed-point solution. The advantage of this method is that the system
can be regarded as a functional program, where formal analysis will show, if the
system has a unique solution. Also systems that have a stable feedback loop
as in Figure 3c are accepted, while the systems of Figure 3a and b are rejected
(the result will be the value L as solution for the feedback loops). Naturally,
the fixed-point approach demands a more sophisticated semantics, but the theory
is well understood [49]. Esterel has adopted this approach and the constructive
semantics of Esterel is described in [2].

Relation based This approach allows the specification of systems as relations. Thus a
system specification may have zero solutions, one solution or multiple solutions.
Though an implementation of a system usually demands a unique solution, other
solutions may be interesting for high-level specifications. The relation-based
approach has been employed in the synchronous language Signal [28].

2.5 Untimed Models

In untimed models there is no global notion of time. If one event does not depend
directly or indirectly on another event, it is undefined if one event occurs at the same
time as, earlier or later than the other event. Hence, the only ordering on the occurrence
of events is determined by causal relationships. If one event depends on another event,
it must occur after the other event.

2.5.1 Data Flow Process Networks

Data flow process networks [32] are a special variant of Kahn process networks [26,27].
In a Kahn process network processes communicate with each other via unbounded
FIFO channels. Writing to these channels is non-blocking, i.e. they always succeed

OO0
©

Figure 4: A data flow process network

and do not stall the process, while reading from these channels is blocking, i.e. a pro-
cess that reads from an empty channel will stall and can only continue when the chan-
nel contains sufficient data items (tokens). Processes in a Kahn process network are
monotonic, which means that they only need partial information of the input stream
to produce partial information of the output stream. Monotonicity allows parallelism,
since a process does not need the whole input signal to start the computation of output
events. Processes are not allowed to test an input channel for existence of tokens with-
out consuming them. In a Kahn process network there is a total order of events inside
a signal. However, there is no order relation between events in different signals. Thus
Kahn process networks are only partially ordered which classifies them as an untimed
model.

A data flow program is a directed graph consisting of nodes (actors) that represent
communication and arcs that represent ordered sequences (streams) of events (tokens)
as illustrated in Figure 4. Empty circles denote nodes, arrows denote streams and the
filled circles denote tokens. Data flow networks can be hierarchical since a node can

represent a data flow graph.

The execution of a data flow process is a sequence of firings or evaluations. For
each firing tokens are consumed and tokens are produced. The number of tokens con-
sumed and produced may vary for each firing and is defined in the firing rules of a data

flow actor.

Data flow process networks have been shown very valuable in digital signal pro-
cessing applications. When implementing a data flow process network on a single
processor, a sequence of firings, also called a schedule has to be found. For general
data flow models it is undecidable whether such a schedule exists because it depends
on the input data.

Synchronous data flow (SDF) [30, 31] puts further restrictions on the data flow
model, since it requires that a process consumes and produces a fixed number of tokens
for each firing. With this restriction it can be tested efficiently, if a finite static schedule
exists. If one exists it can be effectively computed. Figure 5 shows an SDF process
network. The numbers on the arcs show how many tokens are produced and consumed

10

I Y
DENCRO
1@3>1

Figure 5: A synchronous data flow process network

during each firing. A possible schedule for the given SDF network is {A,A,C,C,B,D}.

SDF is an excellent example of a MoC that offers useful properties by restricting the
expressive power. There exists a variety of different data flow models each representing
a different trade-off between interesting formal properties and expressiveness. For an
excellent overview see [32].

2.5.2 Rendezvous-based Models

A rendezvous-based model consists of concurrent sequential processes. Processes
communicate with each other only at synchronization points. In order to exchange
information, processes must have reached this synchronization point, otherwise they
have to wait for each other. Each sequential process has its own set of time tags. Only
at synchronization points processes share the same tag. Thus there is a partial order of
events in this model. The process algebra community uses rendezvous-based models.
The CSP (Communicating Sequential Processes) model of Hoare [17] and the CCS
(Calculus of Communicating Systems) model of Milner [36,37] are prominent exam-
ples. The language Ada [4] has a communication mechanism based on rendezvous.

2.6 Heterogeneous Models of Computation

A lot of effort has been spent to mix different models of computation. This approach
has the advantage, that a suitable model of computation can be used for each part of
the system. On the other hand, as the system model is based on several computational
models, the semantics of the interaction of fundamentally different models has to be
defined, which is no simple task. This even amplifies the validation problem, because
the system model is not based on a single semantics. There is little hope that formal
verification techniques can help and thus simulation remains the only means of valida-
tion. In addition, once a heterogeneous system model is specified, it is very difficult
to optimize systems across different models of computation. In summary, while het-
erogeneous MoCs provide very general, flexible and useful simulation and modeling
environment, cross-domain validation and optimization will remain elusive for many

11

years for any heterogeneous modeling approach. In the following an overview of re-
lated work on mixed models of computation is given.

In *charts [15] hierarchical finite state machines are embedded within a variety of
concurrent models of computations. The idea is to decouple the concurrency model
from the hierarchical FSM semantics. An advantage is that modular components, e.g.
basic FSMs, can be designed separately and composed into a system with the model
of computation that best fits to the application domain. It is also possible to express a
state in an FSM by a process network of a specific model of computation. *charts has
been used to describe hierarchical FSMs that are composed using data flow, discrete
event and synchronous models of computations.

The composite dataflow [22] integrates data and control flow. Vectors and the con-
version from scalar values to vectors and vice versa are integral parts of the model.
This allows to capture the timing effects of these conversions without resorting to a
synchronous or discrete time MoC. Timing of processes is represented only to the level
to determine if sufficient data are available to start a computation. In this way the
effects of control and timing on dataflow processing are considered at the highest pos-
sible abstraction level because they only appear as data dependency problems. The
model has been implemented to combine Matlab and SDL into an integrated system
specification environment [3].

Internal representations like the system property intervals (SPI) model [50] and
FunState [45] have been developed to integrate a heterogeneous system model into
one abstract internal representation. The idea of the SPI model is to allow for “’global
system analysis and system optimization across language boundaries, in order to al-
low reliable and optimized implementations of heterogeneously specified embedded
real-time systems”. All synthesis relevant information, such as resource utilization,
communication and timing behavior, is extracted from the input languages and trans-
formed into the semantics of the SPI model. An SPI model is a set of parameterized
communicating processes, where the parameters are used for the adaptation of differ-
ent models of computation. SPI allows to model non-determinism through the use of
behavioral intervals. There exists a software environment for SPI that is called the
SPI workbench and which is developed for the analysis and synthesis of heterogeneous
systems.

The FunState representation refines the SPI model by adding the capability of ex-
plicitly modeling state information and thus allows the separation of data flow from
control flow. The goal of FunState is not to provide a unifying specification, but it
focuses only on specific design methods, in particular scheduling and validation. The
internal FunState model shall reduce design complexity by representing only the prop-
erties of the system model relevant to these design methods.

The most well known heterogeneous modeling and simulation framework is Ptolemy
[10,29]. It allows to integrate a wide range of different MoCs by defining the interac-

12

Feasibility analysis

/

Functional specificatio% [Architecture definition

N

1) Task graph

Code generation .

S

Figure 6: Suitability of MoCs in different design phases. “C’stands for continuous
time MoC; “D” for discrete time MoC; “S” for synchronous MoC; and “U” for untimed
MoC. More than one label on a design phase means, that all of the MoCs are required
since no single MoC is sufficient by itself.

tion rules of different MoC domains.

3 MoCs in the Design Flow

From the previous sections it is evident that different models fundamentally have dif-
ferent strengths and weaknesses. There is no single model that can satisfy all purposes
and thus models of computation have to be chosen with care.

Let us revisit the discussed MoCs while considering the different design phases
and the design flow. For the sake of simplicity we only identify five main design tasks
as illustrated in figure 6. Early on, the feasibility analysis requires detailed studies
of critical issues that may concern performance, cost, power or any other functional
or non-functional property. The functional specification determines the entire system
functionality (at a high abstraction level) and constitutes the reference model for the
implementation. Independent of the functional specification is the architecture specifi-
cation, which may come with performance and functional models of processors, buses
and other resources. The task graph breaks the functionality in concurrent activities
(tasks), which are mapped onto architecture resources. Once resource binding and
scheduling has been performed, the detailed implementation for the resources is cre-
ated.

The essential difference of the four main computational models that we introduced
in the previous section, is the representation of time. This feature alone weighs heavily
with respect to their suitability for design tasks and development phases.

13

3.1 Continuous Time Models

Continuous time MoCs are mostly used to accurately model and analyze existing or
prospective devices. They reflect detailed electrical and physical properties with high
precision. Hence, they are ideal to study and model tiny entities in great detail but they
are unsuitable to analyze and simulate large collections and complex systems due to the
overwhelming amount of details. They are usually not used to specify and constrain
behavior but may serve as reference models for the implementation. Thus, they are
frequently used in feasibility studies, to analyze critical issues, and in architectural
models to represent analog or mixed signal components in the architecture. Analog
synthesis is still not well automated and hence continuous time models are rarely used

as input to synthesis tools.

3.2 Discrete Time Models

The discrete time MoC constitutes a very general basis for modeling and simulation
of almost arbitrary systems. With the proper elementary components it can serve to
model digital hardware consisting of transistors and gates; systems-on-chip consisting
of processors, memories, and buses; networks of computers, clients and servers; air
traffic control systems; evolution of prey-predator populations; and much more [5]. In
fact it is most popular and widely used in an enormous variety of engineering, economic
and scientific applications.

However, it cannot be used for everything. In the context of hardware and soft-
ware design the discrete time model has the drawback that a precise delay information
cannot be synthesized. To provide a precise delay model for a piece of computation
may be useful for simulation and may be appropriate for an existing component, but
it hopelessly over-specifies the computation for synthesis. Assume a multiplication is
defined to take Sns. Shall the synthesis tool try to get as close to this figure as possible?
What deviation is acceptable? Or should it be interpreted as “max 5Sns”? Different
tools will give different answers to these questions and synthesis for different target
technologies will yield very different results and none of them will match the simula-
tion of the discrete time model. The situation becomes even worse, when a delta-delay
based model is used. As we discussed in section 2.4 the delta-delay model elegantly
solves the problem of non-determinism for simulation, but it requires a mechanism for
globally ordering the events. Essentially, a synthesis system had to synthesize a similar
mechanism together with the target design, which is an unacceptable overhead.

These problems notwithstanding, synthesis systems for both hardware and software
have been developed for languages based on time models. VHDL and Verilog based
tools are the most popular and successful examples. They have avoided these problems
by ignoring the discrete time model and interpreting the specification according to a
clocked synchronous model. Specific coding rules and assumptions allow the tool to

14

identify a clock signal and infer latches or registers separating the combinatorial blocks.
The drawbacks of this approach are that one has to follow special coding guidelines
for synthesis, that specification and implementation may behave differently, and in
general that the semantics of the language is complicated by distinguishing between
a simulation and a synthesis semantics. The success of this approach illustrates that
mixing different MoCs in the same language is practical. It also demonstrates the
suitability of the clocked synchronous model for synthesis but underscores that the
discrete time model is not synthesizable.

3.3 Synchronous Models

The synchronous models represent a sensible compromise between untimed and dis-
crete time models. Most of the timing details can be ignored but we can still use an
abstract time unit, the evaluation or clock cycle, to reason about the timing behavior.
Therefore it has often a natural place as an intermediate model in the design process.
Lower level synthesis may start from a synchronous model. Logic and RTL synthe-
sis for hardware design and the compilation of synchronous languages for embedded
software are prominent examples. The result of certain synthesis steps may also be
represented as a synchronous description such as scheduling and behavioral synthesis.

It is debatable if a synchronous model is an appropriate starting point for higher
level synthesis and design activities. It fairly strictly defines that activities occurring in
the same evaluation cycle but in independent processes are simultaneous. This imposes
an unnecessarily strong coupling between unrelated processes and may restrict early
design and synthesis activities too much.

On the other hand in many systems timing properties are an integral part of the sys-
tem functionality and are therefore an important part of a system specification model.
Complex control structures typically require a fine control over the relative timing of
events and activities. As single chip systems increas in complexity, this feature be-
comes more common. Already today there is hardly any SoC design that does not
exhibit complex control.

Synchronous models constitute a very good compromise for dealing with time at
an abstract level. While they avoid the nasty details of low level timing problems, they
allow to represent and analyze timing relations. In essence the clock or evaluation
cycle defines abstract time budgets for each block. The time budgets turn into timing
constraints for the implementation of these blocks. The abstract time budgets constrain
the timing behavior without over-constraining it. Potentially there is a high degree
of flexibility in this approach if the evaluation cycles of a synchronous MoC are not
considered as fixed-duration clock cycles but rather as abstract time budgets, which
do not have to be of identical duration in different parts of the design. Their duration
could also change from cycle to cycle if required. Re-timing techniques exploit this

15

flexibility. [40,47].
This feature of offering an intermediate and flexible abstraction level of time makes
synchronous MoCs suitable for a wide range of tasks as indicated in figure 6.

3.4 Untimed Models

Untimed models have an excellent track record in modeling, analyzing and designing
signal processing systems. They are invaluable in designing digital signal processing
algorithms and analyzing their key performance properties such as signal to noise ratio.

Furthermore, they have nice mathematical features, which facilitate certain syn-
thesis tasks. The tedious scheduling problem for software implementations is well
understood and efficiently solvable for synchronous data flow graphs. The same can be
said for determining the right buffer sizes between processes, which is a necessary and
critical task for hardware, software and mixed implementations. How well the individ-
ual processes can be compiled to hardware or software depends on the language used
to describe them. The data flow process model does not restrict the choice of these lan-
guages and is therefore not responsible for their support. For what it is responsible, i.e.
the communication between processes and their relative timing, it provides excellent
support due to a carefully devised mathematical model.

3.5 Discussion

Figure 6 illustrates this discussion and indicates in which design phases the different
MoCs are most suitable. Note, that several MoCs placed on a design phase bubble
means that in general a single MoC does not suffice for that phase but several or all of
them may be required.

No single MoC serves all purposes equally well. The emphasis is on “equally well”
because all of them are sufficiently expressive and versatile to be used in a variety of
contexts. However, their different focus makes them more or less suitable for specific
tasks. For instance a discrete time, discrete event model can be used to model and
simulate almost anything. But it is extremely inefficient to use it to simulate and an-
alyze complex systems when detailed timing behavior is irrelevant. This inefficiency
concerns both tools and human designers. Simulation of a discrete time model takes
orders of magnitude longer than simulation of an untimed model. Formal verification is
orders of magnitude more efficient for perfectly synchronous models than for discrete
time models. Human designers are significantly more productive in modeling and an-
alyzing a signal processing algorithm in an untimed model than in a synchronous or
discrete time model. They are also much more productive to model a complex, dis-
tributed system when they have appropriate and high level communication primitives
available, than when they have to express all communication with unprotected shared
variables and semaphores. Hardware engineers working on the RT level (synchronous

16

MoC) design many more gates per day than their counterparts not using a synchronous
design style. Analog designers are even less productive in terms of designed transistors
per day because they deal with the full range of details at the physical and electri-
cal level. Unfortunately, good abstractions at a higher level have not been found yet
for analog design with the consequence that analog design is less automated and less
efficient than digital design.

MoCs impose different restrictions which, if selected carefully, can lead to signif-
icant improvements in design productivity and quality. A strict finite state machine
model can never have unbounded memory requirements. This property is inherent in
any FSM model and does not have to be proved for every specific design. The amount
of memory required can be calculated by static analysis and no simulation is required.
This is in contrast to models with dynamic memory allocation where it is in general
impossible to prove an upper bound for the memory requirement and long simulations
have to be used to obtain a high level of confidence that the memory requirements are
indeed feasible. FSM models are restrictive but if a problem suits these restrictions, the
gain in design productivity and product quality can be tremendous.

A similar example is synchronous dataflow. If a system can be naturally expressed
as an SDF graph, it can be much more efficiently analyzed, scheduled and designed
than the same system modeled as a general dataflow graph.

As a general guideline we can state that the productivity of tools and designers is
highest if the least expressive MoC is used that still can naturally be applied to the
problem.

Thus, all the different computational models have their place in the design flow.
Moreover, several different MoCs have to be used in the same design model because
different sub-systems have different requirements and characteristics. This leads natu-
rally to heterogeneous MoCs which can either be delayed within one language or with
several languages under a coordination framework as will be discussed below.

4 Design Activities

Next we investigate specific design tasks and their relation to MoCs. We do not intend
to present an exhaustive list of activities, but we hope to illustrate the strong connection
and interdependence of design tasks and models on which they operate.

4.1 Synthesis

Today several automatic synthesis steps are part of the standard design flow of ASICs
and SoCs. Register Transfer Level (RTL) synthesis, technology mapping, placement
and routing, logic and FSM synthesis are among those. Other techniques that have been
researched and developed but not successfully commercialized are high level synthesis,

17

system level partitioning, resource allocation and task mapping. We take a closer look

at RTL and High-level Synthesis because they are particularly enlightening examples.

4.1.1 RTL Synthesis

RTL Synthesis takes as input an HDL (Hardware Description Language) model of a
process, for instance written in VHDL or Verilog, and generates a netlist of gates that
adheres to a synchronous design style. Since VHDL and Verilog are simulation not
synthesis languages, some of their constructs cannot be synthesized. Every RTL Syn-
thesis tool defines a synthesizable subset of the input language.* This subset definition
has two objectives. First, constructs that cannot be synthesized into HW are excluded.
Obvious examples are file I/O operations and dynamic memory management. Second,
typical and efficient HW structures are encoded in the language subset. Synthesis tools
will identify FSMs, memories, registers and combinatorial logic in the source model
and translate them efficiently onto corresponding HW structures. E.g. VHDL pro-
cesses have to be written in a specific style with only one clock signal such that the
synthesis tool can extract a combinatorial netlist with registers at the outputs. Figure

PROCESS (clk, reset)
BEGIN
IF reset = “0° THEN
state <= 0;
ELSIF clk’event AND clk = “1° THEN
state <= nextstate;
END IF;
END PROCESS

Figure 7: A VHDL process encoding the P_reg block of figure 8.

7 shows a VHDL process that would be interpreted as a FSM state register by most
synthesis tools. If two other combinatorial processes are provided and properly mod-
eled, the tool would derive a FSM structure as shown in figure 8. P_reg reacts to a reset
signal to go into the initial state, and to a clock signal to make a state transition.

The definition of a synthesizable subset and the particular interpretation of synthe-
sis tools lead to a divergence of simulation semantics and synthesis semantics. There

are three main motivations for this.

1. Some language constructs are pure simulation devices and there is no reason why
anybody would want to synthesize them. Examples are file access and assertions.

2. Some language constructs are too expensive to implement in hardware and the

current state of the art suggests that they should not be synthesized. Examples

4There are different subsets imposed by different tools, but they are not very essential and concern mostly
issues of user convenience and synthesis performance rather than the semantics. There exists even an IEEE
standard for a synthesizable subset.

18

P_next P_reg P_out

input nextstate stgte output

clk reset

Figure 8: A VHDL synthesis tool derives a state machine when the VHDL description
contains three properly modeled processes. P_next is a combinatorial process defining
the next state transition function. P_reg is a register storing the state. P_out models the
output encoding function.

are multi-dimensional arrays and dynamic memory allocation. When future en-
gineers conclude that such constructs should also be available to hardware de-

signers, these restrictions may disappear.

3. The timing model of the simulation semantics is ill-suited for synthesis. The
simulation semantics is based on a discrete time model and allows to express
delays in terms of nano and pico seconds. In contrast the synthesized model is a

clock synchronous MoC that simply cannot express physical time delays.

The last item interests us most because it shows that VHDL/Verilog based simu-
lation and synthesis use different models of computation, according to our scheme in
section 2. The simulation semantics is based on a discrete time MoC which is unsuit-
able for synthesis. Even if a delay of e.g. 2 ns could be accurately synthesized, it
would over-constrain the following technology mapping, placement and routing steps
and lead to a hopelessly inefficient implementation. Accurate synthesis of the delta-
delay concept is even more elusive.

In contrast, the clocked synchronous MoC? allows to separate synthesis of the be-
havior from timing issues. Since the clock structure and the scheduling of computations
in clock cycles is already part of the input model, the RTL synthesis focuses on opti-
mizing the combinatorial blocks between registers. In an analysis step separate from
synthesis the critical paths can be identified and the overall system performance can be
assessed. Re-timing techniques, that move gates and combinatorial blocks across clock
cycle boundaries can shorten critical paths and increase overall performance. If all this
proves insufficient the input model to RTL synthesis has to be modified.

In conclusion, for RTL synthesis a clocked synchronous MoC is the best choice be-

cause it reflects efficient hardware structures and allows for an effective separation of

SRecall from section 2.4 that a clocked synchronous MoC is a synchronous MoC variant where no feed-
back loops are allowed within the same clock cycle. Therefore the feed-back loop in figure 8 has to be broken
by the P_reg register process.

19

behavioral synthesis from timing optimization. A lower level, discrete time MoC is en-
tirely inadequate since it over-constrains the synthesis. Starting synthesis with a model
based on a higher time abstraction, an untimed MoC, imposes fewer constraints on the
synthesis process but consequently requires the synthesis task to include scheduling of
operations as will be discussed next.

4.1.2 High-level Synthesis

High-level synthesis, later also called behavioral synthesis, as defined and researched
heavily in the 19980s [14], includes the tasks of resource allocation, operation binding
and operation scheduling. The input is an algorithm described in a sequential language
such as C or as a VHDL process. Resource allocation estimates the type and number
of HW resources required to implement the algorithm, e.g. how many multipliers,
adders, ALUs, etc. Operation binding binds operations of the algorithm to allocated
resources. Scheduling assigns the operations to specific clock steps, thus determining
when they will be executed. Figure 9 illustrates the scheduling procedure. From the
algorithmic specification in 9(a) the dataflow graph 9(b) is extracted to represent the
data dependences. Figure 9(c) shows the scheduled dataflow graph by using the As-
Soon-As-Possible (ASAP) scheduling principle.

The natural MoC for the input to High-level synthesis is an untimed MoC. Syn-
chronous or discrete time MoCs are unsuitable because they both determine the exe-
cution time of individual operations, rendering the scheduling step superfluous. In fact
the untimed model was the MoC chosen by all groups that developed high-level syn-
thesis systems. This was either done by defining a dedicated language that could only
express an untimed MoC, or by sub-setting a general purpose design language such
as VHDL or Verilog. Resource allocation and operation binding concerns the refine-
ment of computation. The abstraction level of the computation and the operators are
not defined by the MoCs in section 2. Thus, the untimed MoC is a suitable input to
high-level synthesis independent of the kind of operations involved, simple adders and
half-adders or highly complex processing elements.

4.1.3 Discussion

Other synthesis procedures also have their natural input and output MoC. Hence, each
synthesis method has to be provided with input models that match its natural MoC, e.g.
a clocked synchronous MoC for RTL and an untimed MoC for high-level synthesis. In
practice this is accomplished in one of two ways. The obvious approach is to choose
an input language that matches well with the natural MoC. If this is not desirable due
to other constraints, a language subset and interpretation rules are established, that
approximate the MoC required by the synthesis method. We call this technique the
projection of an MoC into a design language. It is illustrated in figure 10.

20

(1) a = il + i2;

(2) ol = (a - 13) * 3;

(3) 02 := 14 + 15 + i6;

(4) d = 17 * 1i8;

(5) g = d + 19 + 110;

(6) ©03 := 1ill * 7 * g; ol 02 03
(a) Algorithmic specification (b) Dataflow Graph

Control |
Step

ol 02 o3

(c) Scheduled Dataflow Graph

Figure 9: An algorithmic specification and its scheduled dataflow graph (from [11]).

Taking a step back we can contemplate the relation between synthesis methods and
MoCs. They are mutually dependent and equally important. While it is in general
correct that every synthesis method has “natural MoCs” defining its input and output,
we can also observe that the major synthesis steps follow naturally from the definition
of the MoCs. For every significant difference between two MoCs we can formulate
a synthesis step transforming one MoC into the other. On the other hand, the MoCs
represent useful abstractions only if we can identify efficient synthesis methods that
use them as input and output.

Our treatment of MoCs does not cover other relevant issues such as abstraction
and refinement of computation and data types. We have focused foremost on time and
therefore we could discuss the scheduling problem of high-level synthesis convincingly
while we barely mentioned the allocation and binding tasks. We believe there are good
arguments for using time as the primary criteria for categorizing MoCs while other

21

Synthesis
Method

MoC
Projection

MoC
Projection

= Synthesis
Tool

Input Design Language Output Design Language

Figure 10: MoC Projection into Design Languages.

domains such as computation, communication and data lead to variants within the same
MoC. For a more thorough discussion of this question see [24] or [20]. For a further

elaboration of domains and abstractions see [23].

4.2 Simulation

All MoCs that we have discussed can be simulated. So the question that we have to ask
is not, which MoC is suitable for simulation, but how efficiently a given MoC can be
simulated. Also, we may want to distinguish different purposes of simulation and then
we can ask if, for a given purpose, we should prefer one MoC to another.

It is obvious that discrete time MoC simulations are slower than synchronous MoC
simulations which in turn are slower than untimed MoC simulations, because MoCs
at lower abstraction levels require the computation of many more details. It has been
reported that simulations of clock cycle true models, which correspond to our clocked
synchronous MoCs, are 1-2 orders of magnitude faster than discrete event simulations,
which correspond to our discrete time MoC [41]. Moving to an untimed MoC, e.g.
functional or transaction level simulations, can further speed-up simulation by 1 to 2
orders of magnitude [41,48]. Higher abstraction in any of the domains time, data,
computation and communication, improves simulation performance, but the time ab-
straction seems to be play a dominant role [34], because a higher time abstraction
significantly reduces the number of events in a simulation uniformly in all parts of a
model.

The disadvantage with abstract MoCs is the loss of accuracy. Detailed timing be-
havior and the clock cycle period cannot be analyzed in a synchronous MoC simula-
tion. Transaction level models cannot unveil problems in the details of the interface
and low level protocol implementation. In an untimed MoC no timing related proper-
ties can be investigated and arithmetic overflow effects cannot be observed when using
ideal, mathematical data types. Clearly, a trade-off between accuracy and simulation
performance, as illustrated in figure 11, demands that a design is simulated at various

22

Simulation

Simulati Performance
1mulation

Accuracy

discrete synchronous untimed
time MoC MoC MoC

Abstraction

Figure 11: The trade-off between accuracy and simulation performance.

abstractions during a design project from specification to implementation.

4.3 Formal Verification

Formal verification techniques experience a similar trade-off as simulation. If there are
too many details in a model, the run-time and memory requirements of most verifi-
cation tools become prohibitive. Consequently, most techniques are specialized on a
particular MoC and sometimes also on a restricted set of properties. They follow the
MoCs established by synthesis and design methods, because these have turned out to
be useful MoCs for several formal verification techniques as well.

An example formal technique is model checking [7]. It requires a finite state ma-
chine (FSM) based model of the design and allows to express and verify various prop-
erties such as that a particular variable assignment will never occur in any of the pos-
sible states reachable from an initial state. Model checking essentially explores the
state space of the FSM until it either finds a counter-example or it can prove the given
property, e.g. by exploring the entire reachable state space.

Multiple, communicating FSMs can be handled but only by merging them into
a single, flat FSM. This often leads to serious state space explosion problems. Due
to clever algorithms and highly efficient data representations can model checking be
applied to realistic designs and proves useful in practice.

The natural MoC for property checking is a synchronous MoC, just as for RTL
synthesis, since it corresponds to a finite state machine and its evolution. Detailed
timing information below the granularity of synchronous MoCs cannot be handled by
model checking unless they are encoded in a way fitting into the MoC. On the other

23

Table 1: Design activities with their respective MoCs (U-MoC = Untimed MoC,
S-MoC = Synchronous MOC, D-MoC = Discrete time MoC, C-MoC = Continuous
time MoC)

Input MoC Design task Output MoC
U-MoC High-level synthesis S-MoC
S-MoC RTL Synthesis D-MoC
U-MoC Transaction level simulation

S-MoC Cycle-true simulation

D-MoC Discrete-event simulation

C-MoC Analog simulation

S-MoC Model and property checking

hand an untimed MoC would in principle be compatible with model checking but it
would allow for infinitely many ways to merge multiple FSMs into a single one, thus
magnifying the state space explosion problem even further.

Just as in the case of synthesis techniques, we can also observe that all formal ver-
ification techniques require specific MoCs as input descriptions. The basic principles,
such as theorem proving, are often much more general but have to be specialized for a
specific problem domain, and thus for a specific MoC, to make them useful in practice.
Hence, a MoC serves by dramatically restricting the problem space and, if selected

carefully, allows for efficient verification tools.

4.4 Summary

Table 1 summarizes the discussed tasks and gives their respective MoCs.

As mentioned above, we have chosen to distinguish the MoCs according to their
time abstraction. Therefore we can naturally analyze design tasks that have a strong
relation to a particular time abstraction such as scheduling or cycle-true simulation.
For an analysis of all other design tasks in a similar satisfactory way we would have to

introduce MoC variants based on computation, data and communication abstractions.

5 Conclusion

We have analyzed the relation between some inherent properties of computational mod-
els and various design tasks and phases. Since this is an endeavor far beyond a single
article we have taken time as our primary parameter and have defined four MoC classes
based on the time abstraction: continuous time, discrete time, synchronous time and
untimed MoC. This is justified because the chosen representation of time has a criti-
cal influence on synchronization, communication and the overall system behavior for
systems described by communicating concurrent processes. For a more elaborate study
that encompasses all design activities and phases we suggest to still use time abstraction

24

as the primary criterion for defining MoCs but to use other abstractions and domains to
introduce more MoC variants as suitable.

We have not carefully illuminated the relation between MoCs and design languages
since it is an intricate one with many subtle connections and implications that requires
a chapter of its own. For more, but not an exhaustive, elaboration of this issue see [24].

The main targets of our study, complex, heterogeneous, embedded systems, require
the use of all presented MoCs. But each MoC has a very specific place and role in the
design process as illustrated by figure 6 and table 1. The usage of MoCs should be a
conscious choice based on their inherent properties and the given objective and design
task. Using them for the wrong purpose will lead to poor results that cannot be rectified
by improving a synthesis or simulation algorithm.

But MoCs are not just predefined and given to us and we merely have to pick the
right one. Rather, they have to be properly developed and defined for a particular
purpose. This is a delicate task because we face a difficult trade-off. To simplify the
overall design process and support tool interoperability we would like to have as few
different MoCs as possible. However, if we aim at the best possible MoC for a specific
task, we will have to integrate many, specialized MoCs in the design flow. History
shows, that the process of identifying, accepting and establishing MoCs is tedious and
slow. The successful introduction of a new MoC is typically bound to a major paradigm
change, such as the move from schematic entry design to RTL based synthesis.

References

[1] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79(9):1270-1282, September 1991.

[2] G. Berry. The constructive semantics of pure Esterel - draft version 3. Technical
report, INRIA, 06902 Sophia-Antipolis CDX, France, July 2 1999.

[3] P. Bjuréus and A. Jantsch. Modeling of mixed control and dataflow systems in
MASCOT. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
9(5):690-704, October 2001.

[4] G. Booch and D. Bryan. Software Engineering with Ada. The Ben-
jamin/Cummings Publishing Company, 1994.

[5] C. G. Cassandras. Discrete Event Systems. Aksen Associates, Bosten, Mas-
sachusetts, 1993.

[6] C. G. Cassandras. Discrete Event Systems: Modeling and Performance Analysis.
Asken Associates, 1993.

25

[7] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
Cambridge, MA, 1999.

[8] J. Dabney and T. L. Harman. Mastering SIMULINK 2. Prentice Hall, 1998.

[9] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy approach. Proceed-
ings of the IEEE, 91(1):127- 144, January 2003.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, and Y. Xiong. Taming heterogeneity—the Ptolemy approach. Proceed-
ings of the IEEE, 91(1):127-144, January 2003.

[11] P. Eles, K. Kuchcinski, and Z. Peng. System Synthesis with VHDL. Kluwer
Academic Publisher, 1998.

[12] H. Elmgqvist, S. E. Mattsson, and M. Otter. Modelica - the new object-oriented
modeling language. In Proceedings of the 12th European Simulation Multicon-
ference, June 1998.

[13] M. J. Flynn. Some computer organisations and their effectiveness. IEEE Trans-
actions on Computers, C-21(9):948-960, September 1972.

[14] D. Gajski, N. Dutt, A. Wu, and S. Lin. High Level Synthesis. Kluwer Academic
Publishers, 1993.

[15] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(6):742-760, June 1999.

[16] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305-1320,
September 1991.

[17] C. A. R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666—-676, August 1978.

[18] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE, 2001.
[19] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, 2002.

[20] A. Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Systems on Silicon. Morgan Kaufmann Publishers, June
2003.

[21] A.Jantsch. Models of embedded computation. In Embedded Systems. CRC Press,
2005. Invited contribution; to appear.

26

[22]

[24]

[25]

[26]

[27]

(28]

A. Jantsch and P. Bjuréus. Composite signal flow: A computational model com-
bining events, sampled streams, and vectors. In Proceedings of the Design and
Test Europe Conference (DATE), pages 154160, Paris, France, March 2000.

A. Jantsch, S. Kumar, and A. Hemani. The Rugby model: A framework for the
study of modelling, analysis, and synthesis concepts in electronic systems. In
Proceedings of Design Automation and Test in Europe (DATE), 1999.

A. Jantsch and I. Sander. System level specification and design languages. IEE
Proceedings on Computers and Digital Techniques, 2005. Special issue on Elec-
tronic System Design; Invited paper.

S. P. Jones. Haskell 98 Language and Libraries. Cambridge University Press,
2003.

G. Kahn. The semantics of a simple language for parallel programming. In
Proceedings of the IFIP Congress 74, Stockholm, Sweden, 1974. North-Holland.

G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In
IFIP ’77. North-Holland, 1977.

P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Marie. Programming real-
time applications with SIGNAL. Proceedings of the IEEE, 79(9):1321-1335,
September 1991.

E. A. Lee. Overview of the ptolemy project. Technical Report UCB/ERL M03/25,
University of California, Berkeley, CA, July 2003.

E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers, C-
36(1):24-35, January 1987.

E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235-1245, September 1987.

E. A. Lee and T. M. Parks. Dataflow process networks. [EEE Proceedings,
83(5):773-799, May 1995.

E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models
of computation. [IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(12):1217-1229, December 1998.

H. G. M. Khosravipour, G. Gridling. Improving simulation efficiency by hier-
archical abstraction transformations. In Proceedings of the Forum on Design
Languages, 1998.

27

[35] D. Mathaikutty, H. Patel, and S. Shukla. A functional programming framework
of heterogeneous model of computations for system design. In Proceedings of the
Forum on Specification and Design Languages, Lille, France, September 2004.

[36] R. Milner. A calculus of communicating systems. LNCS, 92, 1980.
[37] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[38] H. D. Patel and S. K. Shukla. SystemC Kernel Extensions for Heterogeneous
System Modeling. Kluwer Academic Publishers, Boston/Dordrecht/London, June
2004.

[39] J. M. Paul and D. E. Thomas. Models of computation for systems-on-chip. In
A. Jerraya and W. Wolf, editors, Multiprocessor Systems-on-Chip, chapter 15.
Morgan Kaufman Publishers, 2004.

[40] F. Rose, C. Leiserson, and J. Saxe. Optimizing synthesis circuitry by retiming. In
Proc. of the Caltech Conference on VLSI, pages 41 — 67, 1983.

[41] J. A. Rowson. Hardware/software cosimulation. In Proceedings of the Design
Automation Conference, pages 439-440, 1994.

[42] 1. Sander and A. Jantsch. System modeling and transformational design refine-
ment in ForSyDe. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(1):17-32, January 2004.

[43] J. E. Savage. Models of Computation, Exploring the Power of Computing. Addi-
son Wesley, 1998.

[44] D. B. Skillicorn and D. Talia. Models and languages for parallel computation.
ACM Computing Surveys, 30(2):123-169, June 1998.

[45] K. Strehl, L. Thiele, M. Gries, D. Ziegenbein, R. Ernst, and J. Teich. FunState -
an internal design representation for codesign. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 9(4):524-544, August 2001.

[46] R. G. Taylor. Models of computation and formal language. Oxford University
Press, New York, 1998.

[47] N. Wehn, J. Biesenack, T. Langmaier, M. Muench, M. Pilsl, S. Rumler, and
P. Duzy. Scheduling of behavioural VHDL by retiming techniques. In Proceed-
ings EuroDAC 94, pages 546 — 551, September 1994.

[48] B. Werner and P. S. Magnusson. A hybrid simulation approach enabling perfor-
mance characterization of large software systems. In Proceedings of MASCOTS,
1997.

28

[49] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
1993.

[50] D. Ziegenbein, K. Richter, R. Ernst, L. Thiele, and J. Teich. SPI—a system
model for heterogeneously specified embedded systems. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 10(4):379-389, August 2002.

29

