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ABSTRACT
Today’s heterogeneous embedded systems combine compo-
nents from different domains, such as software, analogue
hardware and digital hardware. The design and implemen-
tation of these systems is still a complex and error-prone
task due to the different Models of Computations (MoCs),
design languages and tools associated with each of the do-
mains. Though making such systems adaptive is techno-
logically feasible, most of the current design methodologies
do not explicitely support adaptive architectures. This pa-
per present the ANDRES project. The main objective of
ANDRES is the development of a seamless design flow for
adaptive heterogeneous embedded systems (AHES) based
on the modelling language SystemC. Using domain-specific
modelling extensions and libraries, ANDRES will provide
means to efficiently use and exploit adaptivity in embedded
system design. The design flow is completed by a methodol-
ogy and tools for automatic hardware and software synthesis
for adaptive architectures.

1. INTRODUCTION

Highly integrated embedded systems are usually heteroge-
neous by including up to three different domains: software,
analogue hardware and digital hardware. Extending these
systems with abilities to adapt to different operating condi-
tions and functional requirements has become an interesting
and motivating goal for industry and research, in particular
since the availability of run-time reconfigurable FPGAs.

However, up to now, there is no methodology that al-
lows to seamlessly specify, simulate, synthesise and verify
such adaptive heterogeneous embedded systems (AHES),
because each domain comes with its own models of com-
putation, languages and tools. In particular, the expression
of adaptivity within these domains has either not been thor-
oughly investigated so far or is not supported at all.

The overall goal of the ANDRES project is to re-
solve these issues by developing an integrated design flow

for AHES. This design flow builds on the open-source
modelling language SystemC already adopted by industry
and research. As a result, ANDRES will provide a Sys-
temC modelling framework for designing embedded hard-
ware/software systems on a high level of abstraction em-
phasising in particular the integration of adaptivity. This
modelling framework is complemented with concepts and
tools for automatic hardware/software synthesis from adap-
tive system models. At the end of the project, ANDRES
will provide a complete design flow for AHES that covers
specification, modelling and implementation. The design
flow will be evaluated by using state-of-the-art OFDM based
communication systems as use-cases.

ANDRES is a specific targeted research project
(STREP) and is co-funded by the European Commission
within the Sixth Framework Programme. It has started in
June 2006 and will last for three years. The project con-
sortium consists of four research partners: OFFIS, Techni-
cal University of Vienna, KTH Stockholm and University
of Cantabria, and two industrial partners: Thales Communi-
cations and DS2. Additional and future information about
ANDRES can be found on the project website [1].

The rest of the paper is structured as follows: We will
first present the industrial motivation for the project arising
from the expectations towards the usage of adaptive archi-
tectures. Following a classification of adaptivity and a de-
scription of the planned design flow, we we will briefly in-
troduce the domain specific modelling libraries including a
formal approach for specification of adaptivity. The paper
concludes with a look at the concept for automatic synthesis
of run-time reconfigurable hardware.

2. INDUSTRIAL MOTIVATION

The design of today’s embedded systems has to deal with
the complexity implied by the combination of various tech-
nologies (hardware and software) and the increasing need
for (re)configurability (e.g. communication systems have to



support several protocols using the same hardware). Modern
mobile phones combine for example a PDA, a GPS based
navigation system, entertainment and multi-mode commu-
nication with all kinds of external devices. Furthermore,
these systems have to manage performance and concur-
rent access to resources. Dynamically reconfigurable sys-
tems have the potential of realising efficient systems as well
as providing adaptability to changing system requirements.
Another motivation for reconfiguration is resource optimi-
sation of the physical layer; one of the crucial issues today
is power consumption.

One of the most difficult tasks in the design of modern
complex embedded home networking systems, like power-
line communication modems, is the validation phase. Here,
the use of FPGA technology has the potential to allow early
analysis of the behaviour of a system design under almost
real conditions while having flexibility for adding or modi-
fying the design, making them the ideal tool for system val-
idation. Dynamic reconfiguration of FPGAs might provide
even more capabilities for the validation of this kind of sys-
tems: Different peripherals can be included on the FPGA on
demand. This way, specific interfaces and modules for infor-
mation extraction and debugging can be configured and re-
moved on the fly, effectively saving logic and I/O ressources
on the FPGA.

3. CLASSIFICATION OF ADAPTIVITY

While the heterogeneity of embedded systems has already
been extensively investigated in the past [2, 3], consider-
ing adaptivity is rather new to embedded system design.
In particular through the availability of very flexible pro-
grammable logic devices, like partially run-time reconfig-
urable FPGAs, making systems adaptive has become very
attractive by offering a whole new range of possible appli-
cations.

3.1. Adaptive Architectures

In general, adaptivity is not limited to one special domain,
e.g. the software or digital hardware domain, but may be ex-
pressed and implemented using a range of different adaptive
architectures. In ANDRES we consider the following archi-
tectures exhibiting various forms of adaptivity:

Microprocessor The microprocessor is highly adaptive due
to the possibility to load and execute different pro-
grams.

FPGA Some FPGA families support both full and partial
reconfigurability during run-time.

Analogue circuits The operation of an analogue circuit can
be adapted by changing parameters of analogue com-
ponents.

Fig. 1. The ANDRES design flow

Custom hardware Custom hardware can provide some de-
gree of adaptivity, if a component can be set to differ-
ent modes.

3.2. Types of Adaptivity

Depending on the chosen architecture and application adap-
tivity comes in different flavours. In ANDRES we cover the
full degree of adaptivity, from setting a few parameters up
to reconfiguring the whole device. We mainly focus on dy-
namic adaptivity, where the adaptation of the system is done
during run-time. Components can either be self-adaptive or
their adaptation is controlled externally. We also consider
channel adaptation, where a communication channel adapts
to different interfaces of an adaptive component.

4. ANDRES DESIGN FLOW

The ANDRES design flow, as illustrated in Figure 1, starts
with a constrained system model, already modelling adap-
tivity and including functional and non-functional proper-
ties. This constrained model is a SystemC model, whose
design rules and guidelines are based on a formal approach
(Section 5.1). This model can then be refined to different
target domains using one of the three domain-specific mod-
elling libraries: SystemC-AMS (Section 5.2), HetSC (Sec-
tion 5.3) and OSSS+R (Section 5.4).

Each of the libraries provides means to create executable
specifications to simulate system components. All libraries
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Fig. 2. Processes of different Models of Computation can
communicate with each other via domain interfaces

are based on the discrete-event kernel of SystemC, so in
principle they can be coupled to simulate the complete sys-
tem. Simulation coupling is supported by an overall frame-
work and so called polymorphic signals (Section 5.5). These
signals support exchanging Models of Computation of sys-
tem components without having to change the connecting
communication infrastructure.

The general adaptivity concept already expressed in the
constrained model is specialised within each of the libraries
using domain specific techniques. Because not all target ar-
chitectures provide the same types of adaptivity, e.g. ana-
logue circuits only allow parametrisation, exploration of dif-
ferent types and architectures may be limited.

Finally the refined SystemC system model is the en-
try point for automatic synthesis. ANDRES will provide
tools for automatic synthesis of digital reconfigurable hard-
ware, software and communication infrastructure. However,
ANDRES does not cover automatic synthesis of analogue
circuits.

5. SPECIFICATION OF ADAPTIVE SYSTEMS

5.1. Formal Specification

The modelling framework in ANDRES is based on the exist-
ing ForSyDe [2, 4] framework developed at KTH. ANDRES
extends ForSyDe by integration of adaptivity into the mod-
elling framework. This is done by the concept of an adaptive
process, which changes its behaviour depending on special
input signals from the environment. The values carried by
these input signals can be data values, but also functions or
complete processes. Thus adaptation can be modelled at a
varying degree of complexity.

ANDRES uses a formally defined, hierarchical hetero-
geneous MoC, which is illustrated in Figure 2. Processes
communicate via signals. There are so-called domain inter-
faces to formally define the interaction between processes
of different computational models. The following MoCs are
used in ANDRES: untimed model, synchronous model, dis-
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Fig. 3. The Encoder/Decoder is a typical example for adap-
tivity.

crete time model and continuous time model.
Since the designer uses SystemC as a modelling lan-

guage, the ANDRES project will define modelling rules and
guidelines, which guarantee the SystemC models to be com-
pliant with the ANDRES modelling formalism. Thus meth-
ods developed for this framework, e.g. for property analysis,
verification or transformation, will also be applicable to the
ANDRES SystemC models.

Adaptivity is modelled by means of formally defined
adaptive processes. The functionality that the adaptive pro-
cess computes can be changed from the environment de-
pending on the value of an input signal.

Figure 3 shows a simple, but typical example for the
modelling of adaptivity. The processes Encoder and De-
coder are both adaptive processes and are fed with signals
carrying functions. These functions change the behaviour
of the encoder. In the first cycle the encoding function adds
one, while in the second cycle two is added to the incoming
value. The same adaptivity mechanism is used for the de-
coder. To yield an implementation this model is refined and
non-functional characteristics, like reconfiguration time, are
taken into account in subsequent design phases and the as-
sociated model.

5.2. SystemC-AMS

The OSCI working group SystemC-AMS is currently work-
ing on a prototype allowing designers to simulate systems
that combine data-flow modelling (using the Synchronous
Data Flow (SDF) MoC), analogue circuits (using the contin-
uous time network (CT-NET) MoC), and rather control ori-
ented digital circuits (using the discrete-event (DE) MoC).
Compared with circuit simulators such as SPICE, the fo-
cus of SystemC-AMS is on executable specification, design
space exploration and virtual prototyping of signal process-
ing and analogue/mixed-signal systems [5]. All these use-
cases require high simulation performance while less accu-
rate simulation is acceptable.

Another interesting feature of SystemC-AMS is its ex-
tensibility by other models of computation by integrating



new solvers for alternative MoCs into the synchronisation
layer. However, this feature plays a minor role in the AN-
DRES project since various MoCs are already provided by
HetSC.

In ANDRES the means for specifying and modelling
adaptivity will be encapsulated within a class that is inher-
ited from an abstract adaptive object (AAO) class specified
in the original system model. Different sets of possible func-
tional behaviour can be expressed by overloading virtual
methods. Parametrisation and other kinds of adaptivity can
be modelled by parameters, and be made more explicit by
attributes. To support system level design of adaptive com-
munication systems, a library of building blocks is being
developed. These building blocks focus on the field of com-
munication, radio frequency systems, in particular on signal
sources and modulation/demodulation parts (e.g. BASK or
QAM), signal analysis (eye diagrams, scatter plots) and bit
error rate calculation. Thereby it is explored for which parts
dynamic reconfiguration could be advantageous. Such adap-
tive features will then be implemented by means of the AAO
class mentioned above.

5.3. HetSC

HetSC [6] is a methodology enabling heterogeneous spec-
ification of complex embedded systems in SystemC. Com-
putational models supported include untimed MoCs, syn-
chronous MoCs and the timed MoCs already supported by
SystemC. In ANDRES, HetSC will be used for modelling
and generation of embedded software (see Figure 4). Pro-
viding several abstract MoCs (e.g. KPN, PN, CSP, SR, etc.),
HetSC enables a more intuitive and safer design of con-
current software systems adjusting to different specification
needs of the designer.

The HetSC methodology defines a set of specification
rules and coding guidelines for each specific MoC mak-
ing the design task more systematic. The fulfillment of
MoC specification rules provides useful properties for con-
current software, such as determinism, deadlock protection,
etc. The HetSC library, associated to the HetSC method-
ology, provides a set of facilities to cover the deficiencies
of the SystemC core language for heterogeneous specifica-
tion. The support of some MoCs requires new specification
facilities with specific semantics and abstraction levels. In
addition, some facilities of the HetSC library help to detect
and locate MoC rule violations and assist in debugging con-
current specifications.

The HetSC based software design flow is called SWGen
[7]. SWGen is a methodology for automatic software gen-
eration of embedded software from SystemC. Target plat-
form is an embedded system including an embedded real
time operating system (RTOS). The development platform
has to provide a C++ cross-compiler and a programmer API
for the RTOS. The methodology takes as input HetSC code

Fig. 4. HetSC in ANDRES

and produces preprocessed C++ code including RTOS sys-
tem calls. Additionally, the target binary file can be gen-
erated. The SWGen flow uses the SWGen library. The li-
brary substitutes the code of the SystemC core and HetSC
libraries, in charge of supporting the simulation engine and
other system-level features, by an efficient implementation,
suited to the target platform.

Several tasks are being carried out for integrating the
HetSC methodology into the ANDRES design flow. Guide-
lines and features for connecting HetSC with SystemC-
AMS are being developed. This will enable a methodology
supporting a wide spectrum of MoCs. This task involves the
connection of MoCs, rising several syntactical and semanti-
cal issues appearing at the interface between the methodol-
ogy/MoC interfaces. In addition, it is being studied how
the different types of adaptivity defined in ANDRES can
be supported by the HetSC methodology. This will provide
the ANDRES flow with the ability to support adaptivity in
software. A prerequisite is providing an interpretation about
what adaptivity is in software. From a general point of view,
adaptation is already present in embedded software in the
shape of different coding techniques. However, a conceptu-
alisation of its use could actually help to a clean and efficient
design and maintenance of the software code demanding
such adaptivity features. Finally, the ForSyDe metamodel is
being used to formalize the ANDRES methodology, and by
extension, the HetSC specification methodology. The latter
is being done through an interpretation of the HetSC speci-
fication (basically, a set of processes and channels) in terms
of the ForSyDe metamodeling facilities (basically, a set of
signals and process constructors).

5.4. OSSS+R

OSSS+R is a SystemC based modelling library providing
high-level language constructs enabling application-driven
modelling (self-)reconfigurable hardware systems. As all
OSSS+R elements have a well-defined synthesis semantics,
designs can automatically be mapped to platforms support-
ing dynamic partial reconfiguration (see Section 6).

Based on OSSS [8], in OSSS+R object-orientation is
used as an adequate abstraction mechanism for dynamically
reconfigurable hardware. The concept is based on the as-



Fig. 5. Polymorphism and configurations

sumption that changing functions of parts of a hardware sys-
tem largely resembles the use of polymorphism in object-
oriented software design [9].

Polymorphism, as used in object-oriented programming,
enables calling methods on an object, whose exact type is
unknown to the caller. The only known reference to the ob-
ject is its interface. Depending on the actual class of the
object, the corresponding implementation of a method is ex-
ecuted. This enables changing parts of the software at run-
time without modifying the static part of the code.

Considering a digital hardware system consisting of a
static and a dynamically reconfigurable part, it is obvious
that the interface between the two parts needs to be fixed.
However, the functionality of the reconfigurable hardware
may change. Hence, the key idea of OSSS+R is to model
the reconfigurable area of a hardware system as an adaptive
(polymorphic) object with a fixed interface. This interface
is defined by a base class, while its possible variants belong
to different subclasses. During run-time, different variants
of the adaptive object can be configured and used (see Fig-
ure 5).

To handle the management of different object configura-
tions and to ensure persistance OSSS+R introduces Named
Contexts. A context represents all relevant information of
an object, including its current type and state. From the de-
signer’s point of view, a context is used similar to a pointer in
C++, however automatically instantiated infrastructure en-
sures that a context is enabled (i.e. configured) if it is ac-
cessed by a user process. Its state is automatically saved
and restored during consecutive reconfigurations. Because a
context can be accessed concurrently, incoming request are
serialised using a built-in scheduler. Contexts hide the com-
plexity of configuration management and state preservation
and enable the designer to use adaptivity transparently.

5.5. Polymorphic Signals

When modelling heterogeneous systems, typically several
different MoCs are used for different subsystems. Moreover,
the MoC used for a specific subsystem may change during

Fig. 6. OSSS+R synthesis flow

system development, e.g. when passing over (due to a top-
down refinement) from an abstract description of a low pass
filter using a transfer function within the SDF-MoC to an
explicit one using an RC circuit within a continuous time
MoC.

Therefore, two problems arise: to use appropriate con-
verter modules when connecting systems components de-
scribed within different MoCs, and to exchange these when
changing the MoC for a specific subsystem. This has to be
done manually and is therefore time consuming and poten-
tially error-prone. To overcome these problems, the con-
cept of polymorphic signals was developed and prototypi-
cally implemented in SystemC-AMS [10].

Polymorphic signals are able to convert value types (e.g.
real to bit-vector) and semantics (e.g. SDF-MoC to DE-
MoC) automatically. This is achieved by instantiating ap-
propriate converter modules depending on the types of the
ports the signal is connected to. Polymorphic signals will
be used within ANDRES to support the coupling of system
components using different modelling libraries and MoCs
and to support the interactive performance analysis of hete-
rogeneous systems by mixed-level simulation.

6. SYNTHESIS OF RUN-TIME RECONFIGURABLE
DIGITAL HARDWARE

One of the major goals of the ANDRES project is the au-
tomated hardware synthesis for dynamic reconfigurable ar-
chitectures. The starting point for synthesis is OSSS+R. In
this case synthesis covers the translation of a given OSSS+R
model to RT-level VHDL, which in turn serves as input for
third-party backend tools, e.g. Xilinx’ Early Access Partial
Reconfiguration Design Flow [11] (see Figure 6). The syn-
thesis tool FOSSY (Functional Oldenburg System SYnthe-
sizer) for OSSS will be extended to support the language
constructs for reconfigurable components introduced with
OSSS+R.

The major transformation step towards a pure RTL de-
sign from an OSSS+R model consists of the generation of
various management structures. In addition to the applica-



tion and annotations given by the designer, different arbitra-
tion mechanisms, structural information (e.g. FPGA types)
etc. need to be considered. The generated infrastructure
consists of a set of hierarchically organised controllers. A
set of distributed controllers for each reconfigurable area
handles access requests by the static design parts. Each of
these access controllers uses a central reconfiguration con-
troller per device to accomplish reconfigurations. That unit
resolves conflicts between different distributed access con-
trollers and provides an interface to the FPGA’s configura-
tion port.

The required interfaces to the reconfigurable areas can
be determined during synthesis by analysing the interfaces
of the corresponding Named Contexts that are bound to the
area. This even allows the synthesis of static signal-level
interfaces for unrelated method interfaces bound to a single
reconfigurable area on the application layer.

For each possible functional content of a Named Con-
text, a VHDL implementation of the behaviour is generated
separately. In the later steps of the synthesis flow each of
these functional blocks can be used for the generation of the
required partial bitstreams.

One of the crucial aspects of system-on-chip design, is
the generation of efficient communication infrastructure be-
tween system components. ANDRES will extend the ap-
proaches for communication refinement and synthesis de-
veloped during the ICODES project [12]. In particular,
the communication between adaptive objects will be stud-
ied. One primary goal is the automatic generation of hard-
ware/software interfaces, which will enable, for example, to
access and to control adaptive hardware objects from soft-
ware and vice versa. Also the interaction between the digital
and the analogue components is investigated.

7. CONCLUSION

This paper presented motivation, goals and ongoing work of
the ANDRES project. While the heterogeneous nature of
embedded systems still yields many problems in current de-
sign flows due to different computational models, languages
and tools, these methodologies particularly lack support for
adaptive architectures. To resolve these issues, ANDRES is
developing a seamless design flow for such adaptive hetero-
geneous embedded systems and corresponding tools includ-
ing automatic synthesis of software and runtime reconfig-
urable digital hardware, like FPGAs.

Based on a formalism to express and analyse adaptivity
in different Models of Computation, three SystemC based
modelling libraries are used for specification, simulation and
analysis of AHES designs: SystemC-AMS for mixed-signal
components, HetSC for software and OSSS+R for run-time
reconfigurable digital hardware. An overall framework in-
cludes and connects these libraries using polymorphic sig-

nals. This modelling framework provides entry points for
automatic synthesis of hardware, software and communica-
tion infrastructure. The synthesis concept particularly con-
siders different types of adaptivity and adaptive architec-
tures and will be implemented in corresponding synthesis
tools.

The concepts and tools of ANDRES are evaluated using
industrial use-cases. As a result, ANDRES will provide a
complete design flow and tools based on SystemC. At the
end of the project, the modelling framework is planned to
be released to the public.
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