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Abstract—Self-aware computing systems enable computing sys-
tems to reflect on their actions and behavior. This becomes even
more relevant in Cyber-Physical Systems where computing sys-
tems have to control and interact with elements in the real world.
This paper reports on recent advances made in computational
self-awareness for cyber-physical systems.

Index Terms—self-awareness, cyber-physical systems, reflection,
autonomy

I. INTRODUCTION

Modern computing systems are becoming more tightly inte-
grated with their physical environment. This poses challenges
as computing systems, operating in discrete time, have to deal
with continuous time and space from the real world [1], [2].
At the same time, these systems are subject to unexpected
changes from the environment, including other systems as well
as humans [3]. While developers can make assumptions about
potential changes and dynamics in the physical environment,
developers will not be able to cover all possible dynamics. This
leads to systems requiring an ability to sense and understand
their environment. Furthermore, to ensure these systems operate
to the maximum of their capacity, they require an awareness of
themselves to optimize their own actions. This awareness can
range from simple understanding of their algorithmic capacity
to an understanding of their physical extension; from their in-
dividual actions to interactions and collaborative behaviors [4].

In this paper we summarize the contributions to the special
session on Self-awareness in Cyber-Physical Systems, part of
the Autonomous Design Initiative at DATE2023.

First, Peter Lewis discusses a reflective architecture for
autonomous agents in Section II. Different control flows enable
the agent to reflect on various aspects such as behavior, goals,
or learning. Afterwards, Carlo Rigazzoni and Lucio Marcenaro
propose a hierarchical framework for self-aware systems in
Section III. Using Generalized Hirarchical Dynamic Baysian
Networks in different cases such as creating world models,
performing active inference, or generating meaningful latent
variables from sensed data allows to improve self-awareness in
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computing systems. Third, Nikil Dutt highlights the need for a
comprehensive approach to achieving adaptivity and resilience
in autonomous self-aware systems in Section IV. He further
argues that there are architectural components available to
implement self-awareness in Cyber-physical Systems. Finally,
Christian Gruhl outlines Cognitive Energy Systems (CES) in
Section V. The CES represents a future version of the energy
grid with higher complexity requiring a decentralized and self-
aware control system. We conclude the paper with a discussion
of open challenges and potential future research directions.

II. SELF-AWARE MACHINE INTELLIGENCE

The idea of self-awareness in machines has a long history,
stemming mostly from science fiction, and myth before that,
and often tending toward the apocalyptic. Even in research and
development, the tendency to over-interpret or over-promise
such mental qualities is easily done. For example, in 1958
Frank Rosenblatt, pioneer of the Perceptron artificial neural
network system claimed that they could be ‘conscious of their
existence’1. More recently, Google engineer Blake Lemoine
claimed that their internal AI chatbot system, LaMDA, is
‘sentient’. Lemoine’s statement led to a range of responses,
ranging from ridicule2 to pity3 to concern over the growth of
anthropomophism4 to arguments that this distracts from the
real ethical and power issues that currently plague AI5. The
reactions and debate that follows these claims often causes
pause for thought in the public sphere, among practitioners,
and researchers. And there are valid concerns here.

Indeed, if we can learn one thing from the continual arising
of such claims and the discussion or dismissal that follows, it
is that we ought to be better with terminology and definitional

1‘New Navy Device Learns By Doing’, New York Times. July 8, 1958, p25.
2https://twitter.com/emilymbender/status/1536198662656626688
3https://www.theatlantic.com/ideas/archive/2022/06/

google-lamda-chatbot-sentient-ai/661322/
4https://www.msn.com/en-us/news/technology/

timnit-gebru-and-margaret-mitchell-ai-isn-t-sentient-but-if-it-were-it-would-be-racist/
ar-AAYEjaT

5https://www.wired.com/story/lamda-sentient-ai-bias-google-blake-lemoine/



precision. For example, self-awareness is often unfortunately
conflated with consciousness or sentience in popular discussion,
and it is also tempting to think that ‘self-awareness’ might be
something mystically off-limits for engineered systems.

Yet this is not the case. Self-awareness serves a crucial
function in many biological beings (including but not limited
to humans), especially in uncertain, new, and social situations.
Self-awareness has an evolutionary value in the world, and this
accounts for its presence [5]. Fundamentally, self-awareness
arises from a suite of information flows internal to an agent
that adaptively feed back to help direct behavior, change goals,
and set intentions [6]. Quite aside from how it might be
implemented in human minds, many of the processes associated
with self-awareness (and there are many) can be modeled,
specified, and reproduced in machines to obtain a similar
functional value [7]–[10].

To be clear, none of this requires us to accept notions such
as qualia, subjective experience, or sentience in machines. It is
the presence of one or more reflective ‘loops’ that is crucial to
the function of self-awareness. The road to self-aware machine
intelligence is therefore at least in-part architectural, in the
creation of reflective loops and self-modeling capabilities.

In this direction, Lewis and Sarkadi [11] highlight how
today’s AI systems are typically not architected to contain
these reflective loops, and thus do not permit self-awareness.
Analyzing Critic [12] and BDI [13] agent architectures, feed-
forward neural networks, and Generative Adversarial Networks
(GANs) [14], they argue that none of these has the capability
for reflection. Similarly, while cognitive architectures such as
Practical Reasoning Systems (PRS) [15] and ACT-R [16] do not
rule out reflection, they do not explicitly address it either. On
the other hand, the self-adaptive and self-organizing systems
research community, which has long explicitly considered self-
reference (e.g. [6]), has proposed a number of high-level
architectural frameworks for reflective self-awareness. One such
is the LRA-M architecture due to Kounev et al. [17], while
Lewis et al. [18] discuss architectural primitives that provide
for a number of ‘levels’ of self-awareness.

Integrating LRA-M with Russell and Norvig’s widely used
Critic Agent architecture [12], Lewis and Sarkadi propose
a ‘Reflective Agent’ architecture, that integrates operational
learning (e.g. using reinforcement learning) with a suite of ‘re-
flective loops’. Coupled with self-modeling capabilities, these
provide for different forms of self-awareness at runtime. There
are a number of self-awareness information and control flows
captured in this architecture that may prove valuable in the
development of cyber-physical systems operating in uncertain,
dynamic, and social6 environments. They include:

• Flow 1: Govern Behaviour. E.g. Intervening to prevent an
intended action.

6We use the term ‘social’ here to mean the class of situations in which direct
or indirect interactions exist with other agents, whether they be humans or other
systems, leading to some level of common dependence, resource contention,
or organization, and where intentional action directed towards these factors is
necessary or valuable. See e.g., Barnes et al. [19] and Scott and Pitt [20].)

• Flow 2: Abstract Conceptualization of New Experiences.
E.g. Building new semantically rich models of itself in its
environment, from experiences.

• Flow 3: Learn about and integrate new extrinsic factors
into operational goals. E.g. Social norms, standards, and
new user preferences, discovered in the environment from
signs, verbal instructions, and observation of behavior.

• Flow 4: Integrate new design goals.
• Flow 5: Active Experimentation to Improve Potential Be-

havior. E.g. Proposing novel courses of action and testing
hypotheses regarding them through internal simulation or
in the world.

• Flow 6: Reflecting on effectiveness of current operational
goals and progress towards them. E.g. Counterfactual
reasoning about current and potential goals; asking ‘am I
stuck?’ or ’would a different reward function better serve
my high-level goals?’

• Flow 7: Reflecting on the current mechanisms of learning.
E.g. reasoning about current operational learning mech-
anisms; ‘could I try to learn in a different way?’

• Flow 8: Reflective Thinking. E.g. Refactoring and recon-
ciling models on the fly, re-representing existing concep-
tual knowledge, concept synthesis.

These essentially form a ‘menu’ of possible functionalities
that may be afforded by this architectural approach. It may be
desirable to include some, all, or none of these, depending on
the form of self-awareness desired and the system’s require-
ments and context. A given instance of a self-aware system
may therefore have one or more of these processes.

In realizing this, many existing learning and reasoning algo-
rithms may be used; the ‘trick’ is simply to direct the attention
or input of the algorithm at an aspect of the system itself.
However new techniques will also be needed. Here we highlight
perhaps the largest of these: there is a need to develop mecha-
nisms that learn human- and machine-interpretable conceptual
and simulation models from empirical data and semantic infor-
mation in the world, and further, for these methods to do this in
an unsupervised fashion, on the fly in a complex environment.
Further, to enable systems to perform internal simulations of
their potential actions, goals and ways of operating, and check
the likely outcomes of these before putting them into practice,
there is also the need to develop the capability to run, analyze,
and interpret these new models on the fly, according to need.

III. INCREMENTAL SELF/AWARENESS BASED ON FREE
ENERGY MINIMISATION FOR AUTONOMOUS AGENTS

The definition of a computational framework allowing an
autonomous agent to improve its self-awareness on the basis
of its perceptual experiences while doing different tasks is a
core issue of Artificial General Intelligence. Such capability
can be a preliminary step to allow a more complete theory of
consciousness in artificial machines to be developed, beyond
being of practical use in several applications like autonomous
vehicle maneuvering and cognitive wireless communications.
There are few theories that provide a computational basis to
consider the different aspects implied in self-awareness within



Fig. 1. Self-Awareness for Autonomous Agents

a unique framework. In [21], the main self-aware features of a
self-awareness model have been listed as follows: generative
modeling, discriminative modeling, interaction, hierarchical
modeling, temporal reasoning, and uncertain reasoning. By
integrating such properties, a self-aware agent should be able:

• to predict the not yet observed state of the world and of
the self-based on its current knowledge (generative);

• to understand which of the generative models it has (or a
part of it) better fits current observed data (discriminative),

• to detect if no model currently available fits current data
(anomaly detection),

• to exploit knowledge of available models and to explore
new ones for driving its own decision-making capabilities
(support to action),

• to update by learning new models to keep its knowledge
in equilibrium with changing stationary rules that drive the
generation of perceptions (incremental learning)

Knowledge models for self-awareness should be capable of
representing temporal variables, describing the state of the
world and self at different hierarchical abstraction levels, and
capturing uncertainty in representation and inference. Proba-
bilistic graphical models, namely Dynamic Bayesian Networks
(DBN), could be a good candidate for computationally defining
a representation and inference basis. It has been shown [22]
that a particular class of Bayesian models. i.e., Generalized
Filters using generalized coordinates, allows establishing a link
between probability theory and statistical mechanics that can
be useful to describe a self-poietic agent capable to organize its
knowledge according to a computationally defined mechanism.
Generalized Hierarchical DBN (GHDBN) has been proposed in
[21] as a core computation tool for self-aware model definition.
In particular, free energy minimization can be used to explain
how an agent can do all steps necessary to make itself aware,
guided by the principle of keeping the homeostatic equilibrium
with data generated by the world and itself. The driving
principle from statistical mechanics is the least action principle:
to minimize the work to be done, a filter tries to keep constant
the action included in a model where rules remain stationary.

In the framework described in Fig. 1 one can see how
the different parts of the self-awareness model should include
related capabilities at a macro level.

• Multi-modal Perception (GHDBNs allowing the sensing

data of the agent to be converted into meaningful latent
variables)

• World and Self models (autobiographical memories in
lower dimensionality GHDBNs)

• Active inference Model (GHDBNs integrated with action
variables useful to drive decision-making and actuators)

• Cost block (including variables useful to evaluate free en-
ergy using current models on current data and to compute
measurements useful to update model themselves.

• Online and Incremental Learning (machine learning meth-
ods to produce new GHDBNs solving free energy mini-
mization)

• Short-term memory (as the dynamic bayesian process real-
izing inference oh GHDBns so producing new knowledge
like generative, discriminative estimates using bayesian
inference, anomaly detection, and make them available to
appropriate modules)

Self-awareness frameworks, as suggested here, should be part
of the research in the coming years to allow autonomous agents
to improve their capability of interacting with humans in terms
of explainability, adaptation, and coordination.

IV. ADAPTIVE, RESILIENT COMPUTING PLATFORMS
THROUGH SELF-AWARENESS

At its very core, a CPS deploys a primitive ODA loop for its
operation: Observe: sense environmental data in the physical
world; Decide: use computing platforms for sense-making; and
Act: deploy actuators in the physical world. This primitive loop
is akin to a basic feedback control loop, where decisions are
made primarily based on a history of past observations and
actions. This approach may have worked well for relatively sim-
ple use cases with known expected behaviors, static operational
modes, and predictable (or expected) environmental scenarios.
However, a contemporary CPS faces an explosion in diversity
and complexity across the entire computing stack, from low-
level hardware/computing architectures, to the highest level of
applications and policies, that pose tremendous challenges for
supporting adaptivity and resilience. Indeed, today’s CPS are
stitched together – often in an ad-hoc manner – using an array
of algorithms, policies, and (increasingly) black-box machine
learning models in an effort to deal with increasing dynamism,
unmodeled/anomalous behaviors, and critical system failures.
The pace of innovations in computing hardware and software
has exacerbated this problem, given the explosion of diversity
and complexity in emerging CPS across the abstraction stack:

• At the highest level of computing abstraction, applications
exhibit complex dynamic behaviors that span a diverse
scale of complexity from small footprint/edge/IoT devices
to large systems-of-systems such as interacting groups of
autonomous systems (e.g., drone swarms and truck pla-
toons) to systems-at-scale (large data centers). These CPS
must handle dynamic behaviors and yet-unseen behaviors
in use-cases, contexts, sensed data, as well in actuation.
In turn, the sensed data as well as the processed outputs
are truly heterogeneous in type (static, periodic, streams,
events) as well as in criticality requirements.



• The lowest computing abstraction levels of technology and
architecture are evolving rapidly, driven by the need for
customization to meet the possibly conflicting design goals
of performance, energy, resilience, etc.; as well as the
emergence of newer device and memory technologies. The
landscape of processor architectures is changing rapidly,
moving from standard CPUs, to GPUs, reconfigurable
hardware, and domain-specific accelerators. Memory and
interconnect are evolving rapidly as well, with the main-
stream acceptance of Non-Volatile Memories (NVM) and
newer storage technologies, spanning the gamut from local
to cloud storage, and evolving interconnect fabrics.

• Software toolchains: the diversity in computing platforms
results in a diverse and tessellated software ecosystem
across virtualization schemes, runtime systems, compilers,
code generators, etc.

• Emergent behaviors arising from collections of multiple
interacting (and increasingly autonomous) CPS, resulting
in a cross-product of individual known and unknown
behaviors that at best are impossible to specify at design
time, and at worst manifest as emergent, yet-unseen be-
haviors that may not only compromise mission safety, but
which may initiate a chain of system-wide critical failures
that jeopardize other CPS entities.

Computational self-awareness principles show promise for
achieving adaptivity and resilience in the face of such diversity
and dynamism. The rich history of deploying self-X principles
in computing platforms is captured in this incomplete list:

• The testing and fault-tolerant computing community has
studied self-test, self-diagnosis, self-repair for chips and
computing platforms for several decades; and unmanned
space missions have embraced some self-X principles to
ensure high levels of mission resilience.

• The software community leveraged concepts of reflective
software in the early 2000’s and IBM led a highly visible
program in Autonomic Computing (IBM) [23].

• In the past decade, the computer architecture community
has studied ODA-based feedback control strategies for
software centric and targeted adaptation of computing
platform resources [24], [25].

While these efforts have contributed to the development
of primitive self-aware computational platforms, they lack a
comprehensive approach to achieving adaptivity and resilience
through a principled treatment of computational self-awareness
that typically cover:

• Cross-layer sensing and actuation [26].
• Self-models and environment models that experience phe-

nomena and are aware of state and behaviors [27].
• Introspection that combines both reactive and proac-

tive/reflective control loops [28]. Reactive loops operate in
a classical ODA control loop, based purely on past behav-
iors. Proactive/Reflective loops enable proactive control
behaviors, that consider both past as well as possible future
outcomes using an Observe-Reflect-Decide-Act (ORDA)
loop. The ODA and ORDA loops operate concurrently to
enable effective introspection for complex systems, similar

to the fast, autonomic nervous system in animals (ODA)
and the slower reflective system (ORDA) that enables
planning, policies, strategies and evaluation of alternatives.

• A hierarchy of ODA and ORDA loops at different time
scales in a CPS [29], that model the entire spectrum of
computing abstraction levels from high-level applications,
through software, and down to the architectural hardware.

• Adaptive behaviors driven by models of external and
internal environment. This requires explicit modeling of
goals, constraints and evolvable policies to effect actions
in the CPS [30].

This is a rich and active research area with researchers
proposing models, architectures, and design flows for com-
putational self-awareness, special journal issues [31]–[33] and
many workshop series such as SelPhyS [34] that attempt to
understand and harness computational self-awareness principles
and their applications across different domains. For instance, we
have used the metaphor of self-aware information processing
factories (IPF) [35] to operate future adaptive computational
platforms akin to sensor-actuator-rich factories, exploiting on-
line optimization using self-reflection and self-organization to
enable system autonomy in the face of dynamic changes in
workload and operational environments. IPF principles aim
for flexible, adaptive management of computational resources
while ensuring continuous operation, achieved through maxi-
mally distributed autonomy with minimized centralized control.

Another perspective is embodied self-aware computing [36].
Since computational platforms for CPS are embodied in the
physical environment, we build on the notion of embodied
cognition to describe embodied self-aware computing systems,
where the computing platform can – similar to a brain embodied
in the environment – operate as an agent in a physical world
and achieve complex and dynamically changing goals. This
can be achieved through architectural components that facili-
tate: learning, reasoning, and managing complex, dynamically
changing goals. Self-aware CPS systems can then be engineered
using template reference architectures that deploy the following
embodied self-aware architectural components:

• Models for introspection, covering both self-models as
well as external environmental models; these models need
to capture history, and must have the ability to adapt
dynamically through learning mechanisms

• Explicit modeling of goal hierarchies and control mecha-
nisms to achieve adaptive actions, and possibly conflicting
goals.

• Assessment and attention mechanisms to enable calibra-
tion of internal and external states, as well as ability to
react to major external changes or anomalous behaviors.

• Learning mechanisms across all architectural components:
introspective models, goal hierarchies, control, assessment
and attention; enabling specialization, customization and
system resilience.

While there is a rich history of self-aware computing efforts,
CPS designers must use these principles judiciously, since
they exact overheads in resources, performance and energy.
Furthermore, the use of black-box machine learning techniques



may compromise resilience due to the lack of explainability, or
worse yet, through malicious exploitation of these techniques.
We posit that to fully exploit computational self-awareness
for achieving adaptive, resilient computing platforms, we need
principled approaches to flexibly incorporate the following con-
cepts: Cross-layer sensing/actuation; Self- and Environmental
models that learn and evolve over time in an explainable man-
ner; and Control/coordination of emergent behaviors for safe
and possibly predictable outcomes to achieve dynamic goals
as well as system resilience. Efforts in run-time verification
may be useful to complement other formal efforts for static
and dynamic system analysis.

V. COGNITIVE ENERGY SYSTEMS

What are Cognitive Energy Systems (CES)? A cognitive sys-
tem describes a system that has an awareness of its possibilities
of action, can perceive its environment and can independently
work out solutions for changing tasks through analysis, learning
and problem-solving mechanisms. This definition corresponds,
in essence, to our understanding of self-awareness. As of now,
our power grid is primarily a centrally controlled system.
However, this will change to a decentralized system with many
heterogeneous actors. One reason for this is the increasing
number of small ”power plants” (e.g. PV plants or wind power
plants) that contribute to energy production but simultaneously
belong to different stakeholders. Consumers are also changing,
for example, electric vehicles. They have a high charging
consumption but, at the same time, can be used as energy
storage. As a result, our power grid will become increasingly
complex and, at the same time, more flexible. CES is one
possible answer to making this complexity manageable again,
but it comes with its own open challenges.

In [37], we present a vision of tackling the aforementioned
complexity using the Organic Distribution System (ODiS).
Here, organic refers to organic-computing [25]. It introduces
a hierarchy consisting of Organic Home Energy Management
Systems (O-HEMS) operated at the customer’s site (e.g. the
end user at home). A large number of prosumers (e.g. electric
vehicles) are coordinated by these HEMS to ensure that they are
operating within the operational limits of the (low voltage) grid.
The low voltage grid is managed by an Organic Distributed
Management System (O-DMS), which aims to keep the power
system in a normal operational state. All agents are connected
to a computer network, allowing the exchange of information.
Each system (i.e. O-HEMS and O-DMS) can interact with
its environment, e.g. by charging electric vehicles, adjusting
dynamic loads, or injecting energy into the grid (O-HEMS)
or by changing the grid topology by controlling switches and
substations (O-DMS). This flexibility comes with an increased
complexity since the decisions of each agent influence the
environment of other agents. The idea of self-awareness is
a promising approach to managing the increased complexity.
Here we understand self-awareness as the ability to investigate
the system’s own condition (see also self-reflection [38]) and
the condition of its environment and to be able to make
decisions and assess their effects if unexpected or sudden
changes are detected.

Research on self-awareness for CES has only just begun.
Simulation-based solutions for decision-making will undoubt-
edly play a significant role. This is already becoming apparent
in challenges such as L2RPN [39], in which a power grid
is to be controlled autonomously (the challenge is becoming
more difficult every year). In addition, further research into
novelty detection techniques will play an essential role as it
can be seen as one of the fundamental building blocks of
awareness in technical systems [40]. The distributed nature
of CES’ and the mutual influence of the participating agents
makes CES’ an application domain for self-integration research
[41]. Another critical component to making systems self-aware
is that reasonable computing resources are available. It is
foreseeable that a home controller (such as the previously
presented O-HEMS) will have significantly less computing
power than, for instance, a large wind park. The challenge here
is to make decisions even on such microsystems and implement
at least (partial) self-awareness.

Self-awareness in CES’ will be a crucial building block
to increase resilience against failures and attacks. The recent
past, unfortunately, shows how vital resilience is for critical
infrastructure and that targeted attacks could become more
and more likely. In addition to direct attacks, such as on the
Nord Stream pipelines7, communication networks can also be
targeted, such as the sabotage against the German railway’s
GSM-R network in October 20228.

Here, we only briefly overview CES’ and its related research
fields. It should be clear that CES’ will be one of the CPS’ that
would highly benefit from future self-awareness techniques.

VI. CONCLUSION

Self-awareness in Cyber-Physical Systems is a rich research
area with contributions from different fields. In addition to the
already mentioned challenges, we can further identify a set of
challenges necessary to address in research:

• Runtime modeling and model calibration: Models are
essential for self-awareness. While we have extensive
models for physical properties they are often imprecise.
Utilizing model calibration techniques allow for improving
initial models [42]. With the increased interest in digital
twins, continuous time models and accompanying calibra-
tion approaches have seen a push recently [43].

• Mutual modeling and causality: For reasoning about and
predicting the behavior of other agents in its environment,
a self-aware system needs to build and maintain models
of those agents [4], [44].

• Verification and trust: To improve trust in autonomous
and self-aware CPS, systems are required to be veri-
fiable [45]. Verification monitors, however, need to be
defined before deployment. Nevertheless, if we can verify
behavior and guarantee actions and outcomes, this will
also lead to increased trust from users.

• Distributed self-awareness: With the rise of the Internet
of Things and its spread into various industries, swarm

7https://www.dw.com/en/a-63806519 (last access 05.12.2022)
8https://www.dw.com/en/a-63377385 (last access 05.12.2022)



behavior and self-organization received a push. Allowing
systems to share their knowledge and models across
multiple devices may allow them to generate those models
faster and more accurately. A question remains whether we
can achieve this also with computational self-awareness.
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